Morphological, Mechanical and Hydrodynamic Aspects of Diaphragmatic Lymphatics
Abstract
:Simple Summary
Abstract
1. Introduction
2. Morpho-Functional Description of the Diaphragmatic Lymphatic Network
2.1. Lymphatic Stomata
2.2. Lymphatic Lacunae and LLS
2.3. Lymphatic Structures of the Tendineous Pleural and Peritoneal Diaphragm
2.4. Lymphatic Structures of the Muscular Pleural Diaphragm
2.5. Lymphatic Structures of the Muscular Peritoneal Diaphragm
2.6. Interfibrillar Lymphatic Capillaries
2.7. Distribution of Lymphatic Network within the Diaphragmatic Cross Section
3. Mechanisms Sustaining Lymphatic Function in the Diaphragm
3.1. The Extrinsic Mechanism in Diaphragmatic Lymphatics
3.2. Diaphragmatic Tissue Mechanical Properties and Lymphatic Function
- (A)
- The vessels laying over the muscular/tendinous plane immediately beneath the mesothelial surface and delimited mostly by mesothelium are the most compliant ones; they are exposed to the highest circumferential tensile stresses, particularly along the contact edges of the mesothelial wall with the stiff diaphragmatic tissue basement. From the mechanical standpoint, such disposition favours high chances of dilatation of discontinuities of the mesothelial surface, represented, for example, by stomata and/or primary valves [6,10], thus making these vessels perfectly fitted to absorb fluid from the pleural and peritoneal cavities.
- (B)
- The vessels laying deeper within the diaphragmatic thickness [6] are characterized by a much stiffer (up to two orders of magnitude) wall compliance, a feature that ensures a more homogeneous distribution and a more efficient transmission of the circumferential stresses over the entire vessel surface. Because of these properties, deep vessels are more efficient than submesothelial ones in exploiting tissue stresses and propel diaphragmatic lymph in the network.
- (C)
- The vessels partly covered by mesothelium, and partly immersed in the muscular/tendinous tissue, show a transitory intermediate behaviour, being involved in both lymph production and propulsion.
3.3. The Intrinsic Mechanism in Diaphragmatic Lymphatics
4. Diaphragmatic Lymph Kinetics
5. Role of Diaphragmatic Lymphatic in Pleural-Peritoneal Drainage under Physiological and Pathophysiological Conditions
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- von Recklinghausen, F. Fur Fittresorption. Virckow’s Arch. 1863, 26, 172–208. [Google Scholar]
- Mariassy, A.T.; Wheeldon, E.B. The Pleura: A Combined Light Microscopic, Scanning, and Transmission Electron Microscopic Study in the Sheep. I. Normal Pleura. Exp. Lung Res. 1983, 4, 293–314. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.S. Anatomy of the Pleura. Clin. Chest Med. 1998, 19, 229–240. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.S. The Preformed Stomas Connecting the Pleural Cavity and the Lymphatics in the Parietal Pleura. Am. Rev. Respir. Dis. 1975, 111, 12–20. [Google Scholar] [CrossRef]
- Negrini, D.; Mukenge, S.; del Fabbro, M.; Gonano, C.; Miserocchi, G. Distribution of Diaphragmatic Lymphatic Stomata. J. Appl. Physiol. 1991, 70, 1544–1549. [Google Scholar] [CrossRef] [PubMed]
