Initial Muscle Quality Affects Individual Responsiveness of Interleukin-6 and Creatine Kinase following Acute Eccentric Exercise in Sedentary Obese Older Women
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Muscle Strength Evaluation
2.3. Muscle Quality Index
2.4. Body Composition
2.5. Blood Biomarkers
2.6. Statistical Analysis
3. Results
3.1. Participants Characteristics
3.2. Time-Course Effects of IL-6 and CK Levels in Low and High MQI
3.3. Responsiveness for IL-6 Levels Based on MCID
3.4. Responsiveness for CK Levels Based on MCID
3.5. Effect Size
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fried, L.P.; Cohen, A.A.; Xue, Q.L.; Walston, J.; Bandeen-Roche, K.; Varadhan, R. The physical frailty syndrome as a transition from homeostatic symphony to cacophony. Nat. Aging 2021, 1, 36–46. [Google Scholar] [CrossRef] [PubMed]
- De Sousa Neto, I.V.; Carvalho, M.M.; Marqueti, R.C.; Almeida, J.A.; Oliveira, K.S.; Barin, F.R.; Petriz, B.; de Araujo, H.S.S.; Franco, O.L.; Durigan, J.L.Q. Proteomic changes in skeletal muscle of aged rats in response to resistance training. Cell Biochem. Funct. 2020, 38, 500–509. [Google Scholar] [CrossRef] [PubMed]
- Fragala, M.S.; Kenny, A.M.; Kuchel, G.A. Muscle quality in aging: A multi-dimensional approach to muscle functioning with applications for treatment. Sports Med. 2015, 45, 641–658. [Google Scholar] [CrossRef] [PubMed]
- Khalatbari-Soltani, S.; Blyth, F.M.; Naganathan, V.; Le Couteur, D.G.; Handelsman, D.J.; Seibel, M.J.; Hirani, V.; Wright, F.A.C.; Waite, L.M.; Cumming, R.G. Cohort Profile update: The Concord Health and Ageing in Men Project (CHAMP). Int. J. Epidemiol. 2021, 51, 31–32h. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.J.; Peng, L.N.; Chiou, S.T.; Chen, L.K. Relative Handgrip Strength Is a Simple Indicator of Cardiometabolic Risk among Middle-Aged and Older People: A Nationwide Population-Based Study in Taiwan. PLoS ONE 2016, 11, e0160876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nascimento, D.D.C.; Prestes, J.; de Sousa Diniz, J.; Beal, P.R.; Alves, V.P.; Stone, W.; Beal, F.L.R. Comparison of field- and laboratory-based estimates of muscle quality index between octogenarians and young older adults: An observational study. J. Exerc. Rehabil. 2020, 16, 458–466. [Google Scholar] [CrossRef] [PubMed]
- Straight, C.R.; Brady, A.O.; Evans, E.M. Muscle quality in older adults: What are the health implications? Am. J. Lifestyle Med. 2015, 9, 130–136. [Google Scholar] [CrossRef]
- Nogueira Paranhos Amorim, D.; Nascimento, D.C.; Stone, W.; Alves, V.P.; Moraes, C.F.; Coelho Vilaca, E.S.K.H. Muscle Quality Is Associated with History of Falls in Octogenarians. J. Nutr. Health Aging 2021, 25, 120–125. [Google Scholar] [CrossRef]
- Correa-de-Araujo, R.; Harris-Love, M.O.; Miljkovic, I.; Fragala, M.S.; Anthony, B.W.; Manini, T.M. The Need for Standardized Assessment of Muscle Quality in Skeletal Muscle Function Deficit and Other Aging-Related Muscle Dysfunctions: A Symposium Report. Front. Physiol. 2017, 8, 87. [Google Scholar] [CrossRef]
- Fragala, M.S.; Cadore, E.L.; Dorgo, S.; Izquierdo, M.; Kraemer, W.J.; Peterson, M.D.; Ryan, E.D. Resistance Training for Older Adults: Position Statement From the National Strength and Conditioning Association. J. Strength Cond. Res. 2019, 33, 2019–2052. [Google Scholar] [CrossRef]
