A Pilot Study to Examine If Dietary Habits Can Affect Symptomology in Mild Pre-Vaccination COVID-19 Cases
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Ethical Considerations
Participants and Recruitment
2.3. Questionnaires
- The food frequency questionnaire (FFQ) was used in conjunction with the food diaries to examine the dietary habits of individuals. FFQ estimated intake of different food items prior to COVID-19 infection. Participants were asked to score how many portions they consumed over the course of a month, week, or day, before having COVID-19 (Table A2). This information was then used to calculate portions of food groups consumed by participants per week. The FFQ used has been validated previously in young and healthy Spanish participants [27].
- Food diaries allowed for the calculation of average consumption of macro/micronutrients per day, and the analysis was done using the Nutritics™ software. The food diaries asked the portions and ingredients of the meals of participants over the course of 4–7 days, with one day being over a weekend or holiday.
2.4. Blood Sampling
2.5. Study Cohort
2.6. Statistical Analyses
3. Results
3.1. Symptomology
3.2. Diet and Symptomology
3.3. Food Groups and Nutrients and Symptom Severity
3.4. Vitamin D and COVID-19 Severity
3.5. Crossectional IgG SARS-CoV-2 Antibody Analysis
3.6. Longitudinal Antibody SARS-CoV-2 IgG Analysis
3.7. IgG Correlations with Dietary Components
4. Discussion
4.1. Symptomology
4.2. Diet and Symptomology
4.3. Food Groups and Nutrients and Symptom Severity
4.3.1. Citric Fruits and Other Fruits and Fruit Juices
4.3.2. Nuts
4.3.3. Protein and Energy Intake
4.3.4. Poly-Unsaturated Fatty Acids (PUFA), Omega 3 and 6, Monounsaturated Fatty Acids (MFA), Saturated Fatty Acids (SFA)
4.3.5. Vitamin A (Retinol)
4.3.6. Vitamins B1, B2, B6, B9 and B12
4.3.7. Vitamin C
4.3.8. Vitamin D
4.3.9. Vitamin E
4.3.10. Iron
4.3.11. Copper
4.3.12. Selenium
4.3.13. Zinc
4.3.14. Fibre
4.4. Serum Vitamin D Concentration and COVID-19 Severity
4.5. Immunological Analysis
4.6. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Unique ID Code: | |
---|---|
Data Collector Information | |
Name of data collector | |
Form completion date (DD/MM/YYYY) | __/__/____ |
Participant information | |
Sex | Man □ Woman □ Other □ |
Date of birth (DD/MM/YYYY) | |
Age | |
Weight (kg) | |
Height (m) | |
Average hours slept per night | |
Blood group | |
Do you use supplements? Please provide details of the ingredients/brand, how much and how often you take them. | |
Do you take any medicines? Please provide details of the brand, how much and how often you take them. | |
Are you a smoker? | Yes □ No □ If yes, how long-term have you smoked for? |
Are you an ex-smoker? | Yes □ No □ If yes, how long-term have you not smoked for? |
Country of residence | |
Nationality | |
Ethnicity (optional) | |
Please tell us when you have had a positive result for a COVID-19 test at the university (PCR, antigen, antibody) | Yes □ No □ Unknown □ If yes, date of test (DD/MM/YYYY): __/__/____ In case of multiple positive results, please list all dates: |