- Grimaldi, A.; Moriondo, A.; Sciacca, L.; Guidali, M.L.; Tettamanti, G.; Negrini, D. Functional Arrangement of Rat Diaphragmatic Initial Lymphatic Network. Am. J. Physiol. Heart Circ. Physiol. 2006, 291, H876–H885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Negrini, D.; del Fabbro, M.; Gonano, C.; Mukenge, S.; Miserocchi, G. Distribution of Diaphragmatic Lymphatic Lacunae. J. Appl. Physiol. 1992, 72, 1166–1172. [Google Scholar] [CrossRef]
- Ngamsnae, P.; Okazaki, T.; Ren, Y.; Xia, Y.; Hashimoto, H.; Ikeda, R.; Honkura, Y.; Katori, Y.; Izumi, S.I. Anatomy and Pathology of Lymphatic Vessels under Physiological and Inflammatory Conditions in the Mouse Diaphragm. Microvasc. Res. 2023, 145, 104438. [Google Scholar] [CrossRef]
- Matsuda, H.; Ito, Y.; Hosono, K.; Tsuru, S.; Inoue, T.; Nakamoto, S.; Kurashige, C.; Hirashima, M.; Narumiya, S.; Okamoto, H.; et al. Roles of Thromboxane Receptor Signaling in Enhancement of Lipopolysaccharide-Induced Lymphangiogenesis and Lymphatic Drainage Function in Diaphragm. Arter. Thromb. Vasc. Biol. 2021, 41, 1390–1407. [Google Scholar] [CrossRef]
- Jü, J.; Trzewik, J.; Mallipattu, S.K.; Artmann, G.M.; Delano, F.A.; Schmid-Schönbein, G.W.; Schönbein, S. Evidence for a Second Valve System in Lymphatics: Endothelial Microvalves. FASEB J. 2001, 15, 1711–1717. [Google Scholar]
- Benoit, J.N.; Zawieja, D.C.; Goodman, A.H.; Granger, H.J. Characterization of Intact Mesenteric Lymphatic Pump and Its Responsiveness to Acute Edemagenic Stress. Am. J. Physiol. 1989, 257, H2059–H2069. [Google Scholar] [CrossRef] [PubMed]
- Zawieja, D.C.; Davis, K.L.; Schuster, R.; Hinds, W.M.; Granger, H.J. Distribution, Propagation, and Coordination of Contractile Activity in Lymphatics. Am. J. Physiol. 1993, 264, H1283–H1291. [Google Scholar] [CrossRef]
- Negrini, D.; del Fabbro, M. Subatmospheric Pressure in the Rabbit Pleural Lymphatic Network. J. Physiol. 1999, 520, 761–769. [Google Scholar] [CrossRef] [PubMed]
- Negrini, D.; Moriondo, A. Lymphatic Anatomy and Biomechanics. J. Physiol. 2011, 589, 2927–2934. [Google Scholar] [CrossRef] [PubMed]
- Moriondo, A.; Bianchin, F.; Marcozzi, C.; Negrini, D. Kinetics of Fluid Flux in the Rat Diaphragmatic Submesothelial Lymphatic Lacunae. Am. J. Physiol. Heart Circ. Physiol. 2008, 295, H1182–H1190. [Google Scholar] [CrossRef] [PubMed]
- Moriondo, A.; Solari, E.; Marcozzi, C.; Negrini, D. Spontaneous Activity in Peripheral Diaphragmatic Lymphatic Loops. Am. J. Physiol. Heart Circ. Physiol. 2013, 305, H987–H995. [Google Scholar] [CrossRef] [Green Version]
- Moriondo, A.; Solari, E.; Marcozzi, C.; Negrini, D. Lymph Flow Pattern in Pleural Diaphragmatic Lymphatics during Intrinsic and Extrinsic Isotonic Contraction. Am. J. Physiol. Heart Circ. Physiol. 2016, 310, H60–H70. [Google Scholar] [CrossRef] [Green Version]
- Miserocchi, G.; Negrini, D. Contribution of Starling and Lymphatic Flows to Pleural Liquid Exchanges in Anesthetized Rabbits. J. Appl. Physiol. 1986, 61, 325–330. [Google Scholar] [CrossRef]
- Negrini, D.; Miserocchi, G. Size-Related Differences in Parietal Extrapleural and Pleural Liquid Pressure Distribution. J. Appl. Physiol. 1989, 67, 1967–1972. [Google Scholar] [CrossRef]
