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Simple Summary: The objective of this study is to explain the subchondral trabecular and the cortical
ontogenetic changes that occur in the proximal tibia in both the medial and lateral condylar regions
due to differential loadings associated with changing knee joint kinetics and body mass. The differen-
tial response of subchondral bone to changing mechanical loads during growth and development
serves as a powerful tool to evaluate the significance of mechanical loading on subchondral bone
morphology and joint development, and can offer insight into adult morphological variation for
joint health.

Abstract: High-resolution computed tomography images were acquired for 31 proximal human
tibiae, age 8 to 37.5 years, from Norris Farms #36 cemetery site (A.D. 1300). Morphometric analysis
of subchondral cortical and trabecular bone architecture was performed between and within the
tibial condyles. Kruskal–Wallis and Wilcoxon signed-rank tests were used to examine the association
between region, age, body mass, and each morphometric parameter. The findings indicate that
age-related changes in mechanical loading have varied effects on subchondral bone morphology.
With age, trabecular microstructure increased in bone volume fraction (p = 0.033) and degree of
anisotropy (p = 0.012), and decreased in connectivity density (p = 0.001). In the subchondral cortical
plate, there was an increase in thickness (p < 0.001). When comparing condylar regions, only de-
gree of anisotropy differed (p = 0.004) between the medial and lateral condyles. Trabeculae in the
medial condyle were more anisotropic than in the lateral region. This research represents an inno-
vative approach to quantifying both cortical and trabecular subchondral bone microarchitecture in
archaeological remains.

Keywords: functional morphology; bone microstructure; skeletal biology; growth and development;
3D imaging

1. Introduction

The use of three-dimensional (3D) bone architecture for reconstructing the paleo-
biology of humans and other primates has become widespread in the field [1–17]. The
effectiveness of bone, especially subchondral bone, for reconstructing behavioral and lo-
comotive patterns depends on a better understanding of the relationships among bone
structure, biomechanical loading, and behavior, as well as an understanding of the mechan-
ical role of bone in various joints [18,19]. Adult bone morphology incorporates structural
features established during ontogeny and is modified by biological factors and functional
adaptive changes during maturation [20,21]. The response of bone to mechanical loading,
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especially during development, plays an important role in skeletal adaptation and deter-
mines much of adult bone morphology [22,23]. Experimental studies have demonstrated
that the 3D arrangement of trabecular bone reflects variation in mechanical properties
at specific anatomical locations [9,11,24–29]. Understanding the spatial specifics of on-
togenetic processes during bone development, therefore, can offer insight into normal
and pathognomonic morphological variation. This understanding also has implications
for activity patterns, locomotion, and mechanical load within and between populations.
Ontogenetic change in human and non-human bone has been a topic of considerable
research [1,3,9,17,24,27,30–37]. In regard to bone microarchitecture, ontogenetic patterns
provide major insight into the form and structure of bone. Growth is the most opportune
time to modify the mass of the skeleton [38]. More specifically, growing bone exhibits
the greatest functional responsiveness to mechanical stimulation, with tissue sensitivity
diminishing rapidly once skeletal maturity is attained [39,40]. Bioarchaeologists who em-
ploy the principles of bone functional adaptation to the study of physical activity often
analyze cortical and trabecular bone separately. However, little is known about the intimate
intersection present in the subchondral bone, which consists of both cortical and trabecular
architecture. Briefly, we will discuss the morphology and anatomy of subchondral bone.

1.1. Morphology and Anatomy of Subchondral Bone

A number of studies [19,41–47] have established that the anatomy of subchondral
bone is highly variable. Duncan et al. [48] defines the subchondral plate as a zone which
separates the articular cartilage from the marrow cavity and consists of two layers: the
calcified region of the articular cartilage and a layer of lamellar bone. Müller-Gerbl [47]
further defines “the subchondral zone” or “subchondral bone plate” as the bony lamella
lying beneath the calcified zone of the articular cartilage. Depending upon the joint, this
varies in thickness [49]. Several human studies [49–51] have found greater subchondral
bone and plate density in the medial rather than in the lateral part of the tibial plateau.
At places within the joint where the stress is greatest, the density is higher, the thickness
is greater, and the vascularization is more strongly developed [18,47,52]. The trabeculae
arising from this bony lamella are referred to as “supporting trabeculae” [49].

Here, “subchondral bone” is defined as both the subchondral cortical plate directly
beneath the calcified cartilage of the articular cartilage and the underlying supporting tra-
beculae, referred to as subchondral trabecular bone (subarticular spongiosa). The biological
interaction and mechanical mutual support make subchondral bone and cartilage a func-
tional unit that cannot be separated [53,54]. Subchondral bone is a part of the osteochondral
junction, which comprises the deeper non-calcified cartilage, calcified cartilage, and the
underlying subchondral bone. The subchondral bone provides support and protection for
its adjacent cartilage.

1.2. Subchondral Bone Loading and the Impact of Knee Joint Alignment

The mechanical integrity of the cartilage and its resistance to injury depends on its
communication with the underlying subchondral bone [55,56]. Both structures, the car-
tilage and its supporting subchondral bone, have corresponding mechanical functions.
The cartilage serves as the weight bearer and the subchondral bone serves as a structural
support and shock absorber [45,48,57–59]. The subchondral bone absorbs a majority of
the mechanical load transmitted by synovial joints [60]. Due to the greater stiffness and
strength of the subchondral bone in comparison with the articular cartilage [61,62], it is
generally established that the subchondral bone plays an important role in intra-articular
load transmission [63–66] and that this bone strength increases with age [67]. The sub-
chondral region exhibits the strongest architectural response to differences in joint loading
regimes [68] and serves to maintain joint shape.