Have you had a negative result on a COVID-19 test? (PCR, antigen, antibody) | Yes □ No □ Unknown □ If yes, date of test (DD/MM/YYYY): __/__/____ In case of multiple negative results, please list all dates: |
Have you received one or more doses of a COVID-19 vaccine? | Yes □ No □ If yes, date of first dose (DD/MM/YYYY): __/__/____ Please state which brand of vaccine you received (if known): |
Symptom history | |
Did you suffer any symptoms due to a COVID-19 infection? | Yes □ No □ Date that symptoms started (DD/MM/YYYY): __/__/____ Date that symptoms ended (leave blank if symptoms are ongoing) (DD/MM/YYYY): __/__/____ |
Have you suffered any recurring or long-term symptoms after being infected with COVID-19? | Yes □ No □ |
Date that the COVID-19 infection started (approximately) (DD/MM/YYYY): __/__/____ Date that the COVID-19 infection ended (leave blank if infection is ongoing) (DD/MM/YYYY): __/__/____ | |
Below is a list of symptoms. Please indicate which symptoms you have suffered due to a COVID-19 infection. Please list how severe each symptom was and the duration of each symptom in days from when the symptom began until end | |
Fever ≥ 38 °C | Yes □ Severity (Low/Medium/High) No □ Date that this symptom started (DD/MM/YYYY): __/__/____ Date that this symptom ended (leave in blank if symptom is ongoing) (DD/MM/YYYY): __/__ ____ Duration of symptom (days): |
Chills | Yes □ Severity (Low/Medium/High) No □ Date that this symptom started (DD/MM/YYYY): __/__/____ Date that this symptom ended (leave in blank if symptom is ongoing) (DD/MM/YYYY): __/__/____ Duration of symptom (days): |
Fatigue | Yes □ Severity (Low/Medium/High) No □ Date that this symptom started (DD/MM/YYYY): __/__/____ Date that this symptom ended (leave in blank if symptom is ongoing) (DD/MM/YYYY): __/__/____ Duration of symptom (days): |
Muscular pain (Myalgia) | Yes □ Severity (Low/Medium/High) No □ Date that this symptom started (DD/MM/YYYY): __/__/____ Date that this symptom ended (leave in blank if symptom is ongoing) (DD/MM/YYYY): __/__/____ Duration of symptom (days): |
Sore throat | Yes □ Severity (Low/Medium/High) No □ Date that this symptom started (DD/MM/YYYY): __/__/____ Date that this symptom ended (leave in blank if symptom is ongoing) (DD/MM/YYYY): __/__/____ Duration of symptom (days): |
Coμgh | Yes □ Severity (Low/Medium/High) No □ Date that this symptom started (DD/MM/YYYY): __/__/____ Date that this symptom ended (leave in blank if symptom is ongoing) (DD/MM/YYYY): __/__/____ Duration of symptom (days): |
Runny nose (rhinorrhea) | Yes □ Severity (Low/Medium/High) No □ Date that this symptom started (DD/MM/YYYY): __/__/____ Date that this symptom ended (leave in blank if symptom is ongoing) (DD/MM/YYYY): __/__/____ Duration of symptom (days): |
Breathing difficulties (disnea) | Yes □ Severity (Low/Medium/High) No □ Date that this symptom started (DD/MM/YYYY): __/__/____ Date that this symptom ended (leave in blank if symptom is ongoing) (DD/MM/YYYY): __/__/____ Duration of symptom (days): |
