Expression Analysis in Atlantic Salmon Liver Reveals miRNAs Associated with Smoltification and Seawater Adaptation
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Fish Trial and Samplings
2.2. Total RNA Extraction for Sequencing and Microarray Analysis
2.3. Small-RNA Library Preparation and Sequencing
2.4. Processing of Small-RNA Reads and DESeq2 Expression Analysis
2.5. Microarray Analysis
2.6. In Silico Target Gene Predictions and Enrichment Analysis of Predicted miRNA Targets
3. Results
3.1. RNA Library Preparation and Small RNA Sequencing
3.2. miRNAs with Differential Expression Changes in Liver during Smoltification and Post SWT
3.3. Liver Specific DE-miRNAs, ARM-SHIFT and Potential Biomarker miRNAs
3.4. Identification of DE-mRNAs and Enrichment Analysis of DE-mRNAs
3.5. In Silico Prediction Revealed 2804 gDE-miRNA Target Genes
3.6. Enriched Biological Processes and Pathways Associated with the Predicted Target Genes
4. Discussion
4.1. Differential Expression of 62 Guide miRNAs Indicates That They Are Involved in Post-Transcriptional Gene Regulation during Smoltification and Seawater Adaptation
4.2. Enriched Biological Processes and Pathways Associated with Predicted DE-miRNA Targets
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Julien, A.; Hlynur, B.; Ida, A.-B.; Geir, H.B.; Cindy, B.; Mathieu, B.; Karin, C.; Gerald, C.; Anne, C.; Guillaume, D. Working Group on North Atlantic Salmon (WGNAS); ICES Publication: Copenhagen V, Denmark, 2021; p. 417. [Google Scholar]
- Asche, F. Farming the Sea. Mar. Resour. Econ. 2008, 23, 527–547. [Google Scholar] [CrossRef]
- Morera, F.J.; Castro-Guarda, M.; Nualart, D.; Espinosa, G.; Muñoz, J.L.; Vargas-Chacoff, L. The biological basis of smoltification in Atlantic salmon. Austral J. Vet. Sci. 2021, 53, 73–82. [Google Scholar] [CrossRef]
- SERNAPESCA. Informe Sanitario de Salmonicultura en Centros Marinos 1er Semestre año 2019; Ministerio de Economía, Fomento y Turismo: Santiago, Chile, 2019. [Google Scholar]
- Jensen, B.B.; Lillehaug, A.; Oliveria, V.; Jansen, M.D.; Nilsen, A.; Gismervik, K.; Gåsnes, S.K.; Nielsen, K.V.; Mejdell, C.M.; Sindre, H.; et al. The Health Situation in Norwegian Aquaculture 2019; Veterinærinstituttet/Norwegian Veterinary Institute 2020: Oslo, Norway, 2019. [Google Scholar]
- Boulet, M.; Normandeau, É.; Bougas, B.; Audet, C.; Bernatchez, L. Comparative transcriptomics of anadromous and resident brook charr Salvelinus fontinalis before their first salt water transition. Curr. Zool. 2012, 58, 158–170. [Google Scholar] [CrossRef] [Green Version]
- Johansson, L.-H.; Timmerhaus, G.; Afanasyev, S.; Jørgensen, S.M.; Krasnov, A. Smoltification and seawater transfer of Atlantic salmon (Salmo salar L.) is associated with systemic repression of the immune transcriptome. Fish Shellfish. Immunol. 2016, 58, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Seear, P.J.; Carmichael, S.N.; Talbot, R.; Taggart, J.B.; Bron, J.E.; Sweeney, G.E. Differential gene expression during smoltification of Atlantic salmon (Salmo salar L.): A first large-scale microarray study. Mar. Biotechnol. 2010, 12, 126–140. [Google Scholar] [CrossRef] [PubMed]
