Association between Phase Angle from Bioelectric Impedance and Muscular Strength and Power in Physically Active Adults
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants and Study Design
2.2. Body Composition and Bioimpedance Measurements
2.3. Dynamic Muscle Strength
2.4. Muscle Power
3. Statistical Analysis
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Norman, K.; Stobäus, N.; Pirlich, M.; Bosy-Westphal, A. Bioelectrical phase angle and impedance vector analysis—Clinical relevance and applicability of impedance parameters. Clin. Nutr. 2012, 31, 854–861. [Google Scholar] [CrossRef] [PubMed]
- Campa, F.; Toselli, S.; Mazzilli, M.; Gobbo, L.A.; Coratella, G. Assessment of body composition in athletes: A narrative review of available methods with special reference to quantitative and qualitative bioimpedance analysis. Nutrients 2021, 13, 1620. [Google Scholar] [CrossRef] [PubMed]
- Lukaski, H.; Raymond-Pope, C.J. New Frontiers of Body Composition in Sport. Int. J. Sports Med. 2021, 42, 588–601. [Google Scholar] [CrossRef] [PubMed]
- Martins, P.C.; Moraes, M.S.; Silva, D.A.S. Cell integrity indicators assessed by bioelectrical impedance: A systematic review of studies involving athletes. J. Bodyw. Mov. Ther. 2020, 24, 154–164. [Google Scholar] [CrossRef]
- Hetherington-Rauth, M.; Baptista, F.; Sardinha, L.B. BIA-assessed cellular hydration and muscle performance in youth, adults, and older adults. Clin. Nutr. 2020, 39, 2624–2630. [Google Scholar] [CrossRef]
- Matias, C.N.; Campa, F.; Nunes, C.L.; Francisco, R.; Jesus, F.; Cardoso, M.; Valamatos, M.J.; Homens, P.M.; Sardinha, L.B.; Martins, P.; et al. Phase angle is a marker of muscle quantity and strength in overweight/obese former athletes. Int. J. Environ. Res. Public Health 2021, 18, 6649. [Google Scholar] [CrossRef]
- Tomeleri, C.M.; Cavalcante, E.F.; Antunes, M.; Nabuco, H.C.G.; De Souza, M.F.; Teixeira, D.C.; Gobbo, L.A.; Silva, A.M.; Cyrino, E.S. Phase Angle Is Moderately Associated With Muscle Quality and Functional Capacity, Independent of Age and Body Composition in Older Women. J. Geriatr. Phys. Ther. 2019, 42, 281–286. [Google Scholar] [CrossRef]
- Campa, F.; Matias, C.N.; Marini, E.; Heymsfield, S.B.; Toselli, S.; Sardinha, L.B.; Silva, A.M. Identifying Athlete Body-Fluid Changes During a Competitive Season With Bioelectrical Impedance Vector Analysis. Int. J. Sports Physiol. Perform. 2019, 15, 361–367. [Google Scholar] [CrossRef]
- Norman, K.; Wirth, R.; Neubauer, M.; Eckardt, R.; Stobäus, N. The bioimpedance phase angle predicts low muscle strength, impaired quality of life, and increased mortality in old patients with cancer. J. Am. Med. Dir. Assoc. 2015, 16, 173. [Google Scholar] [CrossRef]
- Otsuka, Y.; Yamada, Y.; Maeda, A.; Izumo, T.; Rogi, T.; Shibata, H.; Fukuda, M.; Arimitsu, T.; Miyamoto, N.; Hashimoto, T. Effects of resistance training intensity on muscle quantity/quality in middle-aged and older people: A randomized controlled trial. J. Cachexia Sarcopenia Muscle 2022, 13, 894–908. [Google Scholar] [CrossRef]
- Hetherington-Rauth, M.; Leu, C.G.; Júdice, P.B.; Correia, I.R.; Magalhães, J.P.; Sardinha, L.B. Whole body and regional phase angle as indicators of muscular performance in athletes. Eur. J. Sport Sci. 2021, 21, 1684–1692. [Google Scholar] [CrossRef] [PubMed]