- Miserocchi, G.; Mariani, E.; Negrini, D. Role of the Diaphragm in Setting Liquid Pressure in Serous Cavities. Respir. Physiol. 1982, 50, 381–392. [Google Scholar] [CrossRef]
- Moriondo, A.; Mukenge, S.; Negrini, D. Transmural Pressure in Rat Initial Subpleural Lymphatics during Spontaneous or Mechanical Ventilation. Am. J. Physiol. Heart Circ. Physiol. 2005, 289, H263–H269. [Google Scholar] [CrossRef] [PubMed]
- Negrini, D.; del Fabbro, M.; Venturoli, D. Fluid Exchanges across the Parietal Peritoneal and Pleural Mesothelia. J. Appl. Physiol. 1993, 74, 1779–1784. [Google Scholar] [CrossRef] [PubMed]
- Solari, E.; Marcozzi, C.; Negrini, D.; Moriondo, A. Lymphatic Vessels and Their Surroundings: How Local Physical Factors Affect Lymph Flow. Biology 2020, 9, 463. [Google Scholar] [CrossRef] [PubMed]
- Negrini, D.; Moriondo, A.; Mukenge, S. Transmural Pressure during Cardiogenic Oscillations in Rodent Diaphragmatic Lymphatic Vessels. Lymphat. Res. Biol. 2004, 2, 69–81. [Google Scholar] [CrossRef] [PubMed]
- Miserocchi, G.; Negrini, D.; Mukenge, S.; Turconi, P.; del Fabbro, M. Liquid Drainage through the Peritoneal Diaphragmatic Surface. J. Appl. Physiol. 1989, 66, 1579–1585. [Google Scholar] [CrossRef] [PubMed]
- Mawhinney, H.J.D.; Roddie, I.C. Spontaneous Activity in Isolated Bovine Mesenteric Lymphatics. J. Physiol. 1973, 229, 339–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohhashi, T.; Azuma, T.; Sakaguchi, M. Active and Passive Mechanical Characteristics of Bovine Mesenteric Lymphatics. Am. J. Physiol. 1980, 239, H88–H95. [Google Scholar] [CrossRef]
- Moriondo, A.; Boschetti, F.; Bianchin, F.; Lattanzio, S.; Marcozzi, C.; Negrini, D. Tissue Contribution to the Mechanical Features of Diaphragmatic Initial Lymphatics. J. Physiol. 2010, 588, 3957–3969. [Google Scholar] [CrossRef]
- Hargens, A.R.; Zweifach, B.W. Contractile Stimuli in Collecting Lymph Vessels. Am. J. Physiol. 1977, 233, H57–H65. [Google Scholar] [CrossRef]
- Gasheva, O.Y.; Gashev, A.A.; Zawieja, D.C. Cyclic Guanosine Monophosphate and the Dependent Protein Kinase Regulate Lymphatic Contractility in Rat Thoracic Duct. J. Physiol. C 2013, 591, 4549–4565. [Google Scholar] [CrossRef]
- Gashev, A.A.; Davis, M.J.; Delp, M.D.; Zawieja, D.C. Regional Variations of Contractile Activity in Isolated Rat Lymphatics. Microcirculation 2004, 11, 477–492. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.-Z.; Gashev, A.A.; Zawieja, D.C.; Davis, M.J. Length-Tension Relationships of Small Arteries, Veins, and Lymphatics from the Rat Mesenteric Microcirculation. Am. J. Physiol. Heart Circ. Physiol. 2007, 292, H1943–H1952. [Google Scholar] [CrossRef] [PubMed]
- Moriondo, A.; Solari, E.; Marcozzi, C.; Negrini, D. Diaphragmatic Lymphatic Vessel Behavior during Local Skeletal Muscle Contraction. Am. J. Physiol. Heart Circ. Physiol. 2015, 308, H193–H205. [Google Scholar] [CrossRef] [Green Version]
- Zweifach, B.W.; Prather, J.W. Micromanipulation of Pressure in Terminal Lymphatics in the Mesentery. Am. J. Physiol. 1975, 228, 1326–1335. [Google Scholar] [CrossRef] [Green Version]
- Mchale, N.G.; Roddie, I.C. The Effect of Transmural Pressure on Pumping Activity in Isolated Bovine Lymphatic Vessels. J. Physiol. 1976, 261, 255–269. [Google Scholar] [CrossRef] [Green Version]
