Plasticity in Chemical Host Plant Recognition in Herbivorous Insects and Its Implication for Pest Control
Abstract
:Simple Summary
Abstract
1. Introduction
2. Sequential Chemical Host Seeking Cues: Multiple Steps Involving Olfaction and Taste
3. Chemical Cue Interaction Leads to Plasticity in Host Plant Recognition
Origin of Plasticity | Insect Taxa | References |
---|---|---|
Plasticity through plant cue interaction | ||
Interactions between chemical cues | Beetles | [24,26,27] |
Whiteflies | [25] | |
Psyllids | [28] | |
Aphids | [29,30,31,32] | |
Interactions between visual and chemical cues | Beetles | [33] |
Flies | [34,35] | |
Psyllids | [36,37] | |
Moths | [39,40] | |
Insect-dependent plasticity | ||
Chemosensory experience | Moth/butterflies | [41,42,43,44,45,46,47,48,55,59,60,61,62] |
Beetles | [49,51,56] | |
Psyllids | [52] | |
Locusts | [53,54,63] | |
Cockroaches | [64] | |
Physiological state | Flies | [65,68,69,70,71,76,77,80,81] |
Aphids | [72] | |
Psyllids | [37,78] | |
Moths | [79] | |
Sex and morph | Moth | [82,83,84,85,86,87] |
Beetles | [88] | |
Flies | [89] | |
Aphids | [30,90] | |
Locusts | [94,95,96,97,98,99] |
4. Chemical Host Plant Recognition Is Modulated by Visual Cues
5. Experience-Dependent Plasticity in Host Plant Responses
5.1. Plasticity Due to Olfactory Experience
5.2. Learning of Odors through Association with Gustatory Signals
5.3. Plasticity in Contact Compound Responses through Gustatory Experience
6. Influence of Physiological State on Host Plant Responses
6.1. Nutritional State and Symbiotic Bacteria can Modify Responses to Food- and Host-Related Volatiles
6.2. Pronounced Effects of Age and Mating State on Female Responses to Host-Related Volatiles
6.3. Sex-Dependent Responses to Host Plant Volatiles
6.4. Morph-Dependent Responses to Host Plant-Related Volatiles
7. Chemosensory Plasticity Leading to Host Plant Adaptation
8. Discussion and Perspectives towards Application
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anton, S.; Rössler, W. Plasticity and Modulation of Olfactory Circuits in Insects. Cell Tissue Res. 2021, 383, 149–164. [Google Scholar] [CrossRef] [PubMed]
- Mello, M.O.; Silva-Filho, M.C. Plant-Insect Interactions: An Evolutionary Arms Race between Two Distinct Defense Mechanisms. Braz. J. Plant Physiol. 2002, 14, 71–81. [Google Scholar] [CrossRef]
- Bernays, E.A.; Chapman, R.E. Behavior: The Process of Host-Plant Selection. In Host-Plant Selection by Phytophagous Insects; Springer: Boston, MA, USA, 1994; pp. 95–165. [Google Scholar]
- Johnson, S.N.; Gregory, P.J. Chemically-Mediated Host-Plant Location and Selection by Root-Feeding Insects. Physiol. Entomol. 2006, 31, 1–13. [Google Scholar] [CrossRef]
- Webster, B.; Cardé, R.T. Use of Habitat Odour by Host-seeking Insects. Biol. Rev. 2017, 92, 1241–1249. [Google Scholar] [CrossRef] [PubMed]
- Silva, R.; Clarke, A.R. The “Sequential Cues Hypothesis”: A Conceptual Model to Explain Host Location and Ranking by Polyphagous Herbivores. Insect Sci. 2020, 27, 1136–1147. [Google Scholar] [CrossRef] [PubMed]
- Nottingham, S.F.; Coaker, T.H. The Olfactory Response of Cabbage Root Fly Delia radicum to the Host Plant Volatile Allylisothiocyanate. Entomol. Exp. Appl. 1985, 39, 307–316. [Google Scholar] [CrossRef]
- Judd, G.J.R.; Borden, J.H. Distant Olfactory Response of the Onion Fly, Delia antiqua, to Host-plant Odour in the Field. Physiol. Entomol. 1989, 14, 429–441. [Google Scholar] [CrossRef]
- Bruce, T.J.A.; Wadhams, L.J.; Woodcock, C.M. Insect Host Location: A Volatile Situation. Trends Plant Sci. 2005, 10, 269–274. [Google Scholar] [CrossRef]