- Maryoung, L.A.; Lavado, R.; Bammler, T.; Gallagher, E.; Stapleton, P.; Beyer, R.; Farin, F.; Hardiman, G.; Schlenk, D. Differential Gene Expression in Liver, Gill, and Olfactory Rosettes of Coho Salmon (Oncorhynchus kisutch) After Acclimation to Salinity. Mar. Biotechnol. 2015, 17, 703–717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoar, W.S. 4 The Physiology of Smolting Salmonids. In Fish Physiology; Hoar, W.S., Randall, D.J., Eds.; Academic Press: Cambridge, MA, USA, 1988; Volume 11, pp. 275–343. [Google Scholar]
- Björnsson, B.T.; Bradley, T.M. Epilogue: Past successes, present misconceptions and future milestones in salmon smoltification research. Aquaculture 2007, 273, 384–391. [Google Scholar] [CrossRef]
- McCormick, S.D.; Sheehan, T.F.; Björnsson, B.T.; Lipsky, C.; Kocik, J.F.; Regish, A.M.; O’Dea, M.F. Physiological and endocrine changes in Atlantic salmon smolts during hatchery rearing, downstream migration, and ocean entry. Can. J. Fish. Aquat. Sci. 2013, 70, 105–118. [Google Scholar] [CrossRef] [Green Version]
- Sheridan, M.A. Alterations in lipid metabolism accompanying smoltification and seawater adaptation of salmonid fish. Aquaculture 1989, 82, 191–203. [Google Scholar] [CrossRef]
- McCormick, S.D.; Hansen, L.P.; Quinn, T.P.; Saunders, R.L. Movement, migration, and smolting of Atlantic salmon (Salmo salar). Can. J. Fish. Aquat. Sci. 1998, 55, 77–92. [Google Scholar] [CrossRef]
- Björnsson, B.T.; Stefansson, S.O.; McCormick, S.D. Environmental endocrinology of salmon smoltification. Gen. Comp. Endocrinol. 2011, 170, 290–298. [Google Scholar] [CrossRef] [PubMed]
- Stubhaug, I.; Lie, Ø.; Torstensen, B.E. β-Oxidation capacity in liver increases during parr-smolt transformation of Atlantic salmon fed vegetable oil and fish oil. J. Fish Biol. 2006, 69, 504–517. [Google Scholar] [CrossRef]
- Finn, R.N.; Kapoor, B.G. Fish Larval Physiology; Taylor & Francis Group: Enfield, IL, USA, 2008. [Google Scholar]
- McCormick, S.D.; Saunders, R.L.; MacIntyre, A.D. Mitochondrial enzyme and Na+, K+-ATPase activity, and ion regulation during parr-smolt transformation of Atlantic salmon (Salmon salar). Fish Physiol. Biochem. 1989, 6, 231–241. [Google Scholar] [CrossRef] [PubMed]
- Leonard, J.B.K.; McCormick, S.D. Metabolic enzyme activity during smolting in stream- and hatchery-reared Atlantic salmon (Salmo salar). Can. J. Fish. Aquat. Sci. 2001, 58, 1585. [Google Scholar] [CrossRef]
- Mizuno, S.; Urabe, H.; Aoyama, T.; Omori, H.; Iijima, A.; Kasugai, K.; Torao, M.; Misaka, N.; Koide, N.; Ueda, H. Changes in activity and transcript level of liver and gill metabolic enzymes during smoltification in wild and hatchery-reared masu salmon (Oncorhynchus masou). Aquaculture 2012, 362–363, 109–120. [Google Scholar] [CrossRef] [Green Version]
- McCormick, S.D.; Moyes, C.D.; Ballantyne, J.S. Influence of salinity on the energetics of gill and kidney of Atlantic salmon (Salmo salar). Fish Physiol. Biochem. 1989, 6, 243–254. [Google Scholar] [CrossRef]
- Iversen, M.; Mulugeta, T.; Gellein Blikeng, B.; West, A.C.; Jørgensen, E.H.; Rød Sandven, S.; Hazlerigg, D. RNA profiling identifies novel, photoperiod-history dependent markers associated with enhanced saltwater performance in juvenile Atlantic salmon. PLoS ONE 2020, 15, e0227496. [Google Scholar] [CrossRef] [Green Version]
- McCormick, S.D.; Shrimpton, J.M.; Moriyama, S.; Björnsson, B.T. Differential hormonal responses of Atlantic salmon parr and smolt to increased daylength: A possible developmental basis for smolting. Aquaculture 2007, 273, 337–344. [Google Scholar] [CrossRef]