- Allen, J.M.; McHale, N.G.; Rooney, B.M. Effect of Norepinephrine on Contractility of Isolated Mesenteric Lymphatics. Am. J. Physiol. 1983, 244, H479–H486. [Google Scholar] [CrossRef] [PubMed]
- Kirkpatrick, C.T.; McHale, N.G. Electrical and Mechanical Activity of Isolated Lymphatic Vessels [Proceedings]. J. Physiol. 1977, 272, 33P–34P. [Google Scholar] [PubMed]
- van Helden, D.F. Pacemaker Potentials in Lymphatic Smooth Muscle of the Guinea-Pig Mesentery. J. Physiol. 1993, 471, 465–479. [Google Scholar] [CrossRef] [Green Version]
- von der Weid, P.Y.; Crowe, M.J.; van Helden, D.F. Endothelium-Dependent Modulation of Pacemaking in Lymphatic Vessels of the Guinea-Pig Mesentery. J. Physiol. 1996, 493 Pt 2, 563–575. [Google Scholar] [CrossRef]
- Telinius, N.; Majgaard, J.; Kim, S.; Katballe, N.; Pahle, E.; Nielsen, J.; Hjortdal, V.; Aalkjaer, C.; Boedtkjer, D.B. Voltage-Gated Sodium Channels Contribute to Action Potentials and Spontaneous Contractility in Isolated Human Lymphatic Vessels. J. Physiol. 2015, 593, 3109–3122. [Google Scholar] [CrossRef] [Green Version]
- McCloskey, K.D.; Toland, H.M.; Hollywood, M.A.; Thornbury, K.D.; McHale, N.G. Hyperpolarisation-Activated Inward Current in Isolated Sheep Mesenteric Lymphatic Smooth Muscle. J. Physiol. 1999, 521 Pt 1, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Negrini, D.; Marcozzi, C.; Solari, E.; Bossi, E.; Cinquetti, R.; Reguzzoni, M.; Moriondo, A. Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels in Peripheral Diaphragmatic Lymphatics. Am. J. Physiol. Heart Circ. Physiol. 2016, 311, H892–H903. [Google Scholar] [CrossRef] [PubMed]
- Brown, H.F.; DiFrancesco, D.; Noble, S.J. How Does Adrenaline Accelerate the Heart? Nature 1979, 280, 235–236. [Google Scholar] [CrossRef]
- DiFrancesco, D. A Study of the Ionic Nature of the Pace-Maker Current in Calf Purkinje Fibres. J. Physiol. 1981, 314, 377–393. [Google Scholar] [CrossRef] [PubMed]
- DiFrancesco, D. A New Interpretation of the Pace-Maker Current in Calf Purkinje Fibres. J. Physiol. 1981, 314, 359–376. [Google Scholar] [CrossRef]
- DiFrancesco, D. Pacemaker Mechanisms in Cardiac Tissue. Annu. Rev. Physiol. 1993, 55, 455–472. [Google Scholar] [CrossRef] [PubMed]
- DiFrancesco, D. The Role of the Funny Current in Pacemaker Activity. Circ. Res. 2010, 106, 434–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gashev, A.A.; Davis, M.J.; Zawieja, D.C. Inhibition of the Active Lymph Pump by Flow in Rat Mesenteric Lymphatics and Thoracic Duct. J. Physiol. 2002, 540, 1023–1037. [Google Scholar] [CrossRef] [PubMed]
- Solari, E.; Marcozzi, C.; Bartolini, B.; Viola, M.; Negrini, D.; Moriondo, A. Acute Exposure of Collecting Lymphatic Vessels to Low-Density Lipoproteins Increases Both Contraction Frequency and Lymph Flow: An In Vivo Mechanical Insight. Lymphat. Res. Biol. 2020, 18, 146–155. [Google Scholar] [CrossRef]
- Zawieja, S.D.; Castorena-Gonzalez, J.A.; Scallan, J.P.; Davis, M.J. Differences in L-Type Ca2+ Channel Activity Partially Underlie the Regional Dichotomy in Pumping Behavior by Murine Peripheral and Visceral Lymphatic Vessels. Am. J. Physiol. Heart Circ. Physiol. 2018, 314, H991–H1010. [Google Scholar] [CrossRef] [Green Version]