- Tasin, M.; Bäckman, A.-C.; Bengtsson, M.; Ioriatti, C.; Witzgall, P. Essential Host Plant Cues in the Grapevine Moth. Naturwissenschaften 2006, 93, 141–144. [Google Scholar] [CrossRef]
- Masante-Roca, I.; Gadenne, C.; Anton, S. Plant Odour Processing in the Antennal Lobe of Male and Female Grapevine Moths, Lobesia botrana ( Lepidoptera:Tortricidae). J. Insect Physiol. 2002, 48, 1111–1121. [Google Scholar] [CrossRef]
- Najar-Rodriguez, A.J.; Galizia, C.G.; Stierle, J.; Dorn, S. Behavioral and Neurophysiological Responses of an Insect to Changing Ratios of Constituents in Host Plant-Derived Volatile Mixtures. J. Exp. Biol. 2010, 213, 3388–3397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Döring, T.F. How Aphids Find Their Host Plants, and How They Don’t. Ann. Appl. Biol. 2014, 165, 3–26. [Google Scholar] [CrossRef]
- Heisswolf, A.; Gabler, D.; Obermaier, E.; Müller, C. Olfactory versus Contact Cues in Host Plant Recognition of a Monophagous Chrysomelid Beetle. J. Insect Behav. 2007, 20, 247. [Google Scholar] [CrossRef] [Green Version]
- Tsuneto, K.; Endo, H.; Shii, F.; Sasaki, K.; Nagata, S.; Sato, R. Diet Choice: The Two-Factor Host Acceptance System of Silkworm Larvae. PLoS Biol. 2020, 18, e3000828. [Google Scholar] [CrossRef] [PubMed]
- Shii, F.; Mang, D.; Kasubuchi, M.; Tsuneto, K.; Toyama, T.; Endo, H.; Sasaki, K.; Sato, R. Ultrasensitive Detection by Maxillary Palp Neurons Allows Non-Host Recognition without Consumption of Harmful Allelochemicals. J. Insect Physiol. 2021, 132, 104263. [Google Scholar] [CrossRef] [PubMed]
- Ozaki, K.; Ryuda, M.; Yamada, A.; Utoguchi, A.; Ishimoto, H.; Calas, D.; Marion-Poll, F.; Tanimura, T.; Yoshikawa, H. A Gustatory Receptor Involved in Host Plant Recognition for Oviposition of a Swallowtail Butterfly. Nat. Commun. 2011, 2, 542–549. [Google Scholar] [CrossRef] [Green Version]
- Müller, C.; van Loon, J.; Ruschioni, S.; Nicola, G.R.D.; Olsen, C.E.; Iori, R.; Agerbirk, N. Taste Detection of the Non-Volatile Isothiocyanate Moringin Results in Deterrence to Glucosinolate-Adapted Insect Larvae. Phytochemistry 2015, 118, 139–148. [Google Scholar] [CrossRef]
- Kasubuchi, M.; Shii, F.; Tsuneto, K.; Yamagishi, T.; Adegawa, S.; Endo, H.; Sato, R. Insect Taste Receptors Relevant to Host Identification by Recognition of Secondary Metabolite Patterns of Non-Host Plants. Biochem. Biophys. Res. Commun. 2018, 499, 901–906. [Google Scholar] [CrossRef]
- Stanley, M.; Ghosh, B.; Weiss, Z.F.; Christiaanse, J.; Gordon, M.D. Mechanisms of Lactic Acid Gustatory Attraction in Drosophila. Curr. Biol. 2021, 31, 3525–3537.e6. [Google Scholar] [CrossRef]
- Conchou, L.; Lucas, P.; Meslin, C.; Proffit, M.; Staudt, M.; Renou, M. Insect Odorscapes: From Plant Volatiles to Natural Olfactory Scenes. Front. Physiol. 2019, 10, 972. [Google Scholar] [CrossRef]
- Schröder, R.; Hilker, M. The Relevance of Background Odor in Resource Location by Insects: A Behavioral Approach. BioScience 2008, 58, 308–316. [Google Scholar] [CrossRef] [Green Version]
- Randlkofer, B.; Obermaier, E.; Hilker, M.; Meiners, T. Vegetation Complexity—The Influence of Plant Species Diversity and Plant Structures on Plant Chemical Complexity and Arthropods. Basic Appl. Ecol. 2010, 11, 383–395. [Google Scholar] [CrossRef]
- Thiery, D.; Visser, J.H. Masking of Host Plant Odour in the Olfactory Orientation of the Colorado Potato Beetle. Entomol. Exp. Appl. 1986, 41, 165–172. [Google Scholar] [CrossRef]
- Togni, P.H.B.; Laumann, R.A.; Medeiros, M.A.; Sujii, E.R. Odour Masking of Tomato Volatiles by Coriander Volatiles in Host Plant Selection of Bemisia tabaci Biotype B. Entomol. Exp. Appl. 2010, 136, 164–173. [Google Scholar] [CrossRef]
- Raffa, K.F.; Andersson, M.N.; Schlyter, F. Chapter One Host Selection by Bark Beetles Playing the Odds in a High-Stakes Game. Adv. Insect Physiol. 2016, 50, 1–74. [Google Scholar] [CrossRef]