Wheezing | Yes □ Severity (Low/Medium/High) No □ Date that this symptom started (DD/MM/YYYY): __/__/____ Date that this symptom ended (leave in blank if symptom is ongoing) (DD/MM/YYYY): __/__/____ Duration of symptom (days): |
Chest pain | Yes □ Severity (Low/Medium/High) No □ Date that this symptom started (DD/MM/YYYY): __/__/____ Date that this symptom ended (leave in blank if symptom is ongoing) (DD/MM/YYYY): __/__/____ Duration of symptom (days): |
Other respiratory symptoms | Yes □ Severity (Low/Medium/High) No □ Date that this symptom started (DD/MM/YYYY): __/__/____ Date that this symptom ended (leave in blank if symptom is ongoing) (DD/MM/YYYY): __/__/____ Duration of symptom (days): |
Headache | Yes □ Severity (Low/Medium/High) No □ Date that this symptom started (DD/MM/YYYY): __/__/____ Date that this symptom ended (leave in blank if symptom is ongoing) (DD/MM/YYYY): __/__/____ Duration of symptom (days): |
Nausea/vomiting | Yes □ Severity (Low/Medium/High) No □ Date that this symptom started (DD/MM/YYYY): __/__/____ Date that this symptom ended (leave in blank if symptom is ongoing) (DD/MM/YYYY): __/__/____ Duration of symptom (days): |
Abdominal pain | Yes □ Severity (Low/Medium/High) No □ Date that this symptom started (DD/MM/YYYY): __/__/____ Date that this symptom ended (leave in blank if symptom is ongoing) (DD/MM/YYYY): __/__/____ Duration of symptom (days): |
Diarrohea | Yes □ Severity (Low/Medium/High) No □ Date that this symptom started (DD/MM/YYYY): __/__/____ Date that this symptom ended (leave in blank if symptom is ongoing) (DD/MM/YYYY): __/__/____ Duration of symptom (days): |
Did any of these symptoms require you to seek medical attention? | Yes □ No □ |
Did any of these symptoms require you to miss work or school? | Yes □ No □ |
Did any of these symptoms require you to be hospitalized | Yes □ No □ |
Loss of sense of smell | Yes □ Severity (Low/Medium/High) No □ Date that this symptom started (DD/MM/YYYY): __/__/____ Date that this symptom ended (leave in blank if symptom is ongoing) (DD/MM/YYYY): __/__/____ Duration of symptom (days): |
Loss of sense of taste | Yes □ Severity (Low/Medium/High) No □ Date that this symptom started (DD/MM/YYYY): __/__/____ Date that this symptom ended (leave in blank if symptom is ongoing) (DD/MM/YYYY): __/__/____ Duration of symptom (days): |
Severity of symptoms 1–10: | |
Other symptoms/ Comments: |
Food | How Many Times? | |
---|---|---|
in a Week | in a Month | |
Milk | ||
Yogurt | ||
Chocolate: “Kit Kat”, “Mars”… | ||
Breakfast cereales (“Corn-Flakes”, “Kellog’s”) | ||
Biscuits | ||
Biscuits with chocolate or cream | ||
Cupcakes, spongecakes | ||
Donut, crossiants | ||
Salads: Lettuce, tomato… | ||
Green beans, chard, spinach | ||
Garnish vegetables: eggplant, mushrooms | ||
Baked, fried or boiled potatoes | ||
Legumes: lentils, chichpeas, beans | ||
White rice, paella | ||
Pasta: noodles, macarrones, spaguetti | ||
Soups or creams of soups | ||
eggs | ||
Chichen or turkey | ||
beef, pork, lamb (steak, pie,…) | ||