- Solari, E.; Marcozzi, C.; Negrini, D.; Moriondo, A. Fluid Osmolarity Acutely and Differentially Modulates Lymphatic Vessels Intrinsic Contractions and Lymph Flow. Front. Physiol. 2018, 9, 871. [Google Scholar] [CrossRef] [PubMed]
- Eggermont, J.; Trouet, D.; Carton, I.; Nilius, B. Cellular Function and Control of Volume-Regulated Anion Channels. Cell Biochem. Biophys. 2001, 35, 263–274. [Google Scholar] [CrossRef] [PubMed]
- Voets, T.; Droogmans, G.; Nilius, B. Membrane Currents and the Resting Membrane Potential in Cultured Bovine Pulmonary Artery Endothelial Cells. J. Physiol. 1996, 497, 95–107. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.-X.; Hatton, W.J.; Wang, G.L.; Zhong, J.; Yamboliev, I.; Duan, D.; Hume, J.R. Functional Effects of Novel Anti-ClC-3 Antibodies on Native Volume-Sensitive Osmolyte and Anion Channels in Cardiac and Smooth Muscle Cells. Am. J. Physiol.-Heart Circ. Physiol. 2003, 285, H1453–H1463. [Google Scholar] [CrossRef] [PubMed]
- Boedtkjer, E.; Matchkov, V.V.; Boedtkjer, D.M.B.; Aalkjaer, C. Negative News: Cl− and HCO3− in the Vascular Wall. Physiology 2016, 31, 370–383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, J.P.L. The Effects of Na+-K+-Cl- Co-Transport and Cl--HCO3-Exchange Blockade on the Membrane Potential and Intracellular Chloride Levels of Rat Arterial Smooth Muscle, in Vitro. Exp. Physiol. 1992, 77, 857–862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chipperfield, A.R.; Harper, A.A. Chloride in Smooth Muscle. Prog. Biophys. Mol. Biol. 2000, 74, 175–221. [Google Scholar] [CrossRef] [PubMed]
- Zakaria, E.R.; Hunt, C.M.; Li, N.; Harris, P.D.; Garrison, R.N. Disparity in Osmolarity-Induced Vascular Reactivity. J. Am. Soc. Nephrol. 2005, 16, 2931–2940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levine, S.E.; Granger, D.N.; Brace, R.A.; Taylor, A.E. Effect of Hyperosmolality on Vascular Resistance and Lymph Flow in the Cat Ileum. Am. J. Physiol. Heart Circ. Physiol. 1978, 3, H14–H20. [Google Scholar] [CrossRef]
- Zakaria, E.R.; Althani, A.; Fawzi, A.A.; Fituri, O.M. Hyperosmolality-Mediated Peritoneal Microvascular Vasodilation Is Linked to Aquaporin Function. Adv. Perit. Dial. 2014, 30, 63–74. [Google Scholar]
- Zakaria, E.R.; Althani, A.; Fawzi, A.A.; Fituri, O.M. Molecular Mechanisms of Peritoneal Dialysis-Induced Microvascular Vasodilation. Adv. Perit. Dial. 2014, 30, 98–109. [Google Scholar] [PubMed]
- Toda, N.; Ayajiki, K.; Toda, H.; Hatano, Y.; Okamura, T. Mechanism Underlying Mannitol-Induced Relaxation in Isolated Monkey Cerebral Arteries. Am. J. Physiol. Heart Circ. Physiol. 1992, 262, H897–H902. [Google Scholar] [CrossRef] [PubMed]
- de Clerck, I.; Guyssens, B.; Pannier, J.L.; van de Voorde, J. Hyperosmolarity Causes BKCa-Dependent Vasodilatations in Rat Skeletal Muscle Arteries. Med. Sci. Sports Exerc. 2005, 37, 1697–1703. [Google Scholar] [CrossRef]
- Lee, J.S. Role of Lymphatic System in Water and Solute Transport from Rat Intestine in Vitro. Q. J. Exp. Physiol. Cogn. Med. Sci. 1969, 54, 311–321. [Google Scholar] [CrossRef] [Green Version]
