Osteosarcoma-Specific Genes as a Diagnostic Tool and Clinical Predictor of Tumor Progression
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Bioinformatic Analysis
2.3. Sample Preparation
2.4. qRT-PCR
2.5. Statistical Analysis
3. Results
3.1. Identification of Osteosarcoma Cell-Specific Candidate Genes using Bioinformatics
3.2. Evaluation of the OS Diagnostic and Metastasis Predictive Potential of the OS-Specific Candidate Genes
3.3. Expression of Candidate Genes in Primary OS Cells from OS Patients in Comparison with Healthy Donors’ PBMCs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Misaghi, A.; Goldin, A.; Awad, M.; Kulidjian, A.A. Osteosarcoma: A comprehensive review. Sicot J. 2018, 4, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, D.D.; Luu, H.H. Osteosarcoma. Cancer Treat. Res. 2014, 162, 65–92. [Google Scholar] [PubMed]
- Marko, T.A.; Diessner, B.J.; Spector, L.G. Prevalence of Metastasis at Diagnosis of Osteosarcoma: An International Comparison. Pediatr. Blood Cancer 2016, 63, 1006–1011. [Google Scholar] [CrossRef] [Green Version]
- Franzius, C.; Sciuk, J.; Daldrup-Link, H.E.; Jürgens, H.; Schober, O. FDG-PET for detection of osseous metastases from malignant primary bone tumours: Comparison with bone scintigraphy. Eur. J. Nucl. Med. 2000, 27, 1305–1311. [Google Scholar] [CrossRef]
- Hurley, C.; McCarville, M.B.; Shulkin, B.L.; Mao, S.; Wu, J.; Navid, F.; Daw, N.C.; Pappo, A.S.; Bishop, M.W. Comparison of (18) F-FDG-PET-CT and Bone Scintigraphy for Evaluation of Osseous Metastases in Newly Diagnosed and Recurrent Osteosarcoma. Pediatr. Blood Cancer 2016, 63, 1381–1386. [Google Scholar] [CrossRef] [Green Version]
- Brenner, W.; Bohuslavizki, K.H.; Eary, J.F. PET imaging of osteosarcoma. J. Nucl. Med. 2003, 44, 930–942. [Google Scholar] [PubMed]
- Kaste, S.C. Imaging pediatric bone sarcomas. Radiol. Clin. N. Am. 2011, 49, 749–765. [Google Scholar] [CrossRef] [Green Version]
- Bankó, P.; Lee, S.Y.; Nagygyörgy, V.; Zrínyi, M.; Chae, C.H.; Cho, D.H.; Telekes, A. Technologies for circulating tumor cell separation from whole blood. J. Hematol. Oncol. 2019, 12, 48. [Google Scholar] [CrossRef] [Green Version]
- Wong, I.H.; Chan, A.T.; Johnson, P.J. Quantitative analysis of circulating tumor cells in peripheral blood of osteosarcoma patients using osteoblast-specific messenger RNA markers: A pilot study. Clin. Cancer Res. 2000, 6, 2183–2188. [Google Scholar]
- Zhong, G.X.; Feng, S.D.; Shen, R.; Wu, Z.Y.; Chen, F.; Zhu, X. The clinical significance of the Ezrin gene and circulating tumor cells in osteosarcoma. OncoTargets Ther. 2017, 10, 527–533. [Google Scholar] [CrossRef] [Green Version]
- Baldauf, M.C.; Orth, M.F.; Dallmayer, M.; Marchetto, A.; Gerke, J.S.; Rubio, R.A.; Kiran, M.M.; Musa, J.; Knott, M.M.L.; Ohmura, S.; et al. Robust diagnosis of Ewing sarcoma by immunohistochemical detection of super-enhancer-driven EWSR1-ETS targets. Oncotarget 2018, 9, 1587–1601. [Google Scholar] [CrossRef] [Green Version]
