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 This supplement provides: (1) additional details on our LA-ICPMS methods; (2) 

discussion of potential tetrad effects in the left tibia of MOR 2598; (3) discussion of potential 

sequestration process that may have limited REE availability to the bones of MOR 2598; (4) 

discussion of potential causes for the peculiar shapes of Sc and U profiles in the left tibia of 

MOR 2598; (5) sources for environmental data in Figure 5 of the main text, and; (6) additional 

data on the trace element composition of the left tibia of MOR 2598 (Figures S1, S2). Raw 

transect data are provided separately in Data S1 as an Excel XLSX file.  

 

LA-ICPMS Methodology 

 

LA-ICPMS analyses were conducted using a New Wave UP-213 (213 nm wavelength) 

Nd:YAG laser coupled to a Finnigan Element2 ICPMS at the University of Maryland. The laser 

was operated at 2–3 J/cm2 and a pulse rate of 7 Hz. Transect data were collected using a laser 

diameter of 30 μm moving at a scan speed of 50 μm/s, and background collection was performed 

prior to each reading for 20 s. NIST 610 glass was used as an external standard and elemental 

concentrations were calculated based on normalization to 55.8% CaO in bone apatite.  

 

Potential Tetrad Effects in MOR 2598 

 

 Most REE uptake behavior in natural systems can be attributed to charge and radius 

controls on ion reactions (so-called CHARAC behavior; [1]). Non-CHARAC behavior, in which 

the behavior of REE ions is also influenced by the configuration of their outer electron shell [2], 

can produce tetrad effects, including in fossil bones (e.g., [3,4]). Spider diagrams of NASC-



normalized REE concentrations in the tibia of MOR 2598 exhibit subtle yet distinct peaks and/or 

deflections at europium (Eu) and holmium (Ho) (Figures 3B and 4). These diagrams are not 

developed into strong M-shaped profiles, but the regular deflections are still apparent. Abundant, 

positive Y/Ho anomalies in the external and internal cortices (Figure S1) may also be attributable 

to tetrad effects during uptake [4]. According to Herwartz et al. [4], preferential uptake of LREE 

in the external cortex may also contribute to these patterns. Abundant evidence of for 

fractionation in MOR 2598 (e.g., typical intra-bone fractionation trends in the by-laser-run spider 

diagram [Figure 4B in the main text], low concentrations of MREE and elements with low-

moderate diffusivities in the middle cortex [Figure 2A,B in the main text, Data S1]) implies that 

fractionation was likely a major control on the development of the high Y/Ho ratios, but the clear 

peaks/deflections at Eu and Ho appear more likely attributable to strong tetrad effects during 

uptake.  

 

Processes Which Potentially Limited REE Availability 

 

Complexation of dissolved REE with carbonate anions is common in natural waters [5,6], 

especially in coastal fresh and brackish waters [7,8] due to chemical weathering [9] and the 

decomposition of abundant organic matter in coastal sediments [10]. Given the geologic and 

geochemical indications (described herein) that MOR 2598 was buried in an estuarine channel, it 

is therefore plausible that extensive complexation may have partially suppressed the availability 

of trace elements during early diagenesis. Humic acids released during the decay of plant debris 

in the surrounding sediments and of any residual dinosaur tissues (e.g., muscle) may also have 

formed complexes with dissolved REE [11], further limiting their availability for uptake by the 



bone. Dissolved phosphates released from decaying organic matter [12–14] may also have 

scavenged REE ions from solution via coprecipitation within trace secondary phosphates in the 

surrounding sediments (cf. [15,16]). We were not able to test quarry sediments for trace 

phosphatic phases in this study, but they are almost certainly present as lowland/coastal 

watersheds generally contain more phosphate than upstream regions [13,17]. In the absence of 

such direct tests, these potential sequestration processes (carbonate complexation and/or 

coprecipitation with phosphate) remain speculative, but the depositional setting implies that each 

may have contributed to limiting the supply of trace elements within surrounding early-

diagenetic pore fluids. 

 

Potential Explanations for Sc and U Profile Shapes 

 

Sc and U are the only trace elements examined in MOR 2598 to exhibit broad peaks in 

concentrations across the middle cortex (Figure 2B in the main text). The causes(s) of this are 

unclear. Although the internal “boundary” of their peaks (near 25 mm) spatially corresponds 

with a transition in histologic structure from more random Haversian bone with numerous 

secondary osteons (internal cortex) to denser, more organized, fibrolamellar, laminar bone 

(middle cortex) (see thick section inlays in Figure 2 of the main text), there is no similar apparent 

transition in histologic microstructure between the middle and external cortices. Lack of 

permineralization implies that there were no spatial contrasts in fluid flow potential either. 

Therefore, the only potential explanation we can advance is that simultaneous pore fluid 

diffusion toward the middle cortex from both outside the bone and the medullary cavity during 

early diagenesis may have caused heavily-fractionated groundwaters to ‘pool’ in the middle 



cortex, which over time led to the development of elevated concentrations of U and other 

elements still abundant in solution (i.e., Sc) in this region of the cortex. 

 

Sources for Environmental Data in Figure 5 

 

 Literature data for environmental samples in Figure 5A of the main text are as follows: 

river waters (green field; [18–37]); suspended river loads (dull pink field; [19,38]); groundwaters 

(bright pink field; [24,39–47]); lakes (purple field; [24,27,28,31,40,43,48,49]); estuaries (yellow 

field; [20,46,50–52]); coastal waters (light blue field; [18,20,21,32,53,54]); seawater (dark blue 

field; [55–73]); sea floor particles (gray field; [59,67]); marine pore fluids (orange field; 

[53,71,74,75]).  

 

 

 

 

 

 



 

Figure S1. Intra-bone patterns of (Ce/Ce*)N, (Ce/Ce**)N, and (La/La*)N anomalies and Y/Ho 

ratios within the tibia of MOR 2598. (Ce/Ce*)N values (red curves), (Ce/Ce**)N values (black 

curves), and (La/La*)N anomalies (blue curves) were calculated as outlined in the Materials and 

Methods. Y/Ho ratio data are presented as the orange curve. Absence of (Ce/Ce*)N, (Ce/Ce**)N, 

and (La/La*)N anomalies occurs at 1.0. 

 

 

 

 

 

 

 

 

 



 

Figure S2. Cerium anomaly (Ce/Ce**)N values plotted against uranium (U) concentrations in the 

tibia of MOR 2598. Absence of the cerium anomaly is at a value of 1.0. Error bars, in gray, are 

based on analytical reproducibility of ± 5%. The trendline in red has a very poor fit (r2 = 0.29), 

suggesting different timescales for uptake of U and Ce (according to [76]). 
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