- Silva, P.R.; Nascimento, D.D.C.; de Sousa Neto, I.V.; Funghetto, S.S.; Tibana, R.A.; Navalta, J.W.; Beal, F.L.R.; Prestes, J. Effects of Resistance Training on Muscle Quality Index, Muscle Strength, Functional Capacity, and Serum Immunoglobulin Levels between Obese and Non-obese Older Women. Int. J. Exerc. Sci. 2021, 14, 707–726. [Google Scholar]
- National Strength and Conditioning Association 2016 Japan Abstracts: Erratum. J. Strength Cond. Res. 2017, 31, e67. [CrossRef]
- Shurley, J.P.; Todd, J.S.; Todd, T.C. The Science of Strength: Reflections on the National Strength and Conditioning Association and the Emergence of Research-Based Strength and Conditioning. J. Strength Cond. Res. 2017, 31, 517–530. [Google Scholar] [CrossRef]
- Hill, M.W.; Roberts, M.; Price, M.J.; Kay, A.D. Effects of Flywheel Training With Eccentric Overload on Standing Balance, Mobility, Physical Function, Muscle Thickness, and Muscle Quality in Older Adults. J. Strength Cond. Res. 2021. [Google Scholar] [CrossRef]
- Molinari, T.; Steffens, T.; Roncada, C.; Rodrigues, R.; Dias, C.P. Effects of Eccentric-Focused Versus Conventional Training on Lower Limb Muscular Strength in Older People: A Systematic Review With Meta-Analysis. J. Aging Phys. Act. 2019, 27, 823–830. [Google Scholar] [CrossRef]
- Toft, A.D.; Jensen, L.B.; Bruunsgaard, H.; Ibfelt, T.; Halkjaer-Kristensen, J.; Febbraio, M.; Pedersen, B.K. Cytokine response to eccentric exercise in young and elderly humans. Am. J. Physiol. Cell Physiol. 2002, 283, C289–C295. [Google Scholar] [CrossRef] [Green Version]
- Tajra, V.; Tibana, R.A.; Vieira, D.C.; de Farias, D.L.; Teixeira, T.G.; Funghetto, S.S.; Silva, A.O.; de Sousa, N.M.; Willardson, J.; Karnikowski, M.G.; et al. Identification of high responders for interleukin-6 and creatine kinase following acute eccentric resistance exercise in elderly obese women. J. Sci. Med. Sport 2014, 17, 662–666. [Google Scholar] [CrossRef] [Green Version]
- Leal, L.G.; Lopes, M.A.; Batista, M.L., Jr. Physical Exercise-Induced Myokines and Muscle-Adipose Tissue Crosstalk: A Review of Current Knowledge and the Implications for Health and Metabolic Diseases. Front. Physiol. 2018, 9, 1307. [Google Scholar] [CrossRef]
- So, B.; Kim, H.J.; Kim, J.; Song, W. Exercise-induced myokines in health and metabolic diseases. Integr. Med. Res. 2014, 3, 172–179. [Google Scholar] [CrossRef] [Green Version]
- Fischer, C.P. Interleukin-6 in acute exercise and training: What is the biological relevance? Exerc. Immunol. Rev. 2006, 12, 6–33. [Google Scholar]
- Koch, A.J.; Pereira, R.; Machado, M. The creatine kinase response to resistance exercise. J. Musculoskelet Neuronal Interact. 2014, 14, 68–77. [Google Scholar]
- Mann, T.N.; Lamberts, R.P.; Lambert, M.I. High responders and low responders: Factors associated with individual variation in response to standardized training. Sports Med. 2014, 44, 1113–1124. [Google Scholar] [CrossRef]
- Ostrowski, K.; Schjerling, P.; Pedersen, B.K. Physical activity and plasma interleukin-6 in humans—Effect of intensity of exercise. Eur. J. Appl. Physiol. 2000, 83, 512–515. [Google Scholar] [CrossRef]
- National Institutes of Health—Understanding adult obesity—National Institute of Diabetes and Digestive and Kidney Diseases. 2001. Available online: http://win.niddk.nih.gov/publications/PDFs/adultobesbw1201.pdf (accessed on 5 November 2021).