One crucial aspect of understanding this load in the proximal tibia is examining
knee joint angle or alignment. The development of the knee angle shifts from bowlegged
(varus) in infancy to knocked knees (valgus) in early childhood and stabilizes to a less
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valgus alignment as part of normal and physiological development [69–74]. However, the
age ranges at which these phases come in children and adolescents have been found to
differ across ethnic groups [69,71,72,75–78]. For example, [72] notes that stabilizing knee
alignment can occur after the age of 10 years in Indian children. These age-related changes
in limb alignment at the knee shift weight from the medial condyle to the lateral condyle
and then back to the medial [79]. Because the subchondral bone absorbs a majority of the
joint mechanical load, it has been argued that loading is the primary factor in explaining
its orientation [80–83].

The biomechanical loading produced during early walking does differ from that
of a mature gait, and differences between loads result in differential modeling in the
lower limbs in young children and adults [84]. Given that microarchitectural changes in
subchondral bone influence joint maintenance in later life [44,85–88], little research has
been directed toward the structure of and variation in human subchondral bone during
ontogeny with increasing body mass. Gosman et al. [40] suggests that a higher BV/TV in
the lower limbs is influenced by load-bearing mechanical forces, which may be stronger
on the medial condyle due to the anatomical positions of the distal femur and proximal
tibia. The present study builds on prior research to better understand the complex nature
of subchondral ontogenetic development with increasing body mass [3,34].

1.3. Aims and Hypotheses

This research examines subchondral bone microarchitecture changes during growth
and development in subadult and adult skeletal remains associated with the Oneota (Norris
Farms #36) archaeological population. More specifically, we aim to explain the trabecular
and cortical tissue level age-related changes that occur in proximal tibia subchondral bone
in both the medial and lateral condylar regions and assess whether age-related trends in the
properties differ between the condyles. Age-related alterations in the structure and material
properties of subchondral trabecular bone in the proximal tibia have only been investigated
in a small number of studies [3,89–92]. Ding et al. [91] investigates normal age-related
(16–85 years) changes in trabecular microstructural properties and demonstrates that the
decrease in mechanical properties of trabecular bone in the proximal tibia with aging is
a consequence of the loss of trabecular material. The study showed that bone volume
fraction (BV/TV) decreased significantly with age; connectivity density (Conn.D) did not
have a relationship with age; and degree of anisotropy (DA) increased with age. These
age-related changes had the same trend and pattern for both the medial and lateral condyles
of the tibia [90,91,93]. Gosman and Ketcham [3] found that in young adult individuals from
SunWatch Village (16–20 years old), subchondral bone had a decrease in trabecular number
(Tb.N) and DA, and an increase in BV/TV with age. Chen et al. [89] examines proximal
tibia structural parameters in elderly Japanese populations, demonstrating a decrease in
BV/TV and trabecular thickness (Tb.Th) with age in both women and men. It is important
to note that comparisons between studies are difficult due to differences in populations,
anatomical location, and experimental conditions.

We postulate that with the increase in body mass and refinement in adult gait, all sub-
chondral bone morphometric parameters will be affected by age. Subchondral trabecular
bone is expected to follow the same ontogenetic processes as other trabecular regions of
the skeleton: a subsequent functional condensation of the underlying subchondral bone
due to endochondral ossification with an increase in DA support [92]. In assessing sub-
chondral bone at different ages during growth, it would be expected that subchondral
bone becomes thicker with increasing age due to increasing Tb.Th. BV/TV will have
a slight increase with decreases in Tb.N. These patterns have also been reported by other
researchers examining trabecular ontogeny [3,36,83,92]. The ontogenetic changes seen
in bone mass thickness and density occur with increases in load amount and duration
and the changes seen in the distribution of trabeculae and their patterns are based on the
direction of the load [81]. The remodeling of trabecular architecture includes an increase in
BV/TV, an increase in Tb.Th, and a decrease in Tb.N [2,3,27,83]. Specifically, in subchondral
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trabecular bone, there will be an increase in BV/TV, DA and Tb.Th with age and a decrease
in Conn.D, trabecular separation (Tb.Sp) and Tb.N with age. In the subchondral cortical
plate, there would be an increase in thickness (Plate Ct.Th) with age. There is an expected
increase in thickness due to similar mechanical forces affecting the underlying subchondral
trabecular region [3,24].

Moreover, due to increasing mechanical load and the knee joint changing with devel-
opment, we argue that there is a significant difference in subchondral trabecular bone and
cortical plate morphometric parameters between the medial and lateral condyles with age.
Multiple studies [47,50,90,91,94] show that the medial tibial condyle is stronger than the
lateral condyle, and that in both regions the strength decreases rapidly with the distance
from the surface. Because of this, we argue there will be greater thickness, Conn.D, BV/TV,
and DA in the medial condyle than the lateral condyle. The lateral condyle will have
greater Tb.Sp and Tb.N with less bone volume present.