- Craig Clarke, W.; Saunders, R.L.; McCormick, S.D. Chapter 8—Smolt Production. In Developments in Aquaculture and Fisheries Science; Pennell, W., Barton, B.A., Eds.; Elsevier: Edinburgh, UK, 1996; Volume 29, pp. 517–567. [Google Scholar]
- De Oliveira, V.H.S.; Nilsen, A.; Jensen, B.B.; Sommerset, I.; Jansen, M.D.; Brun, E.; Grismervik, K.; Gåsnes, S.K.; Nielsen, K.V.; Mejdell, C.M.; et al. The Health Situation in Norwegian Aquaculture 2020; Norwegian Veterinary Institute: Ås, Norway, 2020. [Google Scholar]
- McCormick, S.D. 5—Smolt Physiology and Endocrinology. In Fish Physiology; McCormick, S.D., Farrell, A.P., Brauner, C.J., Eds.; Academic Press: Cambridge, MA, USA, 2012; Volume 32, pp. 199–251. [Google Scholar]
- McCormick, S.D.; Regish, A.M.; Christensen, A.K. Distinct freshwater and seawater isoforms of Na+/K+-ATPase in gill chloride cells of Atlantic salmon. J. Exp. Biol. 2009, 212, 3994–4001. [Google Scholar] [CrossRef] [Green Version]
- Nilsen, T.O.; Ebbesson, L.O.E.; Madsen, S.S.; McCormick, S.D.; Andersson, E.; Björnsson, B.T.; Prunet, P.; Stefansson, S.O. Differential expression of gill Na+,K+-ATPaseα- and β-subunits, Na+,K+,2Cl-cotransporter and CFTR anion channel in juvenile anadromous and landlocked Atlantic salmon Salmo salar. J. Exp. Biol. 2007, 210, 2885–2896. [Google Scholar] [CrossRef] [Green Version]
- Jensen, A.J.; Berg, M.; Bremset, G.; Finstad, B.; Hvidsten, N.A.; Jensås, J.G.; Johnsen, B.O.; Lund, E. Passing a seawater challenge test is not indicative of hatchery-reared Atlantic salmon Salmo salar smolts performing as well at sea as their naturally produced conspecifics. J. Fish Biol. 2016, 88, 2219–2235. [Google Scholar] [CrossRef] [PubMed]
- Zydlewski, G.B.; Zydlewski, J. Gill Na+,K+-ATPase of Atlantic salmon smolts in freshwater is not a predictor of long-term growth in seawater. Aquaculture 2012, 362–363, 121–126. [Google Scholar] [CrossRef]
- Houde, A.L.S.; Günther, O.P.; Strohm, J.; Ming, T.J.; Li, S.; Kaukinen, K.H.; Patterson, D.A.; Farrell, A.P.; Hinch, S.G.; Miller, K.M. Discovery and validation of candidate smoltification gene expression biomarkers across multiple species and ecotypes of Pacific salmonids. Conserv. Physiol. 2019, 7, coz051. [Google Scholar] [CrossRef] [Green Version]
- Bartel, D.P. MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef] [Green Version]
- Chekulaeva, M.; Filipowicz, W. Mechanisms of miRNA-mediated post-transcriptional regulation in animal cells. Curr. Opin. Cell Biol. 2009, 21, 452–460. [Google Scholar] [CrossRef] [PubMed]
- Bartel, D.P. Metazoan MicroRNAs. Cell 2018, 173, 20–51. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. 2018, 9, 402. [Google Scholar] [CrossRef] [Green Version]
- Bartel, D.P. MicroRNAs: Target Recognition and Regulatory Functions. Cell 2009, 136, 215–233. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, H.; Tomari, Y. RISC assembly: Coordination between small RNAs and Argonaute proteins. Biochimica et Biophysica Acta (BBA)-Gene Regul. Mech. 2016, 1859, 71–81. [Google Scholar] [CrossRef]
- Woldemariam, N.T.; Agafonov, O.; Høyheim, B.; Houston, R.D.; Taggart, J.B.; Andreassen, R. Expanding the miRNA Repertoire in Atlantic Salmon; Discovery of IsomiRs and miRNAs Highly Expressed in Different Tissues and Developmental Stages. Cells 2019, 8, 42. [Google Scholar] [CrossRef] [Green Version]
- Allendorf, F.W.; Thorgaard, G.H.; Turner, B. Evolutionary Genetics of Fishes; Turner, B., Ed.; Springer: Boston, MA, USA, 1984. [Google Scholar] [CrossRef] [Green Version]