- Fathallah, A.M.; Turner, M.R.; Mager, D.E.; Balu-Iyer, S.V. Effects of Hypertonic Buffer Composition on Lymph Node Uptake and Bioavailability of Rituximab, after Subcutaneous Administration. Biopharm. Drug Dispos. 2015, 36, 115–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solari, E.; Marcozzi, C.; Negrini, D.; Moriondo, A. Temperature-Dependent Modulation of Regional Lymphatic Contraction Frequency and Flow. Am. J. Physiol. Heart Circ. Physiol. 2017, 313, H879–H889. [Google Scholar] [CrossRef] [Green Version]
- Solari, E.; Marcozzi, C.; Bistoletti, M.; Baj, A.; Giaroni, C.; Negrini, D.; Moriondo, A. TRPV4 Channels’ Dominant Role in the Temperature Modulation of Intrinsic Contractility and Lymph Flow of Rat Diaphragmatic Lymphatics. Am. J. Physiol. Heart Circ. Physiol. 2020, 319, H507–H518. [Google Scholar] [CrossRef] [PubMed]
- Moriondo, A.; Marcozzi, C.; Bianchin, F.; Passi, A.; Boschetti, F.; Lattanzio, S.; Severgnini, P.; Pelosi, P.; Negrini, D. Impact of Respiratory Pattern on Lung Mechanics and Interstitial Proteoglycans in Spontaneously Breathing Anaesthetized Healthy Rats. Acta Physiol. 2011, 203, 331–341. [Google Scholar] [CrossRef]
- Boriek, A.M.; Hwang, W.; Trinh, L.; Rodarte, J.R. Shape and Tension Distribution of the Active Canine Diaphragm. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2005, 288, R1021–R1027. [Google Scholar] [CrossRef]
- Miniati, M.; Parker, J.C.; Pistolesi, M.; Cartledge, J.T.; Martin, D.J.; Giuntini, C.; Taylor, A.E. Reabsorption Kinetics of Albumin from Pleural Space of Dogs. Am. J. Physiol. 1988, 255, H375–H385. [Google Scholar] [CrossRef]
- Negrini, D.; Ballard, S.T.; Benoit, J.N. Contribution of Lymphatic Myogenic Activity and Respiratory Movements to Pleural Lymph Flow. J. Appl. Physiol. 1994, 76, 2267–2274. [Google Scholar] [CrossRef] [PubMed]
- Negrini, D.; Tenstad, O.; Passi, A.; Wiig, H. Differential Degradation of Matrix Proteoglycans and Edema Development in Rabbit Lung. Am. J. Physiol. Lung. Cell. Mol. Physiol. 2006, 290, L470–L477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miserocchi, G.; Negrini, D.; Para, A.F.; Pistolesi, M.; Miniati, M.; Bellina, R.; Giuntini, C. Kinetics of the Intrapleural Distribution of a Radioactive Bolus. Respir. Physiol. 1986, 65, 13–27. [Google Scholar] [CrossRef] [PubMed]
- Demling, R.H.; Gunther, R. Effect of Diaphragmatic Lymphatic Contamination on Caudal Mediastinal Node Lymph Flow in Unanesthetized Sheep. Lymphology 1982, 15, 163–167. [Google Scholar] [PubMed]
- Drake, R.; Adair, T.; Traber, D.; Gabel, J. Contamination of Caudal Mediastinal Node Efferent Lymph in Sheep. Am. J. Physiol. 1981, 241, H354–H357. [Google Scholar] [CrossRef]
- Negrini, D.; Gonano, C.; del Fabbro, M.; Miserocchi, G. Transperitoneal Fludi Dynamics in Rabbit Liver. J. Appl. Physiol. 1990, 69, 625–629. [Google Scholar] [CrossRef]
- Lai-Fook, S.J.; Houtz, P.K.; Jones, P.D. Transdiaphragmatic Transport of Tracer Albumin from Peritoneal to Pleural Liquid Measured in Rats. J. Appl. Physiol. 2005, 99, 2212–2221. [Google Scholar] [CrossRef] [Green Version]
- Moriondo, A.; Grimaldi, A.; Sciacca, L.; Guidali, M.L.; Marcozzi, C.; Negrini, D. Regional Recruitment of Rat Diaphragmatic Lymphatics in Response to Increased Pleural or Peritoneal Fluid Load. J. Physiol. 2007, 579, 835–847. [Google Scholar] [CrossRef]