- Rui, X.; Shao, S.; Wang, L.; Leng, J. Identification of recurrence marker associated with immune infiltration in prostate cancer with radical resection and build prognostic nomogram. BMC Cancer 2019, 19, 1179. [Google Scholar] [CrossRef] [PubMed]
- Heerboth, S.; Housman, G.; Leary, M.; Longacre, M.; Byler, S.; Lapinska, K.; Willbanks, A.; Sarkar, S. EMT and tumor metastasis. Clin. Transl. Med. 2015, 4, 6. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.-Y.; Lin, H.-H.; Tang, M.-J.; Wang, Y.-K. Vimentin contributes to epithelial-mesenchymal transition cancer cell mechanics by mediating cytoskeletal organization and focal adhesion maturation. Oncotarget 2015, 6, 15966–15983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendez, M.G.; Kojima, S.-I.; Goldman, R.D. Vimentin induces changes in cell shape, motility, and adhesion during the epithelial to mesenchymal transition. FASEB J. 2010, 24, 1838–1851. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Yustein, J.T.; Xu, J. Research models and mesenchymal/epithelial plasticity of osteosarcoma. Cell Biosci. 2021, 11, 94. [Google Scholar] [CrossRef]
- Satelli, A.; Li, S. Vimentin in cancer and its potential as a molecular target for cancer therapy. Cell. Mol. Life Sci. CMLS 2011, 68, 3033–3046. [Google Scholar] [CrossRef] [Green Version]
- Satelli, A.; Mitra, A.; Cutrera, J.J.; Devarie, M.; Xia, X.; Ingram, D.R.; Dibra, D.; Somaiah, N.; Torres, K.E.; Ravi, V.; et al. Universal Marker and Detection Tool for Human Sarcoma Circulating Tumor Cells. Cancer Res. 2014, 74, 1645–1650. [Google Scholar] [CrossRef] [Green Version]
- Bulut, G.; Hong, S.H.; Chen, K.; Beauchamp, E.M.; Rahim, S.; Kosturko, G.W.; Glasgow, E.; Dakshanamurthy, S.; Lee, H.S.; Daar, I.; et al. Small molecule inhibitors of ezrin inhibit the invasive phenotype of osteosarcoma cells. Oncogene 2012, 31, 269–281. [Google Scholar] [CrossRef] [Green Version]
- Dong, S.; Huo, H.; Mao, Y.; Li, X.; Dong, L. A risk score model for the prediction of osteosarcoma metastasis. FEBS Open Bio 2019, 9, 519–526. [Google Scholar] [CrossRef] [Green Version]
- Chaiyawat, P.; Pruksakorn, D.; Pipatwattana, P.; Phanphaisarn, A.; Teeyakasem, P.; Klangjorhor, J.; Settakorn, J. Endoplasmic reticulum protein 29 (ERp29) as a novel prognostic marker and tumor suppressor in osteosarcoma. J. Bone Oncol. 2019, 16, 100233. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.-L.; Luo, D.; Habaxi, K.; Tayierjiang, J.; Zhao, W.; Wang, W.; Aikebaier, W.; Wang, L. COL5A2 Inhibits the TGF-β and Wnt/β-Catenin Signaling Pathways to Inhibit the Invasion and Metastasis of Osteosarcoma. Front. Oncol. 2022, 12, 813809. [Google Scholar] [CrossRef]
- Dupont, W.D. Review of Multivariable Model-building: A Pragmatic Approach to Regression Analysis Based on Fractional Polynomials for Modeling Continuous Variables, by Royston and Sauerbrei. Stata J. 2010, 10, 297–302. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z. Multivariable fractional polynomial method for regression model. Ann. Transl. Med. 2016, 4, 174. [Google Scholar] [CrossRef] [PubMed]