- Nascimento, D.D.C.; da Silva, C.R.; Valduga, R.; Saraiva, B.; de Sousa Neto, I.V.; Vieira, A.; Funghetto, S.S.; Silva, A.O.; Oliveira, S.D.C.; Pereira, G.B.; et al. Blood pressure response to resistance training in hypertensive and normotensive older women. Clin. Interv. Aging 2018, 13, 541–553. [Google Scholar] [CrossRef] [Green Version]
- Frontera, W.R.; Hughes, V.A.; Fielding, R.A.; Fiatarone, M.A.; Evans, W.J.; Roubenoff, R. Aging of skeletal muscle: A 12-yr longitudinal study. J. Appl. Physiol. 2000, 88, 1321–1326. [Google Scholar] [CrossRef]
- Brzycki, M. Strength testing—Predicting a one-rep max from reps-to-fatigue. J. Phys. Educ. Recreat. Danc. 1993, 64, 88–90. [Google Scholar] [CrossRef]
- Barbat-Artigas, S.; Rolland, Y.; Cesari, M.; Abellan van Kan, G.; Vellas, B.; Aubertin-Leheudre, M. Clinical relevance of different muscle strength indexes and functional impairment in women aged 75 years and older. J. Gerontol. A Biol. Sci. Med. Sci. 2013, 68, 811–819. [Google Scholar] [CrossRef] [Green Version]
- Barbat-Artigas, S.; Rolland, Y.; Zamboni, M.; Aubertin-Leheudre, M. How to assess functional status: A new muscle quality index. J. Nutr. Health Aging 2012, 16, 67–77. [Google Scholar] [CrossRef]
- Choquette, S.; Bouchard, D.R.; Doyon, C.Y.; Senechal, M.; Brochu, M.; Dionne, I.J. Relative strength as a determinant of mobility in elders 67-84 years of age. a nuage study: Nutrition as a determinant of successful aging. J. Nutr. Health Aging 2010, 14, 190–195. [Google Scholar] [CrossRef]
- Murai, J.; Nishizawa, H.; Otsuka, A.; Fukuda, S.; Tanaka, Y.; Nagao, H.; Sakai, Y.; Suzuki, M.; Yokota, S.; Tada, H.; et al. Low muscle quality in Japanese type 2 diabetic patients with visceral fat accumulation. Cardiovasc. Diabetol. 2018, 17, 112. [Google Scholar] [CrossRef]
- Straight, C.; Brady, A.; Schmidt, M.; Evans, E. Comparison of laboratory-and field-based estimates of muscle quality for predicting physical function in older women. J. Aging Res. Clin. Pract. 2013, 2, 276–279. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; L. Erlbaum Associates: Hillsdale, NJ, USA, 1988; xxi, 567p. [Google Scholar]
- Copay, A.G.; Subach, B.R.; Glassman, S.D.; Polly, D.W., Jr.; Schuler, T.C. Understanding the minimum clinically important difference: A review of concepts and methods. Spine J. 2007, 7, 541–546. [Google Scholar] [CrossRef] [PubMed]
- Samsa, G.; Edelman, D.; Rothman, M.L.; Williams, G.R.; Lipscomb, J.; Matchar, D. Determining clinically important differences in health status measures: A general approach with illustration to the Health Utilities Index Mark II. Pharmacoeconomics 1999, 15, 141–155. [Google Scholar] [CrossRef] [PubMed]