- Obayashi, H.; Ikuta, Y.; Fujishita, H.; Fukuhara, K.; Sakamitsu, T.; Ushio, K.; Kimura, H.; Adachi, N. The relevance of whole or segmental body bioelectrical impedance phase angle and physical performance in adolescent athletes. Physiol. Meas. 2021, 42, 035011. [Google Scholar] [CrossRef] [PubMed]
- Di Vincenzo, O.; Marra, M.; Sammarco, R.; Speranza, E.; Cioffi, I.; Scalfi, L. Body composition, segmental bioimpedance phase angle and muscular strength in professional volleyball players compared to a control group. J. Sports Med. Phys. Fit. 2020, 60, 870–874. [Google Scholar] [CrossRef] [PubMed]
- Nabuco, H.C.G.; Silva, A.M.; Sardinha, L.B.; Rodrigues, F.B.; Tomeleri, C.M.; Ravagnani, F.C.P.; Cyrino, E.S.; Ravagnani, C.F.C. Phase Angle is Moderately Associated with Short-term Maximal Intensity Efforts in Soccer Players. Inter. J. Sports Med. 2019, 40, 739–743. [Google Scholar] [CrossRef] [PubMed]
- Martins, P.C.; Teixeira, A.S.; Antonacci, L.G.G.; Francisco, J.S.; Silva, D.A.S.; Nakamura, F.Y.; Lima, L.R.A. Phase angle is related to 10 m and 30 m sprint time and repeated-sprint ability in young male soccer players. Int. J. Environ. Res. Public Health 2021, 18, 4405. [Google Scholar] [CrossRef]
- Westcott, W.L. Resistance training is medicine: Effects of strength training on health. Curr. Sports Med. Rep. 2012, 11, 209–216. [Google Scholar] [CrossRef]
- Garber, C.E.; Blissmer, B.; Deschenes, M.R.; Franklin, B.A.; Lamonte, M.J.; Lee, I.M.; Nieman, D.C.; Swain, D.P. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Med. Sci. Sports Exerc. 2011, 43, 1334–1359. [Google Scholar] [CrossRef]
- Campa, F.; Schoenfeld, B.J.; Marini, E.; Stagi, S.; Mauro, M.; Toselli, S. Effects of a 12-week suspension versus traditional resistance training program on body composition, bioimpedance vector patterns, and handgrip strength in older men: A randomized controlled trial. Nutrients 2021, 13, 2267. [Google Scholar] [CrossRef]
- Ribeiro, A.S.; Schoenfeld, B.J.; Dos Santos, L.; Nunes, J.P.; Tomeleri, C.M.; Cunha, P.M.; Sardinha, L.B.; Cyrino, E.S. Resistance training improves a cellular health parameter in obese older women: A rondomized controlled trial. J. Strength Cond. Res. 2020, 34, 2996–3002. [Google Scholar] [CrossRef]
- Fukuda, D.H.; Stout, J.R.; Moon, J.R.; Smith-Ryan, A.E.; Kendall, K.L.; Hoffman, J.R. Effects of resistance training on classic and specific bioelectrical impedance vector analysis in elderly women. Exp. Gerontol. 2016, 74, 9–12. [Google Scholar] [CrossRef]
- Dos Santos, L.; Cyrino, E.S.; Antunes, M.; Santos, D.A.; Sardinha, L.B. Changes in phase angle and body composition induced by resistance training in older women. Eur. J. Clin. Nutr. 2016, 70, 1408–1413. [Google Scholar] [CrossRef] [PubMed]