- Lien, S.; Koop, B.F.; Sandve, S.R.; Miller, J.R.; Kent, M.P.; Nome, T.; Hvidsten, T.R.; Leong, J.S.; Minkley, D.R.; Zimin, A.; et al. The Atlantic salmon genome provides insights into rediploidization. Nature 2016, 533, 200–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andreassen, R.; Worren, M.M.; Høyheim, B. Discovery and characterization of miRNA genes in Atlantic salmon (Salmo salar) by use of a deep sequencing approach. BMC Genom. 2013, 14, 482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramberg, S.; Høyheim, B.; Østbye, T.-K.K.; Andreassen, R. A de novo Full-Length mRNA Transcriptome Generated From Hybrid-Corrected PacBio Long-Reads Improves the Transcript Annotation and Identifies Thousands of Novel Splice Variants in Atlantic Salmon. Front. Genet. 2021, 12, 656334. [Google Scholar] [CrossRef] [PubMed]
- Ramberg, S.; Andreassen, R. MicroSalmon: A Comprehensive, Searchable Resource of Predicted MicroRNA Targets and 3’UTR Cis-Regulatory Elements in the Full-Length Sequenced Atlantic Salmon Transcriptome. Non-Coding RNA 2021, 7, 61. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.; Nicolas, E.; Marks, D.; Sander, C.; Lerro, A.; Buendia, M.A.; Xu, C.; Mason, W.S.; Moloshok, T.; Bort, R.; et al. miR-122, a mammalian liver-specific microRNA, is processed from hcr mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1. RNA Biol. 2004, 1, 106–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lagos-Quintana, M.; Rauhut, R.; Yalcin, A.; Meyer, J.; Lendeckel, W.; Tuschl, T. Identification of tissue-specific microRNAs from mouse. Curr. Biol. 2002, 12, 735–739. [Google Scholar] [CrossRef] [Green Version]
- Shah, N.; Nelson, J.E.; Kowdley, K.V. MicroRNAs in Liver Disease: Bench to Bedside. J. Clin. Exp. Hepatol. 2013, 3, 231–242. [Google Scholar] [CrossRef] [Green Version]
- Roderburg, C.; Trautwein, C. Cell-specific functions of miRNA in the liver. J. Hepatol. 2017, 66, 655–656. [Google Scholar] [CrossRef]
- Girard, M.; Jacquemin, E.; Munnich, A.; Lyonnet, S.; Henrion-Caude, A. miR-122, a paradigm for the role of microRNAs in the liver. J. Hepatol. 2008, 48, 648–656. [Google Scholar] [CrossRef] [Green Version]
- Castoldi, M.; Vujic Spasic, M.; Altamura, S.; Elmén, J.; Lindow, M.; Kiss, J.; Stolte, J.; Sparla, R.; D’Alessandro, L.A.; Klingmüller, U.; et al. The liver-specific microRNA miR-122 controls systemic iron homeostasis in mice. J. Clin. Investig. 2011, 121, 1386–1396. [Google Scholar] [CrossRef]
- Andreassen, R.; Høyheim, B. miRNAs associated with immune response in teleost fish. Dev. Comp. Immunol. 2017, 75, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Andreassen, R.; Woldemariam, N.T.; Egeland, I.Ø.; Agafonov, O.; Sindre, H.; Høyheim, B. Identification of differentially expressed Atlantic salmon miRNAs responding to salmonid alphavirus (SAV) infection. BMC Genom. 2017, 18, 349. [Google Scholar] [CrossRef] [PubMed]
- Smith, N.C.; Christian, S.L.; Woldemariam, N.T.; Clow, K.A.; Rise, M.L.; Andreassen, R. Characterization of miRNAs in Cultured Atlantic Salmon Head Kidney Monocyte-Like and Macrophage-Like Cells. Int. J. Mol. Sci. 2020, 21, 3989. [Google Scholar] [CrossRef] [PubMed]