- Briggs, J.W.; Ren, L.; Nguyen, R.; Chakrabarti, K.; Cassavaugh, J.; Rahim, S.; Bulut, G.; Zhou, M.; Veenstra, T.D.; Chen, Q.; et al. The ezrin metastatic phenotype is associated with the initiation of protein translation. Neoplasia 2012, 14, 297–310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Habel, N.; Stefanovska, B.; Carène, D.; Patiño-Garcia, A.; Lecanda, F.; Fromigué, O. CYR61 triggers osteosarcoma metastatic spreading via an IGF1Rβ-dependent EMT-like process. BMC Cancer 2019, 19, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muro-Cacho, C.A. The Role of Immunohistochemistry in the Diagnosis of Primary Tumors of the Bone. Cancer Control 1998, 5, 561–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaik, S.M.; Devireddy, R.V. Heat and Mass Transfer Models and Measurements for Low-Temperature Storage of Biological Systems. In Handbook of Thermal Science and Engineering; Kulacki, F.A., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 1–39. [Google Scholar]
- Diao, C.; Xi, Y.; Xiao, T. Identification and analysis of key genes in osteosarcoma using bioinformatics. Oncol. Lett. 2018, 15, 2789–2794. [Google Scholar] [CrossRef]
- Li, Y.; Du, W.; Han, J.; Ge, J. LAMP3 promotes the invasion of osteosarcoma cells via SPP1 signaling. Mol. Med. Rep. 2017, 16, 5947–5953. [Google Scholar] [CrossRef] [Green Version]
- Matsunoshita, Y.; Ijiri, K.; Ishidou, Y.; Nagano, S.; Yamamoto, T.; Nagao, H.; Komiya, S.; Setoguchi, T. Suppression of Osteosarcoma Cell Invasion by Chemotherapy Is Mediated by Urokinase Plasminogen Activator Activity via Up-Regulation of EGR1. PLoS ONE 2011, 6, e16234. [Google Scholar] [CrossRef] [Green Version]
- Meng, S.; Fan, X.; Zhang, J.; An, R.; Li, S. GJA1 Expression and Its Prognostic Value in Cervical Cancer. BioMed Res. Int. 2020, 2020, 8827920. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Chen, K.; Bai, Y.; Zhu, X.; Chen, Z.; Wang, C.; Zhao, Y.; Li, M. Screening of diagnostic markers for osteosarcoma. Mol. Med. Rep. 2014, 10, 2415–2420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koks, S.; Reimann, E.; Maasalu, K.; Koks, G.; Xuan, D.H.; Prans, E.; Martson, A. Whole transcriptome analysis of osteosarcoma. FASEB J. 2016, 30, 515.6. [Google Scholar]
- Kuijjer, M.L.; Namløs, H.M.; Hauben, E.I.; Machado, I.; Kresse, S.H.; Serra, M.; Llombart-Bosch, A.; Hogendoorn, P.C.W.; Meza-Zepeda, L.A.; Myklebost, O.; et al. mRNA expression profiles of primary high-grade central osteosarcoma are preserved in cell lines and xenografts. BMC Med. Genom. 2011, 4, 66. [Google Scholar] [CrossRef] [Green Version]
- Kujawski, R.; Przybyłowska-Sygut, K.; Mik, M.; Lewandowski, M.; Trzciński, R.; Berut, M.; Dziki, Ł.; Majsterek, I.; Dziki, A. Expression of the PLS3 Gene in Circulating Cells in Patients with Colorectal Cancer. Pol. Przegl. Chir. 2015, 87, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Talluri, B.; Amar, K.; Saul, M.; Shireen, T.; Konjufca, V.; Ma, J.; Ha, T.; Chowdhury, F. COL2A1 Is a Novel Biomarker of Melanoma Tumor Repopulating Cells. Biomedicines 2020, 8, 360. [Google Scholar] [CrossRef] [PubMed]