- Souza, M.F.; Tomeleri, C.M.; Ribeiro, A.S.; Schoenfeld, B.J.; Silva, A.M.; Sardinha, L.B.; Cyrino, E.S. Effect of resistance training on phase angle in older women: A randomized controlled trial. Scand. J. Med. Sci. Sports 2017, 27, 1308–1316. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, A.; Nascimento, M.; Schoenfeld, J.; Aguiar, A.; Cavalcante, E.; Silva, A.; Sardinha, L.B.; Steven, J.F.; Cyrino, E.S. Effects of single set resistance training with different frequencies on a cellular health indicator in older women. J. Aging Phys. Act. 2018, 26, 537–543. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, A.; Schoenfeld, B.; Souza, M.; Tomeleri, C.; Silva, A.; Teixeira, D.; Sardinha, L.B.; Cyrino, E.S. Resistance training prescription with different load-management methods improves phase angle in older women. Eur. J. Sport Sci. 2017, 17, 913–921. [Google Scholar] [CrossRef] [PubMed]
- Cunha, P.M.; Tomeleri, C.M.; do Nascimento, M.A.; Nunes, J.P.; Antunes, M.; Nabuco, H.C.G.; Quadros, Y.; Cavalcante, E.F.; Mayhew, J.L.; Sardinha, L.B.; et al. Improvement of cellular health indicators and muscle quality in older women with different resistance training volumes. J. Sports Sci. 2018, 36, 2843–2848. [Google Scholar] [CrossRef]
- Nunes, J.P.; Ribeiro, A.S.; Silva, A.M.; Schoenfeld, B.J.; Santos, L.; Cunha, P.M.; Nascimento, M.A.; Tomeleri, C.M.; Nabuco, H.C.G.; Antunes, M.; et al. Improvements in phase angle are related with muscle quality index after resistance training in older women. J. Aging Phys. Act. 2019, 27, 515–520. [Google Scholar] [CrossRef]
- Tomeleri, C.M.; Ribeiro, A.S.; Cavaglieri, C.R.; Deminice, R.; Schoenfeld, B.J.; Schiavoni, D.; Santos, L.; Souza, M.F.; Antunes, M.; Venturini, D.; et al. Correlations between resistance training-induced changes on phase angle and biochemical markers in older women. Scand. J. Med. Sci. Sports 2018, 28, 2173–2182. [Google Scholar] [CrossRef] [PubMed]
- Toselli, S.; Badicu, G.; Bragonzoni, L.; Spiga, F.; Mazzuca, P.; Campa, F. Comparison of the effect of different resistance training frequencies on phase angle and handgrip strength in obese women: A randomized controlled trial. Int. J. Environ. Res. Public Health 2020, 17, 1163. [Google Scholar] [CrossRef] [PubMed]
- Tinsley, G.M.; Harty, P.S.; Moore, M.L.; Grgic, J.; Silva, A.M.; Sardinha, L.B. Changes in total and segmental bioelectrical resistance are correlated with whole-body and segmental changes in lean soft tissue following a resistance training intervention. J. Int. Soc. Sports Nutr. 2019, 16, 58. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, A.S.; Avelar, A.; Dos Santos, L.; Silva, A.M.; Gobbo, L.A.; Schoenfeld, B.J.; Sardinha, L.B.; Cyrino, E.S. Hypertrophy-type Resistance Training Improves Phase Angle in Young Adult Men and Women. Int. J. Sports Med. 2017, 38, 35–40. [Google Scholar] [CrossRef]
- Langer, R.D.; Silva, A.M.; Borges, J.H.; Cirolini, V.X.; Páscoa, M.A.; Guerra-Junior, G.; Gonçalves, E.M. Physical training over 6 months is associated with improved changes in phase angle, body composition, and blood glucose in healthy young males. Am. J. Hum. Biol. 2019, 31, e23275. [Google Scholar] [CrossRef]