- Bizuayehu, T.T.; Johansen, S.D.; Puvanendran, V.; Toften, H.; Babiak, I. Temperature during early development has long-term effects on microRNA expression in Atlantic cod. BMC Genom. 2015, 16, 305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kostyniuk, D.J.; Mennigen, J.A. Meta-analysis of differentially-regulated hepatic microRNAs identifies candidate post-transcriptional regulation networks of intermediary metabolism in rainbow trout. Comp. Biochem. Physiol. Part D Genom. Proteom. 2020, 36, 100750. [Google Scholar] [CrossRef] [PubMed]
- Rasal, K.D.; Iquebal, M.A.; Pandey, A.; Behera, P.; Jaiswal, S.; Vasam, M.; Dixit, S.; Raza, M.; Sahoo, L.; Nandi, S.; et al. Revealing liver specific microRNAs linked with carbohydrate metabolism of farmed carp, Labeo rohita (Hamilton, 1822). Genomics 2020, 112, 32–44. [Google Scholar] [CrossRef] [PubMed]
- Østbye, T.K.; Woldemariam, N.T.; Lundberg, C.E.; Berge, G.M.; Ruyter, B.; Andreassen, R. Modulation of hepatic miRNA expression in Atlantic salmon (Salmo salar) by family background and dietary fatty acid composition. J. Fish Biol. 2021, 98, 1172–1185. [Google Scholar] [CrossRef]
- Andreassen, R.; Rangnes, F.; Sivertsen, M.; Chiang, M.; Tran, M.; Worren, M.M. Discovery of miRNAs and Their Corresponding miRNA Genes in Atlantic Cod (Gadus morhua): Use of Stable miRNAs as Reference Genes Reveals Subgroups of miRNAs That Are Highly Expressed in Particular Organs. PLoS ONE 2016, 11, e0153324. [Google Scholar] [CrossRef]
- Shwe, A.; Østbye, T.-K.K.; Krasnov, A.; Ramberg, S.; Andreassen, R. Characterization of Differentially Expressed miRNAs and Their Predicted Target Transcripts during Smoltification and Adaptation to Seawater in Head Kidney of Atlantic Salmon. Genes 2020, 11, 1059. [Google Scholar] [CrossRef]
- Dutta, H.; Bruslé, J.; Anadon, G.G.i. The Structure and Function of Fish Liver. In Fish Morphology; Dutta, H., Ed.; Routledge: London, UK, 2017; pp. 77–93. [Google Scholar] [CrossRef]
- Carter, C.G.; Houlihan, D.F. Protein synthesis. In Fish Physiology; Academic Press: Cambridge, MA, USA, 2001; Volume 20, pp. 31–75. [Google Scholar]
- Martin, M.J.E.j. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Friedländer, M.R.; Mackowiak, S.D.; Li, N.; Chen, W.; Rajewsky, N. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res. 2011, 40, 37–52. [Google Scholar] [CrossRef] [PubMed]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2012, 29, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Smyth, G.K.; Shi, W. featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2013, 30, 923–930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [Green Version]
- Krasnov, A.; Timmerhaus, G.; Afanasyev, S.; Jørgensen, S.M. Development and assessment of oligonucleotide microarrays for Atlantic salmon (Salmo salar L.). Comp. Biochem. Physiol. Part D Genom. Proteom. 2011, 6, 31–38. [Google Scholar] [CrossRef]
- Krasnov, A.; Johansen, L.-H.; Karlsen, C.; Sveen, L.; Ytteborg, E.; Timmerhaus, G.; Lazado, C.C.; Afanasyev, S. Transcriptome Responses of Atlantic Salmon (Salmo salar L.) to Viral and Bacterial Pathogens, Inflammation, and Stress. Front. Immunol. 2021, 12, 705601. [Google Scholar] [CrossRef]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef] [Green Version]
- Mi, H.; Muruganujan, A.; Thomas, P.D. PANTHER in 2013: Modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucleic Acids Res. 2013, 41, D377–D386. [Google Scholar] [CrossRef] [Green Version]
