Bergamini, C.M.; Bianchi, N.; Giaccone, V.; Catellani, P.; Alberghini, L.; Stella, A.; Biffani, S.; Yaddehige, S.K.; Bobbo, T.; Taccioli, C.
Machine Learning Algorithms Highlight tRNA Information Content and Chargaff’s Second Parity Rule Score as Important Features in Discriminating Probiotics from Non-Probiotics. Biology 2022, 11, 1024.
https://doi.org/10.3390/biology11071024
AMA Style
Bergamini CM, Bianchi N, Giaccone V, Catellani P, Alberghini L, Stella A, Biffani S, Yaddehige SK, Bobbo T, Taccioli C.
Machine Learning Algorithms Highlight tRNA Information Content and Chargaff’s Second Parity Rule Score as Important Features in Discriminating Probiotics from Non-Probiotics. Biology. 2022; 11(7):1024.
https://doi.org/10.3390/biology11071024
Chicago/Turabian Style
Bergamini, Carlo M., Nicoletta Bianchi, Valerio Giaccone, Paolo Catellani, Leonardo Alberghini, Alessandra Stella, Stefano Biffani, Sachithra Kalhari Yaddehige, Tania Bobbo, and Cristian Taccioli.
2022. "Machine Learning Algorithms Highlight tRNA Information Content and Chargaff’s Second Parity Rule Score as Important Features in Discriminating Probiotics from Non-Probiotics" Biology 11, no. 7: 1024.
https://doi.org/10.3390/biology11071024
APA Style
Bergamini, C. M., Bianchi, N., Giaccone, V., Catellani, P., Alberghini, L., Stella, A., Biffani, S., Yaddehige, S. K., Bobbo, T., & Taccioli, C.
(2022). Machine Learning Algorithms Highlight tRNA Information Content and Chargaff’s Second Parity Rule Score as Important Features in Discriminating Probiotics from Non-Probiotics. Biology, 11(7), 1024.
https://doi.org/10.3390/biology11071024