- Hori, M.; Ohuchi, K.; Matsuda, K. Role of Host Plant Volatile in the Host-Finding Behavior of the Strawberry Leaf Beetle, Galerucella vittaticollis Baly (Coleoptera: Chrysomelidae). Appl. Entomol. Zool. 2006, 41, 357–363. [Google Scholar] [CrossRef] [Green Version]
- Barman, J.C.; Campbell, S.A.; Zeng, X. Exposure to Guava Affects Citrus Olfactory Cues and Attractiveness to Diaphorina citri (Hemiptera: Psyllidae). Environ. Entomol. 2016, 45, 694–699. [Google Scholar] [CrossRef]
- Ninkovic, V.; Glinwood, R.; Dahlin, I. Weed-Barley Interactions Affect Plant Acceptance by Aphids in Laboratory and Field Experiments. Entomol. Exp. Appl. 2009, 133, 38–45. [Google Scholar] [CrossRef]
- Dahlin, I.; Vucetic, A.; Ninkovic, V. Changed Host Plant Volatile Emissions Induced by Chemical Interaction between Unattacked Plants Reduce Aphid Plant Acceptance with Intermorph Variation. J. Pest. Sci. 2014, 88, 249–257. [Google Scholar] [CrossRef] [Green Version]
- Ninkovic, V.; Dahlin, I.; Vucetic, A.; Petrovic-Obradovic, O.; Glinwood, R.; Webster, B. Volatile Exchange between Undamaged Plants—A New Mechanism Affecting Insect Orientation in Intercropping. PLoS ONE 2013, 8, e69431. [Google Scholar] [CrossRef]
- Dardouri, T.; Gautier, H.; Costagliola, G.; Gomez, L. How French Marigold (Tagetes patula L.) Volatiles Can Affect the Performance of Green Peach Aphid. Integr. Prot. Fruit Crops IOBC-WPRS Bull. 2017, 123, 71–78. [Google Scholar]
- Campbell, S.A.; Borden, J.H. Additive and Synergistic Integration of Multimodal Cues of Both Hosts and Non-Hosts during Host Selection by Woodboring Insects. Oikos 2009, 118, 553–563. [Google Scholar] [CrossRef]
- Piñero, J.C.; Jácome, I.; Vargas, R.; Prokopy, R.J. Response of Female Melon Fly, Bactrocera cucurbitae, to Host-Associated Visual and Olfactory Stimuli. Entomol. Exp. Appl. 2006, 121, 261–269. [Google Scholar] [CrossRef]
- Bolton, L.; Pinero, J.; Barrett, B.A. Olfactory Cues From Host- and Non-Host Plant Odor Influence the Behavioral Responses of Adult Drosophila suzukii (Diptera: Drosophilidae) to Visual Cues. Environ. Entomol. 2021, 50, 571–579. [Google Scholar] [CrossRef]
- Volpe, H.X.L.; Zanardi, O.Z.; Magnani, R.F.; Luvizotto, R.A.G.; Esperança, V.; de Freitas, R.; Delfino, J.Y.; Mulinari, T.A.; de Carvalho, R.I.; Wulff, N.A.; et al. Behavioral Responses of Diaphorina citri to Host Plant Volatiles in Multiple-Choice Olfactometers Are Affected in Interpretable Ways by Effects of Background Colors and Airflows. PLoS ONE 2020, 15, e0235630. [Google Scholar] [CrossRef]
- Wenninger, E.J.; Stelinski, L.L.; Hall, D.G. Roles of Olfactory Cues, Visual Cues, and Mating Status in Orientation of Diaphorina citri Kuwayama (Hemiptera: Psyllidae) to Four Different Host Plants. Environ. Entomol. 2009, 38, 225–234. [Google Scholar] [CrossRef] [Green Version]
- Riffell, J.A. The Neuroecology of Insect-Plant Interactions: The Importance of Physiological State and Sensory Integration. Curr. Opin. Insect Sci. 2020, 42, 118–124. [Google Scholar] [CrossRef]
- Balkenius, A.; Bisch-Knaden, S.; Hansson, B. Interaction of Visual and Odour Cues in the Mushroom Body of the Hawkmoth Manduca sexta. J. Exp. Biol. 2009, 212, 535–541. [Google Scholar] [CrossRef] [Green Version]
- Balkenius, A.; Balkenius, C. Multimodal Interaction in the Insect Brain. BMC Neurosci. 2016, 17, 29. [Google Scholar] [CrossRef] [Green Version]
- Anderson, P.; Anton, S. Experience-Based Modulation of Behavioural Responses to Plant Volatiles and Other Sensory Cues in Insect Herbivores. Plant Cell Environ. 2014, 37, 1826–1835. [Google Scholar] [CrossRef] [Green Version]