- Teixeira, F.J.; Matias, C.N.; Monteiro, C.P.; Valamatos, M.J.; Reis, J.F.; Tavares, F.; Batista, A.; Domingos, C.; Alves, F.; Sardinha, L.B.; et al. Leucine Metabolites Do Not Enhance Training-induced Performance or Muscle Thickness. Med. Sci. Sports Exerc. 2019, 51, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Matias, C.N.; Santos, D.A.; Gonçalves, E.M.; Fields, D.A.; Sardinha, L.B.; Silva, A.M. Is bioelectrical impedance spectroscopy accurate in estimating total body water and its compartments in elite athletes? Ann. Hum. Biol. 2013, 40, 152–156. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, F.J.; Matias, C.N.; Monteiro, C.P.; Valamatos, M.J.; Reis, J.F.; Batista, A.; Oliveira, A.C.; Alves, F.; Sardinha, L.B.; Phillips, S.M. No effect of HMB or α-HICA supplementation on training-induced changes in body composition. Eur. J. Sport Sci. 2019, 19, 802–810. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, R.N.; Chumlea, W.C.; Roche, A.F. Bioelectric impedance phase angle and body composition. Am. J. Clin. Nutr. 1988, 48, 16–23. [Google Scholar] [CrossRef]
- Toombs, R.J.; Ducher, G.; Shepherd, J.A.; De Souza, M.J. The impact of recent technological advances on the trueness and precision of DXA to assess body composition. Obesity 2012, 20, 30–39. [Google Scholar] [CrossRef]
- Santos, D.A.; Gobbo, L.A.; Matias, C.N.; Petroski, E.L.; Gonçalves, E.M.; Cyrino, E.S.; Minderico, C.S.; Sardinha, L.B.; Silva, A.M. Body composition in taller individuals using DXA: A validation study for athletic and non-athletic populations. J. Sports Sci. 2013, 31, 405–413. [Google Scholar] [CrossRef]
- Bongiovanni, T.; Trecroci, A.; Rossi, A.; Iaia, F.M.; Pasta, G.; Campa, F. Association between change in regional phase angle and jump performance: A pilot study in serie a soccer players. Eur. J. Investig. Health Psychol. Educ. 2021, 11, 860–865. [Google Scholar] [CrossRef]
- Francisco, R.; Matias, C.N.; Santos, D.A.; Campa, F.; Minderico, C.S.; Rocha, P.; Heymsfield, S.B.; Lukaski, H.; Sardinha, L.B.; Silva, A.M. The predictive role of raw bioelectrical impedance parameters in water compartments and fluid distribution assessed by dilution techniques in athletes. Int. J. Environ. Res. Public Health 2020, 17, 759. [Google Scholar] [CrossRef]
- Wang, D.X.M.; Yao, J.; Zirek, Y.; Reijnierse, E.M.; Maier, A.B. Muscle mass, strength, and physical performance predicting activities of daily living: A meta-analysis. J. Cachexia Sarcopenia Muscle 2020, 11, 3–25. [Google Scholar] [CrossRef]
- Almeida-Neto, P.F.; Medeiros, R.C.S.C.; de Matos, D.G.; Baxter-Jones, A.D.G.; Aidar, F.J.; de Assis, G.G.; Dantas, P.M.S.; de Araújo, B.G.; Cabral, T. Lean mass and biological maturation as predictors of muscle power and strength performance in young athletes. PLoS ONE 2021, 16, e0254552. [Google Scholar] [CrossRef] [PubMed]
- Langer, R.D.; Guimarães, R.F.; Gonçalves, E.M.; Guerra-Junior, G.; De Moraes, A.M. Phase angle is determined by body composition and cardiorespiratory fitness in adolescents. Int. J. Sports Med. 2020, 41, 610–615. [Google Scholar] [CrossRef] [PubMed]
1st Tertile n = 15 | 2nd Tertile n = 15 | 3rd Tertile n = 14 | F | p-Value | ||
---|---|---|---|---|---|---|
Age (years) | Mean | 34.3 | 30.8 | 27.4 * | 3.43 | 0.042 |
SD | 6.2 | 8.2 | 6.6 | |||
Weight (kg) | Mean | 77.0 | 73.9 | 79.9 | 1.60 | 0.214 |
SD | 9.8 | 5.8 | 10.8 | |||
Height (cm) | Mean | 173.8 | 173.3 | 174.7 | 0.23 | 0.792 |
SD | 6.5 | 4.4 | 6.1 | |||
BMI (kg/m2) | Median | 25.4 | 24.6 | 25.7 | 2.72 | 0.079 |
Min–Max | 22.0–29.3 | 21.5–26.6 | 22.6–33.3 | |||
LST (kg) | Mean | 59.3 | 59.8 | 64.5 | 2.36 | 0.107 |
SD | 7.2 | 5.4 | 8.2 | |||
FM % | Median | 16.3 | 14.5 | 13.2 * | 5.18 | 0.010 |