Mince meat, sausage, hamburger | ||
White fish: Hake, grouper,… | ||
Blue fish: sardines, tuna, salmon,… | ||
Shellfish: muscles, prawns, squid,… | ||
Croquettes, dumpings, pizza | ||
bread (in baguette, with meals,…) | ||
Salted/cured ham, sliced ham, sausages | ||
White or fresh cheese (Philadelphia) o low in calories | ||
Other cheese: cured or semicured, creamy | ||
Fruititricic: orange, mandarine,… | ||
Other fruits: apple, pear, peach, banana… | ||
Preserved fruits (in syrup…) | ||
Natural fruit juices | ||
Concentrated fruit juices | ||
Nuts: peanuts, hazelnuts, almonds,… | ||
Milky desterts: custard, flan, cottage cheese | ||
Cream or chocolate cakes | ||
Packets of crisps | ||
sweets: gummies, candies… | ||
Ice cream | ||
Fizzy sμgar drinks (“coca-cola”, “Fanta”…) | ||
Low calorie fizzy drinks (coca-cola light…) | ||
Wine, sangria | ||
Beer | ||
Beer 0% alcohol | ||
Distilled drinks: whisky, gin, coñac,… |
Food Group | Asymptomatic | Symptomatic | Long-Term COVID |
---|---|---|---|
Eggs | 2.0 (0.0–14.0), 2.7 | 2.5 (0.0–6.0), 2.3 | 2.0 (0.0–14.0), 1.9 |
Whitefish: Hake, grouper… | 1.0 (0.0–2.0), 0.8 | 1.0 (0.0–3.5), 1.6 | 1.0 (0.0–3.0), 0.9 |
cheese: cured or semi cured, creamy | 2.0 (0.8–7.0), 3.0 | 1.0 (0.0–12.0), 3.0 | 1.0 (0.0–18.5), 2.2 |
Citric fruits: mandarin, orange... | 1.0 (0.0–14.0), 1.6 | 1.0 (0.0–14.0), 5.4 | 2.0 (0.0–14.0) 6.4 |
Other fruit: apple, pear, peach banana | 5.5 (0.0–28.0), 5.4 | 4.0 (0.5–18.0), 6.0 | 5.5 (0.0–18.0), 5.9 |
Natural fruit juices | 0.3 (0.0–7.0), 3.3 | 0.0 (0.0–2.0), 0.6 | 0.1 (0.0–7.0), 1.0 |
Fizzy sμgared drinks | 0.2 (0.0–4.0), 1.0 | 0.0 (0.0–3.8), 0.6 | 0.0 (0.0–5.0), 0.0 |
Beer | 2.4 (0.0–7.0), 3.6 | 1.0 (0.0–8.8), 5.1 | 1.0 (0.0–8.8), 2.8 |
Yogurt | 1.1 (0.0–4.0), 2.6 | 1.0 (0.0–7.0), 3.0 | 2.0 (0.0–8.0), 2.4 |
Milk | 5.3 (0.0–14.0), 6.4 | 0.3 (0.0–7.0), 7.0 | 7.0 (0.0–14.0), 6.8 |
Chocolate: “Kit Kat”, “Mars” … | 1.0 (0.0–10.0), 1.2 | 1.0 (0.0–3.0), 1.8 | 0.4 (0.0–2.0), 0.8 |
Breakfast cereals: “Corn-Flakes”, “Kellogg’s” | 0.0 (0.0–5.0), 1.1 | 0.0 (0.0–1.4), 0.3 | 0.0 (0.0–2.0), 0.0 |
Doμghnuts, Croissants | 0.3 (0.0–2.5), 0.5 | 0.0 (0.0–2.0), 0.5 | 0.0 (0.0–3.0), 0.3 |
Salads: Lettuce, tomato… | 5.0 (0.0–7.0), 5.0 | 4.5 (0.0–7.0), 4.5 | 4.0 (0.0–14.0), 4.8 |
Green beans, chard, spinach | 1.0 (0.0–7.0), 1.6 | 1.0 (0.0–7.0), 2.3 | 1.0 (0.0–7.0), 1.7 |
Baked, fried, or boiled potatoes | 1.6 (0.0–4.0), 1.2 | 1.3 (0.0–6.0), 2.0 | 2.0 (0.0–7.0), 2.0 |
Legumes: lentils, chickpeas, beans | 1.0 (0.3–2.0), 0.7 | 2.0 (0.3–6.5), 2.2 | 1.8 (0.0–9.3), 1.4 |
Pasta: noodles, macaroni, spaghetti | 1.0 (0.5–3.5), 1.2 | 1.3 (0.3–5.0), 1.7 | 1.0 (0.3–7.0), 0.0 |
Beef, pork, lamb (steak, pie...) | 1.0 (0.0–5.0), 1.9 | 1.0 (0.0–2.0), 1.9 | 1.0 (0.0–3.0), 1.8 |
Mincemeat, sausage, hamburger | 1.0 (0.0–5.0), 1.8 | 1.0 (0.0–3.0), 1.6 | 1.0 (0.0–14.0), 1.5 |
Bluefish: sardines, tuna, salmon... | 0.6 (0.0–2.0), 1.0 | 1.0 (0.0–7.0), 0.5 | 1.0 (0.0–7.0), 0.8 |
Shellfish: muscles, prawn, squid... | 0.5 (0.0–1.0), 0.9 | 0.5 (0.0–1.3), 1.0 | 0.5 (0.0–4.0), 1.0 |