- Anderson, P.; Sadek, M.M.; Larsson, M.; Hansson, B.S.; Thöming, G. Larval Host Plant Experience Modulates Both Mate Finding and Oviposition Choice in a Moth. Anim. Behav. 2013, 85, 1169–1175. [Google Scholar] [CrossRef]
- Proffit, M.; van Dam, N.; Khallaf, M.A.; Carrasco, D.; Larsson, M.C.; Anderson, P. ‘Do You Remember the First Time?’ Host Plant Preference in a Moth Is Modulated by Experiences during Larval Feeding and Adult Mating. Ecol. Lett. 2015, 18, 365–374. [Google Scholar] [CrossRef] [PubMed]
- Thöming, G.; Larsson, M.C.; Hansson, B.S.; Anderson, P. Comparison of Plant Preference Hierarchies of Male and Female Moths and the Impact of Larval Rearing Hosts. Ecology 2013, 94, 1744–1752. [Google Scholar] [CrossRef] [PubMed]
- Lhomme, P.; Khallaf, M.; Larsson, M.; Anderson, P. A Sensitive Period for the Induction of Host Plant Preference in a Generalist Herbivorous Insect. Anim. Behav. 2020, 169, 1–8. [Google Scholar] [CrossRef]
- Rösvik, A.; Lhomme, P.; Khallaf, M.A.; Anderson, P. Plant-Induced Transgenerational Plasticity Affecting Performance but Not Preference in a Polyphagous Moth. Front. Ecol. Evol. 2020, 8, 254. [Google Scholar] [CrossRef]
- Moreau, J.; Rahme, J.; Benrey, B.; Thiery, D. Larval Host Plant Origin Modifies the Adult Oviposition Preference of the Female European Grapevine Moth Lobesia botrana. Naturwissenschaften 2008, 95, 317–324. [Google Scholar] [CrossRef] [Green Version]
- Sant’Ana, J.; Tognon, R.; Pires, P.D.S.; Gregório, P.L.F. Associative Learning and Memory through Metamorphosis in Grapholita molesta (Busck) (Lepidoptera: Tortricidae). Can. Entomol. 2021, 153, 666–671. [Google Scholar] [CrossRef]
- Austel, N.; Björkman, C.; Hilker, M.; Meiners, T. Phenotypic Plasticity in Host Plant Preference of the Willow Leaf Beetle Phratora vulgatissima: The Impact of Experience Made by Adults. Agric. For. Entomol. 2014, 16, 417–425. [Google Scholar] [CrossRef]
- Blackiston, D.J.; Shomrat, T.; Levin, M. The Stability of Memories during Brain Remodeling: A Perspective. Commun. Integr. Biol. 2015, 8, e1073424. [Google Scholar] [CrossRef] [Green Version]
- Punzo, F.; Malatesta, R.J. Brain RNA Synthesis and the Retention of Learning through Metaorphosis in Tenebrio obscurus (Insecta: Coleoptera). Comp. Biochem. Physiol. A 1988, 91, 675–678. [Google Scholar] [CrossRef]
- Patt, J.M.; Stockton, D.; Meikle, W.G.; Sétamou, M.; Mafra-Neto, A.; Adamczyk, J.J. Innate and Conditioned Responses to Chemosensory and Visual Cues in Asian Citrus Psyllid, Diaphorina citri (Hemiptera: Liviidae), Vector of Huanglongbing Pathogens. Insects 2014, 5, 921–941. [Google Scholar] [CrossRef] [PubMed]
- Behmer, S.T.; Belt, C.E.; Shapiro, M.S. Variable Rewards and Discrimination Ability in an Insect Herbivore: What and How Does a Hungry Locust Learn? J. Exp. Biol. 2005, 208, 3463–3473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simoes, P.M.V.; Ott, S.R.; Niven, J.E. A Long-Latency Aversive Learning Mechanism Enables Locusts to Avoid Odours Associated with the Consequences of Ingesting Toxic Food. J. Exp. Biol. 2012, 215, 1711–1719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lhomme, P.; Carrasco, D.; Larsson, M.; Hansson, B.; Anderson, P. A Context-Dependent Induction of Natal Habitat Preference in a Generalist Herbivorous Insect. Behav. Ecol. 2017, 29, 360–367. [Google Scholar] [CrossRef] [Green Version]
- Coyle, D.R.; Clark, K.E.; Raffa, K.F.; Johnson, S.N. Prior Host Feeding Experience Influences Ovipositional but Not Feeding Preference in a Polyphagous Insect Herbivore: Weevil Feeding History Affects Future Host Selection. Entomol. Exp. Appl. 2011, 138, 137–145. [Google Scholar] [CrossRef]