Min–Max | 12.3–27.6 | 8.4–18.1 | 9.7–20.2 | |||
BMC (kg) | Median | 2.7 | 2.8 | 2.9 | 2.33 | 0.110 |
Min–Max | 2.2–4.0 | 2.4–3.4 | 2.5–4.0 | |||
ECW (kg) | Mean | 19.6 | 19.3 | 19.7 | 0.093 | 0.911 |
SD | 2.0 | 1.9 | 3.4 | |||
ICW (kg) | Median | 29.1 | 32.5 | 35.2 * | 6.32 | 0.004 |
Min–Max | 23.7–36.9 | 24.8–37.0 | 24.5–51.1 | |||
ECW/ICW | Mean | 0.65 | 0.60 * | 0.54 *# | 59.33 | <0.001 |
SD | 0.03 | 0.02 | 0.03 |
Mean (SEM) | F | p-Value | |||
---|---|---|---|---|---|
Variable | 1st Tertile | 2nd Tertile | 3rd Tertile | ||
Muscle Power | |||||
Wingate Average Power (W) | 574.5 (24.3) | 591.3 (22.6) | 667.0 (24.0) * | 3.982 | 0.027 |
Countermovement jump height (cm) | 35.2 (1.4) | 36.8 (1.3) | 40.9 (1.4) * | 4.486 | 0.018 |
Muscle Strength | |||||
Back Squat 1RM (kg) | 127.8 (7.0) | 119.9 (6.6) | 140.0 (7.0) | 2.297 | 0.114 |
Bench Press 1RM (kg) | 84.5 (6.2) | 80.7 (5.8) | 104.0 (6.1) # | 3.579 | 0.037 |
Wingate Test a | ||||||
B | S.E | β | p-value | r² ajust. | p-value | |
Phase Angle | 0.03 | 0.01 | 0.36 | 0.017 | 0.11 | 0.017 |
Model 1 | 0.01 | 0.01 | 0.10 | 0.295 | 0.63 | <0.001 |
Model 2 | 0.01 | 0.01 | 0.15 | 0.169 | 0.63 | <0.001 |
Countermovement Jump | ||||||
B | S.E | β | p-value | r² ajust. | p-value | |
Phase Angle | 3.96 | 1.09 | 0.49 | 0.001 | 0.22 | <0.001 |
Model 1 | 3.42 | 1.15 | 0.42 | 0.005 | 0.24 | 0.001 |
Model 2 | 2.44 | 1.15 | 0.30 | 0.040 | 0.32 | <0.001 |
Bench Press 1RM a | ||||||
B | S.E | β | p-value | r² ajust. | p-value | |
Phase Angle | 0.09 | 0.02 | 0.55 | <0.001 | 0.28 | <0.001 |
Model 1 | 0.06 | 0.02 | 0.36 | 0.002 | 0.55 | <0.001 |
Model 2 | 0.05 | 0.02 | 0.29 | 0.012 | 0.58 | <0.001 |
Back Squat 1RM | ||||||
B | S.E | β | p-value | r² ajust. | p-value | |
Phase Angle | 8.94 | 5.37 | 0.25 | 0.103 | 0.04 | 0.103 |
Model 1 | 2.63 | 4.94 | 0.07 | 0.597 | 0.28 | <0.001 |
Model 2 | 0.54 | 5.23 | 0.01 | 0.919 | 0.28 | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fukuoka, A.H.; de Oliveira, N.M.; Matias, C.N.; Teixeira, F.J.; Monteiro, C.P.; Valamatos, M.J.; Reis, J.F.; Gonçalves, E.M. Association between Phase Angle from Bioelectric Impedance and Muscular Strength and Power in Physically Active Adults. Biology 2022, 11, 1255. https://doi.org/10.3390/biology11091255
Fukuoka AH, de Oliveira NM, Matias CN, Teixeira FJ, Monteiro CP, Valamatos MJ, Reis JF, Gonçalves EM. Association between Phase Angle from Bioelectric Impedance and Muscular Strength and Power in Physically Active Adults. Biology. 2022; 11(9):1255. https://doi.org/10.3390/biology11091255
Chicago/Turabian StyleFukuoka, Aryanne Hydeko, Núbia Maria de Oliveira, Catarina N. Matias, Filipe J. Teixeira, Cristina P. Monteiro, Maria J. Valamatos, Joana F. Reis, and Ezequiel Moreira Gonçalves. 2022. "Association between Phase Angle from Bioelectric Impedance and Muscular Strength and Power in Physically Active Adults" Biology 11, no. 9: 1255. https://doi.org/10.3390/biology11091255
APA StyleFukuoka, A. H., de Oliveira, N. M., Matias, C. N., Teixeira, F. J., Monteiro, C. P., Valamatos, M. J., Reis, J. F., & Gonçalves, E. M. (2022). Association between Phase Angle from Bioelectric Impedance and Muscular Strength and Power in Physically Active Adults. Biology, 11(9), 1255. https://doi.org/10.3390/biology11091255