2. Materials and Methods
2.1. Sample Composition

High-resolution computed tomography (HR-CT) scans of Norris Farms tibiae spec-
imens from 31 individuals (12 males, 11 females, 8 subadults), ranging in age from 8 to
37.5 years old (average: 22.6 years), were used to examine subchondral trabecular bone
and cortical plate ontogenetic changes. Only individuals with both subchondral trabecular
bone and cortical plate were included in this study. The subchondral cortical plate first
appears at 8 years old in this sample. The skeletal series was chosen for this study because
of its cultural and biological homogeneity, high number of subadult individuals, extensive
archaeological context, and excellent preservation [24,34]. The proximal tibia was chosen
for this study because it is a skeletal region that is primarily controlled by axial compressive
and tensile stresses and is commonly used in clinical and research studies of joint develop-
ment and disease [34,95]. Norris Farms 36 site is a pre-contact cemetery from the central
Illinois River Valley dating to approximately A.D. 1300; individuals are associated with the
Oneota cultural tradition of village agriculturalists [96]. The burial population consists of
264 individuals, ranging in age from fetal to 50+ years, as determined by dental formation,
sequences of epiphyseal closure, and age-associated changes [97]. All work was conducted
via the analysis of HR-CT images.

2.2. CT Imaging

All skeletal analyses were performed using 3D digital models derived from HR-CT
scans. All specimens were scanned at the Center for Quantitative X-Ray Imaging (CQI)
at Pennsylvania State University using a Universal OMNI-X HD-600 Industrial High-
Resolution X-ray CT system (Bio-Imaging Research, Inc., Lincolnshire, IL, USA). Gosman
and Ketcham [3] found significant differences in trabecular bone properties between lower
and higher resolution scans while analyzing micro-CT voxel dimension effects. For these
reasons, proximal tibiae for each individual were scanned as two portions (medial and
lateral condylar regions) for the best possible quality, and to reduce the effect of voxel size
on bone properties. The resulting scans had voxel size ranging from 0.04 to 0.057 mm [36,98].
Regression analyses were run for each variable to test for significant influences of voxel size
on trabecular properties. Statistically significant results were not found. Additionally, these
differences in voxel size have little effect on the assessment of structures with relatively
high thickness, such as cortical bone or trabeculae in humans [99].

Scanning involved foam mounting each specimen to stabilize the bone inside a thin-
walled plastic tube with energy settings of 180 kilovolts (kV), 0.11 milliamps (mA), and
2800 projections; using a Feldkamp reconstruction algorithm, transverse cross-sectional
slice images were collected for each tibia. Image reconstructions resulted in 1024 by
1024 pixel, 16-bit TIFF images [34,100]. Following scan data collection, the 16-bit images
were converted to 8-bit binary TIFFs using ImageJ (v. 1.51f) [101] for the segmentation of
regions of interest into trabecular and cortical volumes. Image stacks included between
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860 and 3707 slices per bone (depending upon bone size and scan resolution). The voxel
dimensions resulting from the scans were isotropic (i.e., voxels were perfect cubes). The
voxel dimensions are reported in Table 1.

Table 1. Sample composition.

ID Estimated
Age (Years)

Age
Category Sex Body Mass

Estimation (kg)
Voxel Size

(mm)
VOI Cube
Size (mm)

VOI Length
(# of Slices)

1 8 1

U

17.182 0.04 4.72 119

2 9 1 26.786 0.05 4.4 89

3 9 1 20.152
0.04

5.16 130

4 9.5 1 12.802 4 101

5 10.5 1 22.475

0.05

5.5 111

6 11 1 20.481 5.7 115

7 15 2 33.687 5.6 113

8 15.5 2 M? 36.562 6.55 132

9 16 2 F 34.549 6.2 124

10 16 2 M 44.901 4.35 88

11 16 2 U 39.148 6.15 124

12 16.5 2 F? 31.407 6.3 127

13 18 2
F

49.611 0.056 5.684 103

14 19.5 2 58.139 0.057 5.015 89

15 19.5 2 F? 61.282
0.056

6.322 114

16 19.5 2 F 52.893 6.438 116

17 21.5 3

M

62.587 0.057 7.772 137

18 22.5 3 78.169

0.056

8.178 147

19 26.5 3 67.804 8.12 146

20 27.5 3

F

54.349 6.148 111

21 32.5 4 58.970 6.902 124

22 32.5 4 59.480
0.057

6.844 121

23 32.5 4
M

65.678 5.684 101

24 32.5 4 58.092

0.056

6.554 118

25 32.5 4 F 62.670 6.264 113

26 32.5 4
M

73.941 8.294 149

27 32.5 4 70.679 6.438 116

28 35 4 F 63.570 6.728 121

29 37.5 4

M

71.477 0.057 7.328 130

30 37.5 4 66.862
0.056

7.192 129

31 37.5 4 75.391 7.598 137

All measurements are in millimeters (mm). M = male; M? = possible male; F = female; F? = possible female;
U = unknown; VOI = volume of interest. # = number.