- Kahsai, L.; Zars, T. Learning and Memory in Drosophila: Behavior, Genetics, and Neural Systems. Int. Rev. Neurobiol. 2011, 99, 139–167. [Google Scholar] [CrossRef]
- Menzel, R. The Honeybee as a Model for Understanding the Basis of Cognition. Nature. Rev. Neurosci. 2012, 13, 758–768. [Google Scholar] [CrossRef]
- Zhou, D.-S.; Wang, C.-Z.; van Loon, J.J.A. Chemosensory Basis of Behavioural Plasticity in Response to Deterrent Plant Chemicals in the Larva of the Small Cabbage White Butterfly Pieris rapae. J. Insect Physiol. 2009, 55, 788–792. [Google Scholar] [CrossRef]
- Sollai, G.; Biolchini, M.; Crnjar, R. Taste Receptor Plasticity in Relation to Feeding History in Two Congeneric Species of Papilionidae (Lepidoptera). J. Insect Physiol. 2018, 107, 41–56. [Google Scholar] [CrossRef]
- Del Campo, M.L.; Miles, C.I.; Schroeder, F.C.; Mueller, C.; Booker, R.; Renwick, J.A. Host Recognition by the Tobacco Hornworm Is Mediated by a Host Plant Compound. Nature 2001, 411, 186–189. [Google Scholar] [CrossRef]
- Ma, Y.; Li, J.; Tang, Q.; Zhang, X.; Zhao, X.; Yan, F.; Loon, J.J.A. van Trans-Generational Desensitization and within-Generational Resensitization of a Sucrose-Best Neuron in the Polyphagous Herbivore Helicoverpa armigera (Lepidoptera: Noctuidae). Sci. Rep. 2016, 6, 39358. [Google Scholar] [CrossRef] [PubMed]
- Opstad, R.; Rogers, S.M.; Behmer, S.T.; Simpson, S.J. Behavioural Correlates of Phenotypic Plasticity in Mouthpart Chemoreceptor Numbers in Locusts. J. Insect Physiol. 2004, 50, 725–736. [Google Scholar] [CrossRef] [PubMed]
- Wada-Katsumata, A.; Silverman, J.; Schal, C. Changes in Taste Neurons Support the Emergence of an Adaptive Behavior in Cockroaches. Science 2013, 340, 972–975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, S.; Zhou, X.; Gu, F.; Zhong, G.; Yi, X. Olfactory Plasticity: Variation in the Expression of Chemosensory Receptors in Bactrocera dorsalis in Different Physiological States. Front. Physiol. 2017, 8, 672. [Google Scholar] [CrossRef] [Green Version]
- Gadenne, C.; Barrozo, R.B.; Anton, S. Plasticity in Insect Olfaction: To Smell or Not to Smell? Annu. Rev. Entomol. 2016, 61, 317–333. [Google Scholar] [CrossRef]
- Desouhant, E.; Driessen, G.; Amat, I.; Bernstein, C. Host and Food Searching in a Parasitic Wasp Venturia canescens: A Trade-off between Current and Future Reproduction? Anim. Behav. 2005, 70, 145–152. [Google Scholar] [CrossRef]
- Sayin, S.; Boehm, A.C.; Kobler, J.M.; De Backer, J.-F.; Grunwald Kadow, I.C. Internal State Dependent Odor Processing and Perception—The Role of Neuromodulation in the Fly Olfactory System. Front. Cell Neurosci. 2018, 12, 11. [Google Scholar] [CrossRef] [Green Version]
- Cheriyamkunnel, S.J.; Rose, S.; Jacob, P.F.; Blackburn, L.A.; Glasgow, S.; Moorse, J.; Winstanley, M.; Moynihan, P.J.; Waddell, S.; Rezaval, C. A Neuronal Mechanism Controlling the Choice between Feeding and Sexual Behaviors in Drosophila. Curr. Biol. 2021, 31, 4231–4245. [Google Scholar] [CrossRef]
- Akami, M.; Andongma, A.A.; Zhengzhong, C.; Nan, J.; Khaeso, K.; Jurkevitch, E.; Niu, C.-Y.; Yuval, B. Intestinal Bacteria Modulate the Foraging Behavior of the Oriental Fruit Fly Bactrocera dorsalis (Diptera: Tephritidae). PLoS ONE 2019, 14, e0210109. [Google Scholar] [CrossRef] [Green Version]
- Wong, A.C.-N.; Wang, Q.-P.; Morimoto, J.; Senior, A.M.; Lihoreau, M.; Neely, G.G.; Simpson, S.J.; Ponton, F. Gut Microbiota Modifies Olfactory-Guided Microbial Preferences and Foraging Decisions in Drosophila. Curr. Biol. 2017, 27, 2397–2404. [Google Scholar] [CrossRef]
- Sochard, C.; Le Floch, M.; Anton, S.; Outreman, Y.; Simon, J.-C. Limited Influence of Gain and Loss of Symbionts on Host Plant Selection in Specialized Pea Aphid Genotypes. Entomologia 2021, 41, 39–47. [Google Scholar] [CrossRef]