- Solari, E.; Marcozzi, C.; Ottaviani, C.; Negrini, D.; Moriondo, A. Draining the Pleural Space: Lymphatic Vessels Facing the Most Challenging Task. Biology 2022, 11, 419. [Google Scholar] [CrossRef]
- Kang, T.W.; Kim, C.K. Pleuroperitoneal Communication of Peritoneal Dialysis Demonstrated by Multidetector-Row CT Peritoneography. Abdom. Imaging 2009, 34, 780–782. [Google Scholar] [CrossRef]
- Chavannes, M.; Sharma, A.P.; Singh, R.N.; Reid, R.H.; Filler, G. Diagnosis by Peritoneal Scintigraphy of Peritoneal Dialysis-Associated Hydrothorax in an Infant. Perit. Dial. Int. 2014, 34, 140–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edwards, S.R.; Unger, A.M. Acute Hydrothorax—A New Complication of Peritoneal Dialysis. JAMA 1967, 199, 853–855. [Google Scholar] [CrossRef] [PubMed]
- Nomoto, Y.; Suga, T.; Nakajima, K.; Sakai, H.; Osawa, G.; Ota, K.; Kawaguchi, Y.; Sakai, T.; Sakai, S.; Shibata, M. Acute Hydrothorax in Continuous Ambulatory Peritoneal Dialysis—A Collaborative Study of 161 Centers. Am. J. Nephrol. 1989, 9, 363–367. [Google Scholar] [CrossRef] [PubMed]
- Alhasan, K.A. Recurrent Hydrothorax in a Child on Peritoneal Dialysis: A Case Report and Review of the Literature. Clin. Case Rep. 2019, 7, 149–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kennedy, C.; McCarthy, C.; Alken, S.; McWilliams, J.; Morgan, R.K.; Denton, M.; Conlon, P.J.; Magee, C. Pleuroperitoneal Leak Complicating Peritoneal Dialysis: A Case Series. Int. J. Nephrol. 2011, 2011, 526753. [Google Scholar] [CrossRef] [PubMed]
- Chow, K.M.; Szeto, C.; Kam, P.; Li, T. Management Options for Hydrothorax Complicating Peritoneal Dialysis. In Seminars in Dialysis; Blackwell Science Inc: Malden, MA, USA, 2003. [Google Scholar] [CrossRef]
- Chow, K.M.; Szeto, C.C.; Wong, T.Y.-H.; Li, P.K.-T. Hydrothorax Complicating Peritoneal Dialysis: Diagnostic Value of Glucose Concentration in Pleural Fluid Aspirate. Perit. Dial. Int. 2002, 22, 525–528. [Google Scholar] [CrossRef] [PubMed]
Density n/mm2 of Lacuna | Stomata Area % of Lacuna Surface | Radius µm | |||
---|---|---|---|---|---|
Min | Max | Mean | |||
PL-T (n = 32) | 456.4 ± 104.9 | 1.9 ± 1.4 | 2.6 ± 0.15 | 4.9 ± 0.4 | 3.6 ± 0.2 |
PL-M (n = 37) | 431.1 ± 150.1 | 0.4 ± 0.12 | 1.4 ± 0.05 | 1.9 ± 0.07 | 1.7 ± 0.05 |
PE-T (n = 604) | 2669.4 ± 684.6 | 3.6 ± 0.65 | 1.5 ± 0.04 | 2.4 ± 0.04 | 1.9 ± 0.04 |
PE-M (n = 2827) | 1893.0 ± 298 | 3.8 ± 0.85 | 1.9 ± 0.07 | 2.7 ± 0.02 | 2.3 ± 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Negrini, D. Morphological, Mechanical and Hydrodynamic Aspects of Diaphragmatic Lymphatics. Biology 2022, 11, 1803. https://doi.org/10.3390/biology11121803
Negrini D. Morphological, Mechanical and Hydrodynamic Aspects of Diaphragmatic Lymphatics. Biology. 2022; 11(12):1803. https://doi.org/10.3390/biology11121803
Chicago/Turabian StyleNegrini, Daniela. 2022. "Morphological, Mechanical and Hydrodynamic Aspects of Diaphragmatic Lymphatics" Biology 11, no. 12: 1803. https://doi.org/10.3390/biology11121803
APA StyleNegrini, D. (2022). Morphological, Mechanical and Hydrodynamic Aspects of Diaphragmatic Lymphatics. Biology, 11(12), 1803. https://doi.org/10.3390/biology11121803