2.3. Volume of Interest (VOI) Placement and Size

For analysis of the subchondral trabecular bone, four cubic VOIs were collected from
the medial and lateral condyle of the proximal tibia using Avizo® Fire 6.2 (Figures 1 and 2).
Data analyses were performed using Avizo® Fire versions 6.2 and 8.1.1 (Thermo Fisher
Scientific, Waltham, MA, USA), a data analysis and visualization software from FEI, and



Biology 2022, 11, 1002 6 of 21

BoneJ, a plugin for bone image analysis in java-based ImageJ (v. 1.51f) [101]. BoneJ provides
open-source tools for trabecular geometry and whole bone shape analysis [102,103].

Figure 1. Proximal tibia VOI placements. Note: Left image—lateral condyle, transverse view; center
image—medial condyle, transverse view; A—anterior; P—posterior; 1–4—VOIs within condyle;
5–7—intercondylar VOIs; right image—coronal view.

Figure 2. Example of an isolated trabecular (15.5 yr old) VOI using ImageJ. Note: Scale: 1 mm.

VOI were positioned within and between tibial condyles within the epiphyseal region,
just inferior to the proximal tibia’s contact area with the distal femur [11]. There are
compressive forces in the proximal tibia during bipedal stance and locomotion [94]. By
contrast, no direct compression is exerted upon VOIs between the condyles (i.e., central
unloaded VOIs) during weight-bearing [24,47]. All intercondylar VOIs (VOIs 5, 6, 7) for
both condylar regions were obtained as part of the imaging acquisition process but were
not included in further analyses for this study. Multiple VOIs were used because the
microarchitecture of trabecular and cortical bone is spatially mixed and is highly dependent
on the volume of interest, position and size [3]. Previous researchers [14,104] have noted the
importance of VOI size and location on trabecular properties, so the largest VOI possible
was placed in order to ensure that each VOI was reflective of the structural variation
between the joints. Because certain properties (connectivity and structure) are impacted by
VOI size, each specimen’s VOI was adjusted to the individual [105] by using epiphyseal
condylar breadth and the anteroposterior breadth of the proximal femoral metaphysis as
the size standard. Each VOI size was calculated as 25% of the anteroposterior breadth
of the proximal femoral metaphysis, resulting in cubic VOIs ranging in size from 4.0 to
8.178 mm, reflecting size increases in growth of the tibia across age [11]. VOI cube sizes are
reported in Table 1.
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2.4. Age, Sex, and Body Mass Estimation

All age-at-death and sex estimations for the Norris Farms 36 skeletal series were
determined in a previous project [106]. Age-at-death for individuals in the samples was
estimated according to standard methods for macroscopic skeletal age estimation [97,106].
Milner et al. [106] relied upon dental development [107–110] and epiphyseal closure [110]
to estimate age-at-death in subadults, while adult ages were assessed via pubic symphysis
morphology, endocranial suture closure, and auricular surface morphology [106]. Skeletal
measurements used to calculate body mass estimates in this study were based on past
research [100]. Body mass was estimated using [111] age-specific femoral head diameter
equations. Body mass estimates are presented in Table 1.

2.5. Trabecular Bone Morphometric Parameters

For the analysis of the ontogenetic patterns in the subchondral trabecular bone,
seven bone morphometric variables were quantified using BoneJ. The morphometric param-
eters used were indicators of bone mechanical properties, microarchitecture, and functional
adaptation to loading history [112]. Descriptions for each parameter can be found in Table 2.
BV/TV, DA, Tb.Th, and Tb.Sp were calculated directly from the high-resolution computed
tomography (HR-CT) scans using Avizo® Fire 6.2 and 8.1.1, and BoneJ. Derived structural
variables, such as Tb.N and Conn.D, were calculated using BoneJ.

Table 2. Description of bone morphometric variables.

Bone Morphometric Variable (Unit) Description References

Bone Volume Fraction (%) Ratio showing what proportion of a volume is
comprised of trabecular bone/bone tissue [105,113]

Trabecular Thickness (mm) Measure of the average thickness of trabecular struts
[105,114]

Subchondral Cortical Plate Thickness (mm) Mean cortex thickness

Trabecular Separation (mm) Mean distance between trabeculae [105,114,115]

Trabecular Number (mm−1)
Ratio of bone volume fraction to trabecular thickness,

a measure of the number of traversals across
a trabecular or solid structure

[105]

Connectivity Density (mm−3)
Measure of the ‘connectedness’ of trabeculae to one

another within the VOI [116,117]

Degree of Anisotropy (unitless) Measure of the directional orientation of trabeculae,
ranging from 0 (fully isotropic) to 1 (fully anisotropic) [105,118]

2.6. Cortical Masking

For the analysis of the subchondral plate, a cortical mask was necessary to ascertain
subchondral cortical thickness properties (Plate Ct.Th). Proximal tibia scans for each
individual were used to examine the thickness in each condylar region. Once a range of
slices were visually identified as the region of interest for a particular bone plate, a truncated
reconfirmed image stack comprising only those slices was imported into Avizo® Fire
version 8.1.1. for the masking of the cortical component of the bone image. This procedure
was necessary in order to facilitate a later step in the data collection process to ascertain
subchondral bone cortical plate properties. A custom script separated a region of interest
into trabecular and cortical volumes. This script was similar to the dual-threshold technique
developed by [119], which automatically segments cortical and trabecular compartments.
In this study, grayscale threshold values were determined using a specimen-specific auto
histogram-based thresholding method in ImageJ (Optimise Threshold) for the standardization
of each specimen and to remove possible subjectivity. However, in some scans, bone and
deeply embedded loess (soil) were not always sufficiently distinguished to allow for auto
thresholding. These thresholds were adjusted and optimized by visual inspection. When
necessary, the manual thresholding of a binary scan image was performed to ensure that
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no loess was included in the segmentation. This was accomplished by manually adjusting
the threshold maximum and minimum values such that only bone was highlighted in the
viewer window pertaining to each step in the script execution process (Figure 3). Once
binarized (converted to a black and white image), a “set scale” using an individual scan
voxel size (values in Table 1) was added for the quantification of the plate mean cortical
thickness [100].