- Bi, J.; Wang, Y. The Effect of the Endosymbiont Wolbachia on the Behavior of Insect Hosts. Insect Sci. 2020, 27, 846–858. [Google Scholar] [CrossRef] [PubMed]
- Hague, M.; Woods, H.A.; Cooper, B. Pervasive Effects of Wolbachia on Host Activity. Biol. Lett. 2021, 17, 20210052. [Google Scholar] [CrossRef]
- Truitt, A.M.; Kapun, M.; Kaur, R.; Miller, W.J. Wolbachia Modifies Thermal Preference in Drosophila melanogaster. Environ. Microbiol. 2019, 21, 3259–3268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tasnin, M.S.; Merkel, K.; Clarke, A.R. Effects of Advanced Age on Olfactory Response of Male and Female Queensland Fruit Fly, Bactrocera tryoni (Froggatt) (Diptera: Tephritidae). J. Insect Physiol. 2020, 122, 104024. [Google Scholar] [CrossRef]
- Devescovi, F.; Hurtado, J.; Taylor, P.W. Mating-Induced Changes in Responses of Female Queensland Fruit Fly to Male Pheromones and Fruit: A Mechanism for Mating-Induced Sexual Inhibition. J. Insect Physiol. 2021, 129, 104195. [Google Scholar] [CrossRef]
- Nissinen, A.; Kristoffersen, L.; Anderbrant, O. Physiological State of Female and Light Intensity Affect the Host-Plant Selection of Carrot Psyllid, Trioza apicalis. Eur J Entomol 2008, 105, 227. [Google Scholar] [CrossRef] [Green Version]
- Lemmen-Lechelt, J.K.; Wist, T.J.; Evenden, M.L. State-Dependent Plasticity in Response to Host-Plant Volatiles in a Long-Lived Moth, Caloptilia fraxinella (Lepidoptera: Gracillariidae). J. Chem. Ecol. 2018, 44, 276–287. [Google Scholar] [CrossRef]
- Kirkpatrick, D.M.; Leach, H.L.; Xu, P.; Dong, K.; Isaacs, R.; Gut, L.J. Comparative Antennal and Behavioral Responses of Summer and Winter Morph Drosophila suzukii (Diptera: Drosophilidae) to Ecologically Relevant Volatiles. Environ. Entomol. 2018, 47, 700–706. [Google Scholar] [CrossRef]
- Piñero, J.C.; Souder, S.K.; Cha, D.H.; Collignon, R.M.; Vargas, R.I. Age-Dependent Response of Female Melon Fly, Zeugodacus cucurbitae (Diptera: Tephritidae), to Volatiles Emitted from Damaged Host Fruits. J. Asia-Pac. Entomol. 2021, 24, 759–763. [Google Scholar] [CrossRef]
- Masante-Roca, I.; Anton, S.; Delbac, L.; Dufour, M.-C.; Gadenne, C. Attraction of the Grapevine Moth to Host and Non-Host Plant Parts in the Wind Tunnel: Effects of Plant Phenology, Sex, and Mating Status. Entomol. Exp. Appl. 2007, 122, 239–245. [Google Scholar] [CrossRef]
- Landolt, P.J. Attraction of the Cabbage Looper to Host Plants and Host Plant Odor in the Laboratory. Entomol. Exp. Appl. 1989, 53, 117–123. [Google Scholar] [CrossRef]
- Reddy, G.V.P.; Guerrero, A. Interactions of Insect Pheromones and Plant Semiochemicals. Trends Plant Sci. 2004, 9, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Varela, N.; Avilla, J.; Anton, S.; Gemeno, C. Synergism of Pheromone and Host-Plant Volatile Blends in the Attraction of Grapholita molesta Males. Entomol. Exp. Appl. 2011, 141, 114–122. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Bengtsson, M.; Witzgall, P. Host Plant Volatiles Synergize Response to Sex Pheromone in Codling Moth, Cydia pomonella. J. Chem. Ecol. 2004, 30, 619–629. [Google Scholar] [CrossRef]
- Ochieng, S.A.; Park, K.-C.; Baker, T.C. Host Plant Volatiles Synergize Responses of Sex Pheromone-Specific Olfactory Receptor Neurons in Male Helicoverpa zea. J. Comp. Physiol. A 2005, 188, 325–333. [Google Scholar] [CrossRef]
- Ju, Q.; Guo, X.; Li, X.; Jiang, X.; Jiang, X.; Ni, W.; Qu, M. Plant Volatiles Increase Sex Pheromone Attraction of Holotrichia parallela (Coleoptera: Scarabaeoidea). J. Chem. Ecol. 2017, 43, 236–242. [Google Scholar] [CrossRef]