- Totland, C.; Kråkenes, T.; Mazengia, K.; Haugen, M.; Vedeler, C. Expression of the onconeural protein CDR1 in cerebellum and ovarian cancer. Oncotarget 2018, 9, 23975–23986. [Google Scholar] [CrossRef] [Green Version]
- Mestdagh, P.; Van Vlierberghe, P.; De Weer, A.; Muth, D.; Westermann, F.; Speleman, F.; Vandesompele, J. A novel and universal method for microRNA RT-qPCR data normalization. Genome Biol. 2009, 10, R64. [Google Scholar] [CrossRef] [Green Version]
- Vandesompele, J.; De Preter, K.; Pattyn, F.; Poppe, B.; Van Roy, N.; De Paepe, A.; Speleman, F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3, research0034.1. [Google Scholar] [CrossRef] [Green Version]
- Poos, K.; Smida, J.; Maugg, D.; Eckstein, G.; Baumhoer, D.; Nathrath, M.; Korsching, E. Genomic Heterogeneity of Osteosarcoma—Shift from Single Candidates to Functional Modules. PLoS ONE 2015, 10, e0123082. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.-L.; Sun, S.-F.; Zhao, G.-L. COL5A2 as a potential clinical biomarker for gastric cancer and renal metastasis. Medicine 2021, 100, e24561. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Jiang, Y.-H.; Yang, P.-Y.; Liu, F. Increased Collagen Type V α2 (COL5A2) in Colorectal Cancer is Associated with Poor Prognosis and Tumor Progression. OncoTargets Ther. 2021, 14, 2991–3002. [Google Scholar] [CrossRef]
- Zeng, X.-T.; Liu, X.-P.; Liu, T.-Z.; Wang, X.-H. The clinical significance of COL5A2 in patients with bladder cancer: A retrospective analysis of bladder cancer gene expression data. Medicine 2018, 97, e0091. [Google Scholar] [CrossRef]
- Horwitz, V.; Davidson, B.; Stern, D.; Tropé, C.G.; Tavor Re’em, T.; Reich, R. Ezrin is Associated with Disease Progression in Ovarian Carcinoma. PLoS ONE 2016, 11, e0162502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, C.; Shin, E.; Hong, S.; Chon, H.J.; Kim, H.R.; Ahn, J.R.; Hong, M.H.; Yang, W.I.; Roh, J.K.; Rha, S.Y. Clinical value of ezrin expression in primary osteosarcoma. Cancer Res. Treat. 2009, 41, 138–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.F.; Shen, J.N.; Xie, X.B.; Wang, J.; Huang, G. Expression change of ezrin as a prognostic factor in primary osteosarcoma. Med. Oncol. 2011, 28, 636–643. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Hou, W.-H.; Ding, X.-X.; Wang, W. Correlation of ezrin expression level and clinical significance for patients with bone and soft tissue sarcomas: A meta-analysis. Int. J. Clin. Exp. Med. 2018, 11, 5469–5479. [Google Scholar]
Gene Group | Name | Sequence (5′-3′): Forward (F); Reverse (R) | Accession Number |
---|---|---|---|
Comparative expression analysis | COL1A2 | F: AGGGCAACAGCAGGTTCACTTA R: TCAGCACCACCGATGTCCAA | NM_000089.4 |
PLS3 | F: TTGTCCAGCGAAGGAACACA R: ACAGGTCATCGGTGTTAGGG | NM_001172335.3 | |
COL5A2 | F: CGCTTTTGTCATGTCAGTGGTT R: GTGTCATGTTGCCTTTGTGGG | NM_000393.5 | |
COL3A1 | F: CGCCCTCCTAATGGTCAAGG R: TTCTGAGGACCAGTAGGGCA | NM_000090.4 | |
EGR1 | F: TCCCATTTACTCAGCGGCAC R: TGGAAACAGGTAGTCGGGGA | NM_001964.3 | |
Previous study source | Ezrin | F: AAGGGTTCTGCTCTGACTCCA R: TGGTTTCGGCATTTTCGGTT | NM_003379.5 |