Figure 3. Left image: step one of separation script execution (highlighting bone). Note: bone material
selected via threshold adjustments; 16.5-year-old tibia cross-section shown. Right image: step two
of separation script execution (highlighting air space). Note: air space selected via a second set of
threshold adjustments; 16.5-year-old tibia cross-section shown.

2.7. Statistical Analysis

Statistical analyses used SPSS version 27 (IBM SPSS Statistics 27.0 IBM, Armonk,
NY, USA). Statistical analysis required that age-at-death estimates given as a range
(e.g., 10 to 12 years) be converted to their mid-range value (e.g., 11 years). The VOIs associ-
ated with each region (lateral and medial) were averaged for each individual for analyses.
All variables were tested for normality using the Shapiro–Wilk test. Of the ten variables,
three (body mass, age, Tb.Sp) were not normally distributed and, therefore, nonparametric
tests were used for all further analyses. The significance level was set at p ≤ 0.05 for all
statistical tests. To test age-related influences on all morphometric parameters, the sam-
ple was divided into four age groups/categories based on sample demographics, tibial
development, and previous growth studies [3,11,36,120]:

(1) Child (8–13.99 years, n = 6)

In humans, the trabecular structure of the tibia reaches an adult-like pattern (BV/TV,
DA) typically at 8 years of age [3,11,36], with the modification of anisotropy in late child-
hood/prepuberty [3]. However, knee alignment may not be stabilized until after 10 years of
age in some populations [72]. Thus, overall trabecular architecture appears to be optimized
later in life [25,32,36,104,121]. At ages 8–13, the distal part of the tuberosity starts to ossify
from one or more centers [122]. Individuals of this category have an increasing body mass,
adult gait pattern, and presumably independent activity.

(2) Adolescent (14–19.99 years, n = 10)

Individuals in this category have increased body mass related to the pubertal growth
spurt with a fully active adult lifestyle [92]. The proximal epiphysis begins to fuse at
13 years in females and 15.5 years in males, with later times extending to 17 years in females
and 19.5 years in males [122].

(3) Young Adult (20–30.99 years, n = 4)
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Individuals in this category have reached their peak attained bone mass and final
attained height. Individuals have increased body mass with the cessation of growth [56].

(4) Middle Age (31–37.99 years, n = 11)

Individuals in this category continue to maintain their final attained height and body
mass, but there are decreases in bone mass due to the endo-trabecular deficit of bone
replacement during remodeling. Normal, age-related bone loss in trabecular bone begins
to occur in men and women after age 30–35 [56].

Mean differences for each bone structural parameter (pooled sex and condylar regions)
were tested across age categories by using an independent sample Kruskal–Wallis test and
a Bonferroni correction post hoc test. Mean values for all variables across age category are in
Table 3. Regional differences in parameters were tested via mean bone structural differences
(sex-pooled) across condyle location using the related-sample pairwise Wilcoxon signed-
rank test. The mean values for all morphometric parameters across the condyle locations
are shown in Table 4. A Mann–Whitney U test was performed to examine the relationship
between subchondral bone architecture and sex in the condylar regions. Finally, regression
analyses were performed between body mass, all morphometric variables, and sex.

Table 3. Mean statistics for all variables by age category. Note: body mass is sex-pooled, while the
other parameters are region-pooled (i.e., both condyles).

Variables (Unit) Age Category n Mean (Standard Deviation)

Bone Volume Fraction (%)

1 11 0.234 (0.04)

2 20 0.278 (0.06)

3 8 0.290 (0.02)

4 22 0.274 (0.03)

Trabecular Thickness (mm)

1 11 0.282 (0.07)

2 20 0.320 (0.05)

3 8 0.333 (0.02)

4 22 0.316 (0.02)

Trabecular Separation (mm)

1 11 0.843 (0.15)

2 20 0.859 (0.19)

3 8 0.820 (0.05)

4 22 0.832 (0.11)

Connectivity Density (mm−3)

1 8 4.133 (0.95)

2 20 3.144 (0.84)

3 8 2.485 (0.51)

4 21 2.680 (0.57)

Degree of Anisotropy (-)

1 11 0.616 (0.06)

2 20 0.654 (0.05)

3 8 0.687 (0.08)

4 22 0.684 (0.07)

Trabecular Number (mm−1)

1 11 0.826 (0.10)

2 20 0.870 (0.12)

3 8 0.873 (0.05)

4 22 0.872 (0.11)
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Table 3. Cont.