- Piñero, J.C.; Barrett, B.A.; Bolton, L.G.; Follett, P.A. β-Cyclocitral Synergizes the Response of Adult Drosophila suzukii (Diptera: Drosophilidae) to Fruit Juices and Isoamyl Acetate in a Sex-Dependent Manner. Sci. Rep. 2019, 9, 10574. [Google Scholar] [CrossRef] [Green Version]
- Webster, B. The Role of Olfaction in Aphid Host Location. Physiol. Entomol. 2012, 37, 10–18. [Google Scholar] [CrossRef]
- Braendle, C.; Davis, G.K.; Brisson, J.A.; Stern, D.L. Wing Dimorphism in Aphids. Heredity 2006, 97, 192–199. [Google Scholar] [CrossRef] [Green Version]
- Shambaugh, G.F.; Frazier, J.L.; Castell, A.E.M.; Coons, L.B. Antennal Sensilla of Seventeen Aphid Species (Homoptera: Aphidinae). Int. J. Insect Morphol. 1978, 7, 389–404. [Google Scholar] [CrossRef]
- Miyazaki, M. Morphology of Aphids. In Aphids, Their Biology, Natural Enemies and Control; Minks, A., Harrewijn, P., Eds.; Elsevier: Amsterdam, The Netherlands, 1987; pp. 1–25. [Google Scholar]
- Greenwood, M.; Chapman, R. Differences in Numbers of Sensilla on the Antennae of Solitarious and Gregarious Locusta migratoria L. (Orthoptera: Acrididae). Int. J. Insect Morphol. 1984, 13, 295–301. [Google Scholar] [CrossRef]
- Guo, W.; Ren, D.; Zhao, L.; Jiang, F.; Song, J.; Wang, X.; Kang, L. Identification of Odorant-Binding Proteins (OBPs) and Functional Analysis of Phase-Related OBPs in the Migratory Locust. Front. Physiol. 2018, 9, 984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anton, S.; Ignell, R.; Hansson, B.S. Developmental Changes in the Structure and Function of the Central Olfactory System in Gregarious and Solitary Desert Locusts. Microsc. Res. Tech. 2002, 56, 281–291. [Google Scholar] [CrossRef] [PubMed]
- Ott, S.R.; Rogers, S.M. Gregarious Desert Locusts Have Substantially Larger Brains with Altered Proportions Compared with the Solitarious Phase. Proc. R. Soc. B Biol. Sci. 2010, 277, 3087–3096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ignell, R.; Anton, S.; Hansson, B.S. Central Nervous Processing of Behaviourally Relevant Odours in Solitary and Gregarious Fifth Instar Locusts, Schistocerca gregaria. J. Comp. Physiol. A 1998, 183, 453–465. [Google Scholar] [CrossRef]
- Simoes, P.M.V.; Ott, S.R.; Niven, J.E. Environmental Adaptation, Phenotypic Plasticity, and Associative Learning in Insects: The Desert Locust as a Case Study. Integr. Comp. Biol. 2016, 56, 914–924. [Google Scholar] [CrossRef] [Green Version]
- Little, C.M.; Chapman, T.W.; Hillier, N.K. Plasticity Is Key to Success of Drosophila suzukii (Diptera: Drosophilidae) Invasion. J. Insect Sci. 2020, 20, 5. [Google Scholar] [CrossRef] [PubMed]
- Revadi, S.; Vitagliano, S.; Stacconi, M.V.R.; Ramasamy, S.; Mansourian, S.; Carlin, S.; Vrhovsek, U.; Becher, P.G.; Mazzoni, V.; Rota-Stabelli, O.; et al. Olfactory Responses of Drosophila suzukii Females to Host Plant Volatiles. Physiol. Entomol. 2015, 40, 54–64. [Google Scholar] [CrossRef]
- Linz, J.; Baschwitz, A.; Strutz, A.; Dweck, H.K.M.; Sachse, S.; Hansson, B.S.; Stensmyr, M.C. Host Plant-Driven Sensory Specialization in Drosophila erecta. Proc. R. Soc. B Biol. Sci. 2013, 280, 20130626. [Google Scholar] [CrossRef] [Green Version]
- Dekker, T.; Ibba, I.; Siju, K.; Stensmyr, M.; Hansson, B. Olfactory Shifts Parallel Superspecialism for Toxic Fruit in Drosophila melanogaster Sibling, D. sechellia. Curr. Biol. 2006, 16, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Nylin, S.; Janz, N. Butterfly Host Plant Range: An Example of Plasticity as a Promoter of Speciation? Evol. Ecol. 2009, 23, 137–146. [Google Scholar] [CrossRef]
- He, M.; Zhang, Y.-N.; He, P. Molecular Characterization and Differential Expression of an Olfactory Receptor Gene Family in the White-Backed Planthopper Sogatella furcifera Based on Transcriptome Analysis. PLoS ONE 2015, 10, e0140605. [Google Scholar] [CrossRef]