- Swinton, P.A.; Hemingway, B.S.; Saunders, B.; Gualano, B.; Dolan, E. A Statistical Framework to Interpret Individual Response to Intervention: Paving the Way for Personalized Nutrition and Exercise Prescription. Front. Nutr. 2018, 5, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garneau, L.; Parsons, S.A.; Smith, S.R.; Mulvihill, E.E.; Sparks, L.M.; Aguer, C. Plasma Myokine Concentrations After Acute Exercise in Non-obese and Obese Sedentary Women. Front. Physiol. 2020, 11, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Machado, M.; Willardson, J.M. Short recovery augments magnitude of muscle damage in high responders. Med. Sci. Sports Exerc. 2010, 42, 1370–1374. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, B.K. Muscle as a secretory organ. Compr. Physiol. 2013, 3, 1337–1362. [Google Scholar] [CrossRef]
- DeFronzo, R.A.; Tripathy, D. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 2009, 32 (Suppl. S2), S157–S163. [Google Scholar] [CrossRef] [Green Version]
- Vlavcheski, F.; Den Hartogh, D.J.; Giacca, A.; Tsiani, E. Amelioration of High-Insulin-Induced Skeletal Muscle Cell Insulin Resistance by Resveratrol Is Linked to Activation of AMPK and Restoration of GLUT4 Translocation. Nutrients 2020, 12, 914. [Google Scholar] [CrossRef] [Green Version]
- Habegger, K.M.; Hoffman, N.J.; Ridenour, C.M.; Brozinick, J.T.; Elmendorf, J.S. AMPK enhances insulin-stimulated GLUT4 regulation via lowering membrane cholesterol. Endocrinology 2012, 153, 2130–2141. [Google Scholar] [CrossRef]
- Dela, F.; Kjaer, M. Resistance training, insulin sensitivity and muscle function in the elderly. Essays Biochem. 2006, 42, 75–88. [Google Scholar] [CrossRef] [Green Version]
- Willoughby, D.S.; McFarlin, B.; Bois, C. Interleukin-6 expression after repeated bouts of eccentric exercise. Int. J. Sports Med. 2003, 24, 15–21. [Google Scholar] [CrossRef]
- Nielsen, A.R.; Pedersen, B.K. The biological roles of exercise-induced cytokines: IL-6, IL-8, and IL-15. Appl. Physiol. Nutr. Metab. 2007, 32, 833–839. [Google Scholar] [CrossRef]
- Louis, E.; Raue, U.; Yang, Y.; Jemiolo, B.; Trappe, S. Time course of proteolytic, cytokine, and myostatin gene expression after acute exercise in human skeletal muscle. J. Appl. Physiol. 2007, 103, 1744–1751. [Google Scholar] [CrossRef] [Green Version]
- Lombardi, G.; Sansoni, V.; Banfi, G. Measuring myokines with cardiovascular functions: Pre-analytical variables affecting the analytical output. Ann. Transl. Med. 2017, 5, 299. [Google Scholar] [CrossRef] [Green Version]
- Da Cunha Nascimento, D.; de Sousa, N.M.; de Sousa Neto, I.V.; Tibana, R.A.; de Souza, V.C.; Vieira, D.C.; Camarco, N.F.; de Oliveira, S.; de Almeida, J.A.; Navalta, J.; et al. Classification of pro-inflammatory status for interleukin-6 affects relative muscle strength in obese elderly women. Aging Clin. Exp. Res. 2015, 27, 791–797. [Google Scholar] [CrossRef]
- Windsor, M.T.; Bailey, T.G.; Perissiou, M.; Meital, L.; Golledge, J.; Russell, F.D.; Askew, C.D. Cytokine Responses to Acute Exercise in Healthy Older Adults: The Effect of Cardiorespiratory Fitness. Front. Physiol. 2018, 9, 203. [Google Scholar] [CrossRef]
- Munoz-Canoves, P.; Scheele, C.; Pedersen, B.K.; Serrano, A.L. Interleukin-6 myokine signaling in skeletal muscle: A double-edged sword? FEBS J. 2013, 280, 4131–4148. [Google Scholar] [CrossRef]