Variables (Unit) Age Category n Mean (Standard Deviation)

Subchondral Cortical
Plate Thickness (mm)

1 11 0.888 (0.39)

2 20 1.154 (0.24)

3 8 1.600 (0.16)

4 22 1.645 (0.39)

Body Mass (kg)

1 6 19.979 (1.93)

2 10 44.219 (3.40)

3 4 65.727 (4.99)

4 11 66.074 (1.85)

Table 4. Mean statistics for all morphometric variables by condyle region. Note: lateral condyle = 1;
medial condyle = 2.

Variable (Unit) Condyle Mean Standard Deviation

Bone Volume Fraction (%)
1 0.2651 0.0468

2 0.2753 0.0449

Trabecular Thickness (mm)
1 0.3091 0.0505

2 0.317 0.0404

Trabecular Separation (mm)
1 0.8538 0.1623

2 0.826 0.1108

Connectivity Density (mm−3)
1 3.0826 1.0485

2 2.9423 0.6384

Degree of Anisotropy (-)
1 0.634 0.0577

2 0.6936 0.0623

Trabecular Number (mm−1)
1 0.8635 0.1083

2 0.8634 0.1066

Subchondral Cortical
Plate Thickness (mm)

1 1.300 0.4668

2 1.3387 0.4425

3. Results
3.1. Quantification of Subchondral Bone Structure by Age Category

Results for this section are condylar region- and sex-pooled.

• Child

The child age group was typified by having the lowest mean BV/TV (0.234), mean
Tb.Th (0.282 mm), mean DA (0.6155), and mean Tb.N (0.826 mm−1) of the four age groups.
This group had the highest mean Tb.Sp (0.858 mm) and mean Conn.D (4.132 mm−3) and
thinnest mean Plate Ct.Th (0.887 mm).

• Adolescent

The adolescent age group was typified by an increase in Tb.Th (0.3192 mm), BV/TV
(0.277), DA (0.6539), and Plate Ct.Th (1.1535 mm) when compared to the child age group.
There was a general decline in Conn.D (3.1444 mm−3).

• Young Adult

The young adult age group was typified by having the highest mean BV/TV (0.290),
mean Tb.Th (0.332 mm), mean Tb.N (0.8733 mm−1), and DA (0.686). There was a decline in
Conn.D (2.4853 mm−3) and an increase in Plate Ct.Th (1.599 mm).
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• Middle Age

The middle age group was typified by a decline in BV/TV (0.2747) and Tb.Th
(0.3158 mm) from the young adult group. The Plate Ct.Th (1.644 mm) was highest in this
group. A VOI visual representation for each age category is provided in Figure 4.

Figure 4. Volume of interest visual representation for each age category. 1 = Category 1 (9-year-old
unknown sex); 2 = Category 2 (16-year-old male); 3 = Category 3 (26-year-old male); 4 = Category 4
(37.5-year-old male). Note: Scale: 1 mm. All images from VOI 2.

When comparing age categories (condylar region- and sex-pooled), BV/TV was higher
in Age Category 3 (20.0–30.99 years) compared to Age Category 1 (8.0–13.99 years). BV/TV
increased with age from childhood to adult. DA was also greater in Age Category 4
(31.0–37.99 years) compared to Age Category 1. Trabecular subchondral bone became
more anisotropic with the adult form. Conn.D was less in both Age Categories 3 and 4
compared to Age Category 1. A decline in overall trabecular connectivity density was
present in both adult categories. Plate Ct.Th was greater in the Age Categories 3 and 4
(20.0–37.99 years) when compared to Age Categories 1 and 2 (8.0–19.99 years). This trend
was present also between Age Categories 2 and 3. This represents an increase in Plate Ct.Th
with age (Figure 5; Tables 5 and 6).

Table 5. Age category independent sample Kruskal–Wallis test.

Statistical Test BV/TV (%) Tb.Th
(mm)

Tb.Sp
(mm)

Conn.D
(mm−3) DA (-) Tb.N

(mm−1)
Plate Ct.Th

(mm)
Body Mass

(kg)

Kruskal–Wallis 8.752 4.711 0.547 17.345 10.934 0.515 26.861 23.669

df 3 3 3 3 3 3 3 3

p-value 0.033 0.194 0.908 <0.001 0.012 0.916 <0.001 <0.001
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Figure 5. All morphometric parameters by condylar region across age categories.
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Table 6. Kruskal–Wallis post hoc test for significant age category comparisons.

Variable (Unit) Age Category Comparison p-Value

BV/TV (%) 1 vs. 3 0.040

Conn.D (mm−3)
1 vs. 3 0.003

1 vs. 4 0.003

DA (-) 1 vs. 4 0.011

Plate Ct.Th (mm)

1 vs. 3 0.004

1 vs. 4 <0.001

2 vs. 3 0.040

2 vs. 4 0.030

3.2. Condyle Differences

The condylar regions only statistically differed in DA, with the medial condylar region
being more anisotropic. On average, the medial condyle had a higher mean BV/TV
(0.275 mm), Tb.Th (0.317 mm), DA (0.694), and thicker Plate Ct.Th (1.339 mm), while the
lateral condyle had higher mean values of Tb.Sp (0.853 mm) and Conn.D (3.08 mm−3).