- Kamanu, T.K.K.; Radovanovic, A.; Archer, J.A.C.; Bajic, V.B. Exploration of miRNA families for hypotheses generation. Sci. Rep. 2013, 3, 2940. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, T.; Sakai, K.; Nakamura, T.; Matsumoto, K. Hepatocyte growth factor twenty years on: Much more than a growth factor. J. Gastroenterol. Hepatol. 2011, 26, 188–202. [Google Scholar] [CrossRef] [Green Version]
- Garcia de la Serrana, D.; Macqueen, D.J. Insulin-Like Growth Factor-Binding Proteins of Teleost Fishes. Front. Endocrinol. 2018, 9, 80. [Google Scholar] [CrossRef] [PubMed]
- Grimberg, A.; Cohen, P. Role of insulin-like growth factors and their binding proteins in growth control and carcinogenesis. J. Cell Physiol. 2000, 183, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Jensen-Urstad, A.P.; Semenkovich, C.F. Fatty acid synthase and liver triglyceride metabolism: Housekeeper or messenger? Biochim. Biophys. Acta 2012, 1821, 747–753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuo, W.-T.; Su, M.-W.; Lee, Y.L.; Chen, C.-H.; Wu, C.-W.; Fang, W.-L.; Huang, K.-H.; Lin, W.-C. Bioinformatic Interrogation of 5p-arm and 3p-arm Specific miRNA Expression Using TCGA Datasets. J. Clin. Med. 2015, 4, 1798–1814. [Google Scholar] [CrossRef] [Green Version]
- Kern, F.; Amand, J.; Senatorov, I.; Isakova, A.; Backes, C.; Meese, E.; Keller, A.; Fehlmann, T. miRSwitch: Detecting microRNA arm shift and switch events. Nucleic Acids Res. 2020, 48, W268–W274. [Google Scholar] [CrossRef]
- Bell, J.G.; Tocher, D.R.; Farndale, B.M.; Cox, D.I.; McKinney, R.W.; Sargent, J.R. The effect of dietary lipid on polyunsaturated fatty acid metabolism in Atlantic salmon (Salmo salar) undergoing parr-smolt transformation. Lipids 1997, 32, 515–525. [Google Scholar] [CrossRef]
- Ota, T.; Takagi, T.; Terao, T. Changes in Fatty Acid Composition of Masu Salmon, Oncorhynchus masou, Reared in Sea Water. Hokkaidō Daigaku Suisan Gakubu Kenkyū Ihō 1978, 29, 155–163. [Google Scholar]
- Murakami, M.; Kouyama, T. Crystal Structures of Two Isozymes of Citrate Synthase from Sulfolobus tokodaii Strain 7. Biochem. Res. Int. 2016, 2016, 7560919. [Google Scholar] [CrossRef] [Green Version]
- Iacobazzi, V.; Infantino, V. Citrate-new functions for an old metabolite. Biol. Chem. 2014, 395, 387–399. [Google Scholar] [CrossRef]
- Arafa, K.; Emara, M. Insights About Circadian Clock and Molecular Pathogenesis in Gliomas. Front. Oncol. 2020, 10, 199. [Google Scholar] [CrossRef]
- Kramer, I.M. Chapter 2—An Introduction to Signal Transduction. In Signal Transduction, 3rd ed.; Kramer, I.M., Ed.; Academic Press: Boston, MA, USA, 2016; pp. 53–183. [Google Scholar] [CrossRef]
- Pontigo, J.P.; Agüero, M.J.; Sánchez, P.; Oyarzún, R.; Vargas-Lagos, C.; Mancilla, J.; Kossmann, H.; Morera, F.J.; Yáñez, A.J.; Vargas-Chacoff, L. Identification and expressional analysis of NLRC5 inflammasome gene in smolting Atlantic salmon (Salmo salar). Fish Shellfish. Immunol. 2016, 58, 259–265. [Google Scholar] [CrossRef] [PubMed]
- McCormick, S.D. Endocrine Control of Osmoregulation in Teleost Fish. Integr. Comp. Biol. 2001, 41, 781–794. [Google Scholar] [CrossRef]
- McCormick, S.; Sakamoto, T.; Hasegawa, S.; Hirano, T. Osmoregulatory actions of insulin-like growth factor-I in rainbow trout (Oncorhynchus mykiss). J. Endocrinol. 1991, 130, 87–92. [Google Scholar] [CrossRef] [PubMed]
- McCormick, S.D. Effects of Growth Hormone and Insulin-like Growth Factor I on Salinity Tolerance and Gill Na+, K+-ATPase in Atlantic Salmon (Salmo salar): Interaction with Cortisol. Gen. Comp. Endocrinol. 1996, 101, 3–11. [Google Scholar] [CrossRef]