- Xiao, Y.; Sun, L.; Wang, Q.; An, X.-K.; Huang, X.-Z.; Khashaveh, A.; Li, Z.-Y.; Zhang, Y.-J. Host Plants Transfer Induced Regulation of the Chemosensory Genes Repertoire in the Alfalfa Plant Bug Adelphocoris lineolatus (Goeze). Comp. Biochem. Physiol. Part D Genom. Proteom. 2021, 38, 100798. [Google Scholar] [CrossRef]
- Steward, R.A.; Boggs, C.L. Experience May Outweigh Cue Similarity in Maintaining a Persistent Host-plant-based Evolutionary Trap. Ecol. Monogr. 2020, 90, e01412. [Google Scholar] [CrossRef]
- Anton, S.; Jacquin-Joly, E. Médiateurs Chimiques et Lutte Contre Les Insectes. In Biocontrôle; Quae: Versailles, France, 2020; pp. 221–228. ISBN 978-2-7592-3077-8. [Google Scholar]
- Khan, Z.R.; James, D.G.; Midega, C.A.O.; Pickett, J.A. Chemical Ecology and Conservation Biological Control. Biol. Control 2008, 45, 210–224. [Google Scholar] [CrossRef]
- Derstine, N.T.; Meier, L.; Canlas, I.; Murman, K.; Cannon, S.; Carrillo, D.; Wallace, M.; Cooperband, M.F. Plant Volatiles Help Mediate Host Plant Selection and Attraction of the Spotted Lanternfly (Hemiptera: Fulgoridae): A Generalist With a Preferred Host. Environ. Entomol. 2020, 49, 1049–1062. [Google Scholar] [CrossRef]
- Rizvi, S.A.H.; Ling, S.; Tian, F.; Liu, J.; Zeng, X. Interference Mechanism of Sophora alopecuroides L. Alkaloids Extract on Host Finding and Selection of the Asian Citrus Psyllid Diaphorina Citri Kuwayama (Hemiptera: Psyllidae). Environ. Sci. Pollut. Res. 2019, 26, 1548–1557. [Google Scholar] [CrossRef] [PubMed]
- Bartlet, E.; Parsons, D.; Williams, I.H.; Clark, S.J. The Influence of Glucosinolates and Sugars on Feeding by the Cabbage Stem Flea Beetle, Psylliodes chrysocephala. Entomol. Exp. Appl. 1994, 73, 77–83. [Google Scholar] [CrossRef]
- Gruber, M.Y.; Xu, N.; Grenkow, L.; Li, X.; Onyilagha, J.; Soroka, J.J.; Westcott, N.D.; Hegedus, D.D. Responses of the Crucifer Flea Beetle to Brassica Volatiles in an Olfactometer. Environ. Entomol. 2009, 38, 1467–1479. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Li, Y.; Liu, Y.; Zalucki, M.P. Experience-induced Preference for Oviposition Repellents Derived from a Non-host Plant by a Specialist Herbivore. Ecol. Lett. 2005, 8, 722–729. [Google Scholar] [CrossRef]
- Cunningham, J.P. Can Mechanism Help Explain Insect Host Choice? J. Evol. Biol. 2012, 25, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Blande, J.D. Effects of Air Pollution on Plant–Insect Interactions Mediated by Olfactory and Visual Cues. Curr. Opin. Environ. Sci. Health 2021, 19, 100228. [Google Scholar] [CrossRef]
- Marchica, A.; Lorenzini, G.; Papini, R.; Bernardi, R.; Nali, C.; Pellegrini, E. Signalling Molecules Responsive to Ozone-Induced Oxidative Stress in Salvia officinalis. Sci. Total Environ. 2019, 657, 568–576. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anton, S.; Cortesero, A.-M. Plasticity in Chemical Host Plant Recognition in Herbivorous Insects and Its Implication for Pest Control. Biology 2022, 11, 1842. https://doi.org/10.3390/biology11121842
Anton S, Cortesero A-M. Plasticity in Chemical Host Plant Recognition in Herbivorous Insects and Its Implication for Pest Control. Biology. 2022; 11(12):1842. https://doi.org/10.3390/biology11121842
Chicago/Turabian StyleAnton, Sylvia, and Anne-Marie Cortesero. 2022. "Plasticity in Chemical Host Plant Recognition in Herbivorous Insects and Its Implication for Pest Control" Biology 11, no. 12: 1842. https://doi.org/10.3390/biology11121842
APA StyleAnton, S., & Cortesero, A. -M. (2022). Plasticity in Chemical Host Plant Recognition in Herbivorous Insects and Its Implication for Pest Control. Biology, 11(12), 1842. https://doi.org/10.3390/biology11121842