- Brandt, C.; Pedersen, B.K. The role of exercise-induced myokines in muscle homeostasis and the defense against chronic diseases. J. Biomed. Biotechnol. 2010, 2010, 520258. [Google Scholar] [CrossRef]
- Guerrero, A.R.; Uchida, K.; Nakajima, H.; Watanabe, S.; Nakamura, M.; Johnson, W.E.; Baba, H. Blockade of interleukin-6 signaling inhibits the classic pathway and promotes an alternative pathway of macrophage activation after spinal cord injury in mice. J. Neuroinflamm. 2012, 9, 40. [Google Scholar] [CrossRef] [Green Version]
- Baird, M.F.; Graham, S.M.; Baker, J.S.; Bickerstaff, G.F. Creatine-kinase- and exercise-related muscle damage implications for muscle performance and recovery. J. Nutr. Metab. 2012, 2012, 960363. [Google Scholar] [CrossRef] [Green Version]
- Kindermann, W. Creatine Kinase Levels After Exercise. Dtsch. Arztebl. Int. 2016, 113, 344. [Google Scholar] [CrossRef] [Green Version]
- Brunner, F.; Schmid, A.; Sheikhzadeh, A.; Nordin, M.; Yoon, J.; Frankel, V. Effects of aging on Type II muscle fibers: A systematic review of the literature. J. Aging Phys. Act. 2007, 15, 336–348. [Google Scholar] [CrossRef] [Green Version]
- Fisher, G.; Bickel, C.S.; Hunter, G.R. Elevated Circulating TNF-alpha in Fat-Free Mass Non-Responders Compared to Responders Following Exercise Training in Older Women. Biology 2014, 3, 551–559. [Google Scholar] [CrossRef]
- Mavros, Y.; Kay, S.; Simpson, K.A.; Baker, M.K.; Wang, Y.; Zhao, R.R.; Meiklejohn, J.; Climstein, M.; O’Sullivan, A.J.; de Vos, N.; et al. Reductions in C-reactive protein in older adults with type 2 diabetes are related to improvements in body composition following a randomized controlled trial of resistance training. J. Cachexia Sarcopenia Muscle 2014, 5, 111–120. [Google Scholar] [CrossRef]
- Knoblauch, M.A.; O’Connor, D.P.; Clarke, M.S. Obese mice incur greater myofiber membrane disruption in response to mechanical load compared with lean mice. Obesity (Silver Spring) 2013, 21, 135–143. [Google Scholar] [CrossRef]
- Kim, J.; Lee, J. The relationship of creatine kinase variability with body composition and muscle damage markers following eccentric muscle contractions. J. Exerc. Nutr. Biochem. 2015, 19, 123–129. [Google Scholar] [CrossRef] [Green Version]
- Dolezal, B.A.; Potteiger, J.A.; Jacobsen, D.J.; Benedict, S.H. Muscle damage and resting metabolic rate after acute resistance exercise with an eccentric overload. Med. Sci. Sports Exerc. 2000, 32, 1202–1207. [Google Scholar] [CrossRef] [Green Version]
- Hamada, K.; Vannier, E.; Sacheck, J.M.; Witsell, A.L.; Roubenoff, R. Senescence of human skeletal muscle impairs the local inflammatory cytokine response to acute eccentric exercise. FASEB J. 2005, 19, 264–266. [Google Scholar] [CrossRef] [Green Version]
- Vincent, H.K.; Percival, S.; Creasy, R.; Alexis, D.; Seay, A.N.; Laura Ann, Z.; MacMillan, M.; Vincent, K.R. Acute Effects of Enhanced Eccentric and Concentric Resistance Exercise on Metabolism and Inflammation. J. Nov. Physiother. 2014, 4, 200. [Google Scholar] [CrossRef] [Green Version]