Pairwise related-sample Wilcoxon signed-ranks tests were performed on all mor-
phometric variable means comparing the medial and lateral condylar regions. In the
subchondral cortical plate, slight thickening was noted in the medial condyle, but there
was no significant difference (p = 0.638) found. In regard to the subchondral trabecular
bone, only DA significantly differed (p = 0.04) between the medial and lateral condylar
regions (Table 7). The Wilcoxon signed-rank test revealed that the medial condyle ranked
higher than the lateral condyle in the majority of paired cases for DA. Overall, the medial
condyle had a larger mean value for BV/TV compared to the lateral. The lateral condyle
had a larger mean value of Tb.Sp and Conn.D.

Table 7. Pairwise related-sample Wilcoxon signed-rank test comparing condylar parameter differences.

Variable (Unit) Mean Rank (Negative) Mean Rank (Positive) Z p-Value

BV/TV (%) 18.75 13.03 −0.649 0.516

Tb.Th (mm) 15.13 14.03 −0.490 0.624

Tb.Sp (mm) 13.35 13.65 −0.051 0.959

Conn.D (mm−3) 15.31 11.69 −0.597 0.551

Tb.N (mm−1) 13.24 16.45 −0.501 0.616

DA (-) 10.93 15.69 −2.881 0.004

Plate Ct.Th (mm) 15.70 12.13 −0.470 0.638

As predicted, with increasing body mass, age and condyle variation did occur in the
subchondral trabecular bone and cortical plate. However, not all morphometric variables
rejected the null hypothesis of no change with age and location. These results indicate
that statistically significant differences between groups (p < 0.05) only occurred in BV/TV,
Conn.D, DA, and Plate Ct.Th with age. Additionally, only DA significantly differed (p = 0.04)
between the medial and lateral condylar regions. The regression results showed that with
increasing body mass there was no change in morphometric variables except for a sharp
decrease in Conn.D (p < 0.001).

Sex was also examined as a possible variable in the later age categories. Statistical
differences (p < 0.05) were found in body mass and BV/TV (Table 8). Overall, males
had a higher mean BV/TV (i.e., more bone tissue) and greater body mass in the later
age categories (Figure 6). However, it is important to note the sample sizes were small,
especially as Category 3 only had one female.
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Table 8. Mann–Whitney test comparing parameters between sexes.

Statistical Test BV/TV
(%)

Tb.Th Mean
(mm)

Tb.Sp Mean
(mm)

Conn.D
(mm−3) DA Tb.N

(mm−1)
Plate Ct.Th

(mm)
Body Mass

(kg)

Mann–Whitney
U 159.0 217.0 268.5 304.0 261.5 178.0 188.0 26.0

Z −2.309 −1.034 0.099 1.183 −0.055 −1.891 −1.671 −2.462

p-value 0.021 0.301 0.921 0.237 0.956 0.059 0.095 0.013

Figure 6. Body mass and bone volume fraction sex differences across age.

4. Discussion
4.1. Characteristics of Subchondral Bone and Plate Ontogeny

Our results indicate that the human skeleton optimizes its microarchitecture via elabo-
rate adaptations to mechanical loading during growth and development. With increasing
body mass, the subchondral bone increases in BV/TV with age. A decline in overall
Conn.D. was present in both adult categories. There was also an observed increase in DA.
As a consequence of aging and the decline in Conn.D, the aging trabeculae seemed to align
more strongly in the primary direction, becoming more anisotropic. Highly anisotropic
trabecular bone is thought to signify a locomotor pattern that restricts joint mobility to
a particular direction, whereas a more isotropic trabecular structure is considered to signal
locomotor behavior involving greater joint mobility [123,124]. DA reflects consistent joint
loading and, by extension, locomotor repertoire variability [124–127].

As noted, BV/TV increased with age from childhood to the adult stage and then
remained constant in the middle age category. Comparing these cortical and trabecular
bone quantifications with other proximal tibia subchondral ontogenetic studies, some
general similarities and differences were found. Our results are similar to [3]. They noted
in young adult individuals from the Fort Ancient site of SunWatch Village (16–20 years old)
that subchondral bone had an increase in BV/TV with age and a decrease in Tb.N. However,
our results differ from [91]’s research. The observations of [91] were geared toward much
older individuals than the present study. The majority of this study’s samples fit in [91]’s
young age range (16–39 yrs). In their younger individuals, [91] found no major changes in
any morphometric parameters, but noted that BV/TV and Tb.Th decreased significantly
after the age of 60. They also found that all the microarchitectural properties from the medial
and lateral condyles had the same age-related trends. Possible factors for the differences
seen between our study and [91]’s include secular change (biological generational changes),
activity pattern differences, and genetic differences that could exist between a modern
medical sample and our archaeological sample population. Moreover, [44,89] focused on
a much older population with Japanese subjects ranging in age from 57 to 98 years old
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and noted that trabecular bone mineral density, BV/TV, and Tb.Th decreased between
the middle-aged and elderly groups for both men and women. Our oldest age category
(Category 4) individuals were still much younger than this Japanese sample, and retained
stronger bone microarchitecture in relation to volume and thickness, emphasizing the
influence of age in examining these structural properties.

In this study, there was an increase in Plate Ct.Th with age. Age-related plate thick-
ness has been found in non-human studies [57,128], but the thickening of the subchondral
bone plate has also been associated with the onset of osteoarthritis [44,129–133]. Be-
cause of its relatively greater stiffness and strength in comparison with the overlying
cartilage [63,134,135], the subchondral plate is generally believed to play an important role
in juxta articular load transmission. This appears to be the result of the greater potential
for modelling trabecular tissue during later stages of development (and into adulthood
perhaps), once the modelling of external bone shape has slowed/ceased [136].