VIM | F: TCTCTGAGGCTGCCAACCG R: CGAAGGTGACGAGCCATTTCC | NM_003380.5 | |
Housekeeping gene | ACTB | F: GTAAAGACCTCTATGCCAACA R: GGACTCATCGTACTCCTGCT | NM_031144.3 |
Parameters | OS Patients (n = 73) | Healthy Donors (n = 79) | |
---|---|---|---|
Median age (range) | Childhoods and adolescents | 14 (5–24), (71.2%) | 22 (18–24), (46.8%) |
Adults | 57 (25–75), (28.8) | 42 (25–55), (53.2%) | |
Gender | Male | 36 (49.3%) | 52 (65.8%) |
Female | 37 (50.7%) | 27 (34.2%) | |
Enneking stage | IIB | 62 (84.9%) | - |
III | 11 (15.1%) | - | |
Tumor location | Femur Tibia | 35 (47.9%) 15 (20.5%) | - - |
Other | 23 (31.5%) | - | |
Metastasis | Bone | 3 (4.1%) | - |
Lung | 6 (8.2%) | - | |
Bone and Lung | 2 (2.7%) | - | |
None | 62 (84.9%) | - |
Candidate Gene | Covariate Transformation | Β | 95% CI | p | |
---|---|---|---|---|---|
df | FP Term after MFP Transformation | ||||
Intercept | - | - | 0.546 | −0.452, 1.544 | - |
COL5A2 | 1 | COL5A2 + 0.489473678 | 4.523 | 2.036, 7.011 | <0.0001 |
Ezrin | 1 | Ezrin + 0.080723685 | 2.801 | 0.363, 5.238 | 0.024 |
VIM | 1 | VIM–0.6512500006 | 6.247 | 4.251, 8.242 | <0.0001 |
Clinical Character (n) | Probability Cut-Off Point | AUC (95% CI) | Sensitivity (95%CI) | Specificity (95%CI) | LHR + (95%CI) | ||
---|---|---|---|---|---|---|---|
UD | Normal | OS | 0.3366 | 0.9805 | 98.63% | 94.94% | 19.21 |
26 | 57 | 69 | (0.9603, 1.0000) | (90.5, 99.7) | (87.5, 98.6) | (7.39, 49.95) | |
UD | Non-metastasis (Normal and IIB) | Metastasis (III) | 0.8795 | 0.7257 | 100% | 54.78% | 2.33 |
26 | 115 | 11 | (0.621, 0.8302) | (71.5, 100.0) | (45.2, 64.1) | (1.76, 3.08) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sittiju, P.; Chaiyawat, P.; Pruksakorn, D.; Klangjorhor, J.; Wongrin, W.; Phinyo, P.; Kamolphiwong, R.; Phanphaisarn, A.; Teeyakasem, P.; Kongtawelert, P.; et al. Osteosarcoma-Specific Genes as a Diagnostic Tool and Clinical Predictor of Tumor Progression. Biology 2022, 11, 698. https://doi.org/10.3390/biology11050698
Sittiju P, Chaiyawat P, Pruksakorn D, Klangjorhor J, Wongrin W, Phinyo P, Kamolphiwong R, Phanphaisarn A, Teeyakasem P, Kongtawelert P, et al. Osteosarcoma-Specific Genes as a Diagnostic Tool and Clinical Predictor of Tumor Progression. Biology. 2022; 11(5):698. https://doi.org/10.3390/biology11050698
Chicago/Turabian StyleSittiju, Pattaralawan, Parunya Chaiyawat, Dumnoensun Pruksakorn, Jeerawan Klangjorhor, Weerinrada Wongrin, Phichayut Phinyo, Rawikant Kamolphiwong, Areerak Phanphaisarn, Pimpisa Teeyakasem, Prachya Kongtawelert, and et al. 2022. "Osteosarcoma-Specific Genes as a Diagnostic Tool and Clinical Predictor of Tumor Progression" Biology 11, no. 5: 698. https://doi.org/10.3390/biology11050698
APA StyleSittiju, P., Chaiyawat, P., Pruksakorn, D., Klangjorhor, J., Wongrin, W., Phinyo, P., Kamolphiwong, R., Phanphaisarn, A., Teeyakasem, P., Kongtawelert, P., & Pothacharoen, P. (2022). Osteosarcoma-Specific Genes as a Diagnostic Tool and Clinical Predictor of Tumor Progression. Biology, 11(5), 698. https://doi.org/10.3390/biology11050698