- da Cunha Nascimento, D.; Neto, I.V.S.; Saraiva, B.; Lima, A.D.S.; Navalta, J.W.; Pereira, G.B.; Willardson, J.M.; Rodrigues Beal, F.L.; Prestes, J. Advancements and critical steps for statistical analyses in blood pressure response to resistance training in hypertensive older women: A methodological approach. Blood Press Monit. 2021, 26, 135–145. [Google Scholar] [CrossRef] [PubMed]
- de Castro, D.L.S.; da Cunha Nascimento, D.; Orsano, V.S.M.; de Sousa Neto, I.V.; Beal, F.L.R.; Stone, W.; Dos Santos Rosa, T.; Prestes, J. Effect of high-velocity and traditional resistance exercise on serum antioxidants and inflammation biomarkers in older women: A randomized crossover trial. Exp. Gerontol. 2020, 139, 111026. [Google Scholar] [CrossRef] [PubMed]
Low MQI n = 44 | High MQI n = 44 | p | |||
---|---|---|---|---|---|
Age, Years | 68.55 ± 6.20 | 70.41 ± 5.92 | 0.51 | ||
Body mass index, kg/m2 | 27.71 ± 5.03 | 27.75 ± 4.52 | 0.97 | ||
Body fat, % | 41.47 ± 6.16 | 41.42 ± 5.18 | 0.96 | ||
Upper body muscle mass, kg | 3.71 ± 0.62 | 3.87 ± 0.56 | 0.21 | ||
Lower body muscle mass, kg | 11.04 ± 1.40 | 11.17 ± 1.28 | 0.64 | ||
Appendicular muscle mass, kg | 14.75 ± 1.91 | 15.04 ± 1.60 | 0.44 | ||
Body mass, kg | 64.44 ± 12.85 | 64.95 ± 11.47 | 0.84 | ||
Height, m | 1.52 ± 0.06 | 1.52 ± 0.05 | 0.69 | ||
Laboratory muscle quality index | 3.64 ± 0.60 | 5.16 ± 0.64 * | 0.001 | ||
10 RM leg extension, kg | 30.19 ± 6.19 | 43.20 ± 6.78 * | 0.001 | ||
1 RM leg extension, kg | 40.27 ± 8.26 | 57.62 ± 9.04 * | 0.001 | ||
Creatine kinase, U/L | 91.52 ± 41.86 | 106.18 ± 49.32 | 0.13 | ||
Total cholesterol, mg·dL−1 | 203.18 ± 31.06 | 210.57 ± 45.88 | 0.37 | ||
Triglycerides, mg·dL−1 | 144.09 ± 68.92 | 142.33 ± 72.58 | 0.90 | ||
High-density lipoprotein, mg·dL−1 | 46.95 ± 10.14 | 48.83 ± 12.69 | 0.44 | ||
Low-density lipoprotein, mg·dL−1 | 127.41 ± 28.25 | 136.18 ± 36.21 | 0.20 | ||
Very low-density lipoprotein, mg·dL−1 | 28.81 ± 13.80 | 27.19 ± 11.08 | 0.54 | ||
Uric acid, mg·dL−1 | 4.50 ± 1.28 | 4.79 ± 1.96 | 0.41 | ||
Glycemia, mg·dL−1 | 103.72 ± 37.05 | 91.60 ± 10.47 * | 0.04 | ||
Urea, mg·dL−1 | 34.67 ± 7.87 | 35.73 ± 10.70 | 0.59 | ||
Interleukin-6, pg/mL | 4.48 ± 3.44 | 4.61 ± 7.48 | 0.93 | ||
Creatine Kinase, U/L | 91.52 ± 41.89 | 106.18 ± 49.32 | 0.13 | ||
Low MQI | High MQI | p | |||
Yes | No | Yes | No | ||
Hypertension, % | 26.1 | 23.9 | 28.4 | 21.6 | 0.83 |
Diabetes, % | 5.7 | 44.3 | 1.1 | 48.9 | 0.20 |
Low MQI n = 44 | High MQI n = 44 | p | |||
---|---|---|---|---|---|
Age, Years | 69.05 ± 6.10 | 69.91 ± 6.14 | 0.510 | ||
Body mass index, kg/m2 | 29.22 ± 4.98 | 26.24 ± 4.06 * | 0.003 | ||
Body fat, % | 43.02 ± 5.61 | 39.87 ± 5.31 * | 0.008 | ||
Upper body muscle mass, kg | 3.76 ± 0.65 | 3.81 ± 0.53 | 0.70 | ||
Lower body muscle mass, kg | 11.01 ± 1.36 | 11.20 ± 1.32 | 0.51 | ||
Appendicular muscle mass, kg | 14.78 ± 1.86 | 15.02 ± 1.66 | 0.53 | ||
Body mass, kg | 67.20 ± 13.48 | 62.18 ± 10.10 | 0.051 | ||
Height, m | 1.51 ± 0.06 | 1.53 ± 0.05 | 0.052 | ||
Field-based muscle quality index | 1.42 ± 0.25 | 2.16 ± 0.33 * | 0.001 | ||
10 RM leg extension, kg | 31.05 ± 6.78 | 42.34 ± 7.73 * | 0.001 | ||