4.2. Microarchitecture in Relation to Locomotion

Since both cortical bone and trabecular bone respond to changes in loading patterns,
the response of bone structure to early irregular loading and then to more predictable
loading during late childhood provides a unique morphological indicator of development
in mature and stable gaits. With increasing age, [11] argues that mean DA converges at
higher values and becomes less variable across the distal tibia. Our study reiterates this,
as well as the fact that as maturation occurs the subchondral trabecular bone becomes
more highly oriented in the longitudinal direction across the proximal tibia condylar
regions [11]. It is also noteworthy that the most substantial increases in muscle mass
occur after the pubertal growth spurt [137], mediated by an increase in growth hormones,
and after linear growth has ceased. The implication of this is that the morphological
shape changes observed during late adolescence/early adulthood are mainly accepted by
internal structures [136].

4.3. Body Mass and Sexual Dimorphism

This study illustrates some sexual dimorphic differences in body mass and bone
volume in the later age categories. However, due to the limitations of the dataset, no further
analyses could be conducted. When comparing our results to other studies, there was not
a clear agreement regarding sexual dimorphic changes in trabecular microarchitecture.
Chen et al. [89] showed that men had higher BV/TV and lower Tb.Sp in elderly groups
compared to women. Eckstein et al. [138] compared sex differences in trabecular bone
microstructure across multiple skeletal sites and found males had thicker trabeculae, higher
connectivity, and a higher DA in the femoral trochanter, but these results were not found in
other skeletal sites in the same sample. Beresheim et al. [1] found no sex differences in any
of the bone microstructure variables when examining thoracic ribs from a 15–17th century
archaeological collection while [8] found multiple sex differences, but the patterns were
not consistent across volumes of interest. Doershuk et al. [139] also found no clear pattern
of dimorphism in the humerus or femur, and [16] found in the foot that with increasing
body size there was no change in BV/TV or Tb.Th and a substantial decrease in Conn.D.
Moreover, [8] argues that sex and body mass influences vary greatly. We postulate that this
divergence in results is due to variation in the bones analyzed, sample populations, and
differential loading affected by body mass.

4.4. Implications of this Study

The results of this research bolster previous findings by other studies of trabecular
bone local responses to changes in loading patterns. The loss of tissue during infancy may
be essential for developing a highly oriented structure that can resist loads efficiently with
minimal bone mass. This also provides greater phenotypic plasticity and may be a response
to developing postural and locomotor loads [30]. It is expected that both trabeculae and
overall bone shape probably respond in tandem to mechanical loads during ontogeny [140],
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but that microstructural properties may continue after the adult shape has been attained.
Additionally, these results suggest that subchondral bone microstructural properties are
remarkably heterogenous.

4.5. Limitations

The most significant potential limitation to this study is the size and positioning of
the volumes of interest. Previous analyses have clearly shown significant variation in
bone structure within a single bone [13,36]. However, this study provides an alternative
approach by positioning multiple volumes throughout the epiphyseal region with the
idea of characterizing structure across the entire region. Moreover, the VOIs created were
scaled to the size of each individual. The use of multiple volumes has been successful
in previous analyses [141], but presents a challenge in comparing different bones with
distinctly different shapes and sizes [13].

Understanding the developmental and morphological variation that exist in humans
can help better define stress and lifestyle in past populations. However, there are inherent
assumptions in interpreting growth and development in archaeological populations, in-
cluding biological uniformitarianism, stationary populations, and the ability to determine
accurate age estimates from skeletal material [142,143]. There are also biases in sample
size, aging methodology, sex estimation, and preservation status that need to be addressed
when performing analyses. By comparing modern growth standards with archaeological
samples, we are comparing the growth of children who died to that of healthy living chil-
dren from populations known to have had secular changes in recent decades. Additionally,
it is difficult to determine if the growth of children in the archaeological record accurately
reflects the growth of those who became adults.

Moreover, there are still concerns regarding making interpretations based solely on
subchondral bone, such as what role articular cartilage plays in initial development, and
whether we should examine these regions of the body as a functional joint–subchondral
bone unit or as separate components.

5. Conclusions

Age-related changes in mechanical loading have varied effects on subchondral bone
morphology within the proximal tibia. The nature of the structural response to mechan-
ical stimuli may also provide valuable information about the relationship between joint
disease and bone microstructure, especially in the weight-bearing skeleton. Behavioral
reconstruction using subchondral bone structure in archaeological populations requires
a fundamental understanding of the link between ontogenetic changes in bone architecture
and the mechanical loads experienced during locomotion and other behaviors. This study
provides a better understanding of the complexities of tissue level growth dynamics in
the proximal tibia and provides a rare opportunity to study the effects of childhood bone
growth on subchondral microstructural organization, which may have effects on the me-
chanical properties of bone well into adulthood. The trends highlighted in the current study
provide important baseline information that can be used in future comparative studies
of subchondral bone growth. This is important in both archaeological and orthopedic
contexts to further clarify the mechanical sensitivity and functionally adaptive nature of
subchondral bone. It is clear that new methods for detecting variance in bone morphology
must be added to pre-existing ones to refine our understanding of the relationship between
behavior, loading environment, function, and skeletal response.
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