Experimental Days | Hours of Light per Day (h) | Water Temperature (°C) | Water Type |
---|---|---|---|
Day 0 | 24 | 8 | Fresh water |
Day 1–5 | 12 | 13 | Fresh water |
Day 6–47 | 12 | 12 | Fresh water |
Day 48–60 | 24 | 12 | Fresh water |
Day 61–81 | 24 | 8 | Fresh water |
Day 82–111 | 24 | 8 | seawater |
Group | Sample Collection Time Points | Light 1 | Temp. 2 | Weight 3 | Water Type | Sampling 4 |
---|---|---|---|---|---|---|
T1 | Parr, 1 day prior to light treatment | 24 | 8 | 29.4 ± 5.6 | Fresh water | Day 0 |
T2 | Halfway into light treatment | 12 | 12 | 52.6 ± 5.9 | Fresh water | Day 47 |
T3 | Three quarters into light treatment | 24 | 8 | 63.9 ± 10.1 | Fresh water | Day 67 |
T4 | Smolt, 1 day prior to SWT | 24 | 8 | 72.4 ± 8.7 | Fresh water | Day 81 |
T5 | One week after SWT | 24 | 8 | 63.2 ± 8.5 | Seawater | Day 88 |
T6 | One month after SWT | 24 | 8 | 98.4 ± 14.9 | Seawater | Day 111 |
Cluster 1. | Cluster 2 | Cluster 3 |
---|---|---|
ssa-miR-1-3p | ssa-let-7e-5p | ssa-let-7b-3p |
ssa-miR-15d-5p | ssa-miR-19a-2-3p | ssa-let-7j-3p |
ssa-miR-15e-5p | ssa-miR-29b-1-5p | ssa-miR-15a-3p |
ssa-miR-17-5p | ssa-miR-93a-5p | ssa-miR-15bf-5p |
ssa-miR-18bc-5p | ssa-miR-93b-5p | ssa-miR-15e-3p |
ssa-miR-20a-5p 2 | ssa-miR-101b-3p 2 | ssa-miR-30a-1-2-5p |
ssa-miR-101a-3p 1 | ssa-miR-146a-5p | ssa-miR-30a-3-4-5p |
ssa-miR-106a-5p | ssa-miR-146b-5p | ssa-miR-30e-5p |
ssa-miR-106b-5p | ssa-miR-200b-3p | ssa-miR-122-1-3p |
ssa-miR-125b-1-3p | ssa-miR-200c-3p | ssa-miR-122-2-3p 1,2 |
ssa-miR-130a-2-3p | ssa-miR-200d-3p | ssa-miR-203b-3p |
ssa-miR-142b-5p | ssa-miR-218a-5p | ssa-miR-205b-5p |
ssa-miR-146d-5p | ssa-miR-218b-5p | ssa-miR-206-3p |
ssa-miR-153a-3p 2 | ssa-miR-221-3p | ssa-miR-210-1-5p |
ssa-miR-216c-3p | ssa-miR-222a-5p | ssa-miR-214-1-2-3p |
ssa-miR-462b-5p | ssa-miR-222b-3p | ssa-miR-214-3-3p |
ssa-miR-551a-3p | ssa-miR-novel-16-5p | ssa-miR-301a-5p |
ssa-miR-551b-3p | ssa-miR-455-3p | |
ssa-miR-457ab-5p 2 | ||
ssa-miR-8163-3p | ||
ssa-miR-8163-5p 1,2 | ||
ssa-miR-novel-1-3p | ||
ssa-miR-novel-2-5p | ||
ssa-miR-novel-10-3p | ||
ssa-miR-novel-12-5p | ||
ssa-miR-novel-13-5p | ||
ssa-miR-novel-16-3p 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shwe, A.; Krasnov, A.; Visnovska, T.; Ramberg, S.; Østbye, T.-K.K.; Andreassen, R. Expression Analysis in Atlantic Salmon Liver Reveals miRNAs Associated with Smoltification and Seawater Adaptation. Biology 2022, 11, 688. https://doi.org/10.3390/biology11050688
Shwe A, Krasnov A, Visnovska T, Ramberg S, Østbye T-KK, Andreassen R. Expression Analysis in Atlantic Salmon Liver Reveals miRNAs Associated with Smoltification and Seawater Adaptation. Biology. 2022; 11(5):688. https://doi.org/10.3390/biology11050688
Chicago/Turabian StyleShwe, Alice, Aleksei Krasnov, Tina Visnovska, Sigmund Ramberg, Tone-Kari K. Østbye, and Rune Andreassen. 2022. "Expression Analysis in Atlantic Salmon Liver Reveals miRNAs Associated with Smoltification and Seawater Adaptation" Biology 11, no. 5: 688. https://doi.org/10.3390/biology11050688
APA StyleShwe, A., Krasnov, A., Visnovska, T., Ramberg, S., Østbye, T. -K. K., & Andreassen, R. (2022). Expression Analysis in Atlantic Salmon Liver Reveals miRNAs Associated with Smoltification and Seawater Adaptation. Biology, 11(5), 688. https://doi.org/10.3390/biology11050688