1 RM leg extension, kg | 41.41 ± 9.04 | 56.47 ± 10.31 * | 0.001 | ||
Creatine kinase, U/L | 95.07 ± 39.82 | 102.64 ± 51.79 | 0.44 | ||
Total cholesterol, mg·dL−1 | 203.04 ± 31.64 | 210.70 ± 45.46 | 0.36 | ||
Triglycerides, mg·dL−1 | 138.93 ± 51.59 | 147.49 ± 85.55 | 0.57 | ||
High-density lipoprotein, mg·dL−1 | 47.90 ± 11.05 | 48.87 ± 11.98 | 0.99 | ||
Low-density lipoprotein, mg·dL−1 | 127.35 ± 30.25 | 136.23 ± 34.53 | 0.20 | ||
Very low-density lipoprotein, mg·dL−1 | 27.77 ± 10.31 | 28.23 ± 14.43 | 0.86 | ||
Uric acid, mg·dL−1 | 4.76 ± 1.34 | 4.52 ± 1.93 | 0.50 | ||
Glycemia, mg·dL−1 | 103.29 ± 36.73 | 91.03 ± 10.88 * | 0.024 | ||
Urea, mg·dL−1 | 35.24 ± 6.77 | 35.15 ± 11.46 | 0.96 | ||
Interleukin-6, pg/mL | 4.13 ± 3.36 | 5.02 ± 7.70 | 0.44 | ||
Creatine Kinase, U/L | 95.07 ± 39.82 | 102.64 ± 51.79 | 0.44 | ||
Low MQI | High MQI | p | |||
Yes | No | Yes | No | ||
Hypertension, % | 27.3 | 22.7 | 20.5 | 29.5 | 0.28 |
Diabetes, % | 6.8 | 43.2 | 0.0 | 50 | 0.026 |
LMQI | HMQI | |
---|---|---|
Parameters | f | f |
Laboratory MQI | ||
IL-6, pg/ml | 0.073 (small) | 0.089 (small) |
CK, U/L | 0.070 (small) | 0.076 (small) |
Field-based MQI | ||
IL-6, pg/ml | 0.044 (small) | 0.104 (small) |
CK, U/L | 0.061 (small) | 0.091 (small) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Sousa Neto, I.V.; da Cunha Nascimento, D.; Prestes, J.; da Fonseca, E.F.; Celes, R.S.; Rolnick, N.; de Sousa Barbalho, Y.G.; Silva, A.d.O.; Stival, M.M.; de Lima, L.R.; et al. Initial Muscle Quality Affects Individual Responsiveness of Interleukin-6 and Creatine Kinase following Acute Eccentric Exercise in Sedentary Obese Older Women. Biology 2022, 11, 537. https://doi.org/10.3390/biology11040537
de Sousa Neto IV, da Cunha Nascimento D, Prestes J, da Fonseca EF, Celes RS, Rolnick N, de Sousa Barbalho YG, Silva AdO, Stival MM, de Lima LR, et al. Initial Muscle Quality Affects Individual Responsiveness of Interleukin-6 and Creatine Kinase following Acute Eccentric Exercise in Sedentary Obese Older Women. Biology. 2022; 11(4):537. https://doi.org/10.3390/biology11040537
Chicago/Turabian Stylede Sousa Neto, Ivo Vieira, Dahan da Cunha Nascimento, Jonato Prestes, Eduardo Fernandes da Fonseca, Rodrigo Souza Celes, Nicholas Rolnick, Yuri Gustavo de Sousa Barbalho, Alessandro de Oliveira Silva, Marina Morato Stival, Luciano Ramos de Lima, and et al. 2022. "Initial Muscle Quality Affects Individual Responsiveness of Interleukin-6 and Creatine Kinase following Acute Eccentric Exercise in Sedentary Obese Older Women" Biology 11, no. 4: 537. https://doi.org/10.3390/biology11040537
APA Stylede Sousa Neto, I. V., da Cunha Nascimento, D., Prestes, J., da Fonseca, E. F., Celes, R. S., Rolnick, N., de Sousa Barbalho, Y. G., Silva, A. d. O., Stival, M. M., de Lima, L. R., & Funghetto, S. S. (2022). Initial Muscle Quality Affects Individual Responsiveness of Interleukin-6 and Creatine Kinase following Acute Eccentric Exercise in Sedentary Obese Older Women. Biology, 11(4), 537. https://doi.org/10.3390/biology11040537