Bread (in baguette, with meals...) | 6.0 (0.0–22.0), 5.3 | 4.0, (0.0–7.0), 4.5 | 7.0 (0.0–14.0), 3.9 |
Salted/cured ham, sliced ham, sausages | 2.5 (0.0–12.0), 4.1 | 2.0 (0.0–7.0), 3.9 | 2.5 (0.0–21.0), 5.3 |
Nuts: peanuts, hazelnuts, almonds… | 2.0 (0.0–10.0), 4.3 | 3.0 (0.0–10.5), 3.8 | 1.0 (0.0–12.3), 2.5 |
Distilled drinks: Whiskey, gin, cognac… | 0.0 (0.0–1.1), 0.6 | 0.3 (0.0–2.3), 0.9 | 0.0 (0.0–3.0), 0.7 |
(a) | |
Age Group | Median (Minimum–Maximum), IQR IgG Concentration BAU/mL |
≤25 (n = 18) | 109 (35–296), 135 a |
26–35 (n = 17) | 58 (0–334), 137 b |
≥36 (n = 20) | 42 (0–502), 69 b |
(b) | |
Symptom Group | Median (Minimum–Maximum), IQR IgG Concentration BAU/mL |
Asymptomatic (n = 20) | 35 (0–296), 86 a |
Symptomatic (n = 14) | 78 (0–239), 163 ab |
Long-term COVID (n = 21) | 108 (0–502), 130 b |
Participant | Gender | Age | BMI | Supplements | Symptom Group | Fe (RDI) | Selenium (RDI) | Zinc (RDI) | Vitamin A (RDI) | Vitamin D (RDI) | Vitamin E (RDI) | Vitamin B2 (RDI) | Vitamin B6 (RDI) | Vitamin B9 (RDI) | Vitamin B12 (RDI) | Vitamin C (RDI) | Carotene | FFQ Citric Fruits p/w | FFQ Other Fruits p/w |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N | F | 29 | 22.3 | C5 Alfa plus | S | 7.0 mg (47%)! | 42 μg (69%) | 5.9 mg (73%) | 515 μg (42%) | 14.1 μg (93%) | 11.8 mg (84%) | 1.2 mg (105%) | 1.2 mg (100%) | 170 μg (37%)! | 5.5 μg (229%) | 47 mg (24%) | 1490 μg (29%) | 0.3 | 3.0 |
T | F | 43 | 22.3 | C.sinensis | S | 8.8 mg (59%) | 85 μg (140%) | 5.9 mg (73%) | 419 μg (34%) | 3.0 μg (19%)! | 7.1 mg (50%) | 0.8 mg (75%) | 1.3 mg (110%) | 133 μg (29%)! | 3.1 μg (130%) | 36 mg (19%)! | 1049 μg (21%) | 7.0 | 7.0 |
B | F | 23 | 22.3 | No | LC | 5.8 mg (39%)! | 37.4 μg (62%) | 5 mg (62%) | 258 μg (21%) | 0.72 μg (4%)! | 3.6 mg (25%) | 0.5 mg (48%)! | 1 mg (84%) | 130 μg (28%)! | 2 μg (85%) | 92 mg (48%) | 1267 μg (25%) | 7.0 | 14.0 |
D | F | 26 | 20.2 | No | AS | 12.7 mg (79%) | 45 μg (64%) | 4.4 mg (40%) | 617 μg (95%) | 12.6 μg (84%) | 10.9 mg (99%) | 0.6 mg (38%) | 2.3 mg (142%) | 196 μg (59%) | 4 μg (99%) | 143 mg (150%) | 2462 μg (N/A) | 1.0 | 0.0 |
E | F | 29 | 30.8 | No | AS | 17.5 mg (118%) | 89 μg (148%) | 11.9 mg (148%) | 480 μg (39%) | 14.6 μg (97%) | 14.1 mg (101%) | 2.6 mg (233%) | 2.9 mg (240%) | 220 μg (49%)! | 9.7 μg (406%) | 54 mg (28%) | 2062 μg (41%) | 0.5 | 0.8 |
F | F | 41 | 25.8 | EPPlus | AS | 8.2 mg (55%) | 52 μg (87%) | 5.8 mg (73%) | 656 μg (53%) | 2.2 μg (14%)! | 8.2 mg (58%) | 2.1 mg (186%) | 2.2 mg (179%) | 239 μg (53%)! | 5.8 μg (240%) | 50 mg (26%) | 874 μg (17%) | 0.0 | 5.0 |
H | F | 35 | 23.1 | No | AS | 4.5 mg (30%)! | 57 μg (94%) | 4 mg (49%) | 260 μg (21%) | 1.5 μg (10%)! | 3.7 mg (26%) | 0.9 mg (79%) | 0.8 mg (65%)! | 126 μg (28%)! | 4.4 μg (184%) | 51 mg (27%) | 626 μg (12%) | 2.0 | 7.0 |
K | F | 23 | 21.5 | No | AS | 11.1 mg (75%) | 67 μg (110%) | 7.5 mg (94%) | 746 μg (61%) | 2.8 μg (18%)! | 8.9 mg (63%) | 1.4 mg (123%) | 1.6 mg (135%) | 186 μg (41%)! | 4.3 μg (180%) | 34.8 mg (18%)! | 2412 μg (48%) | 2.0 | 14.0 |
O | M | 24 | 24.8 | No | LC | 7.9 mg (90%) | 77 μg (102%) | 10.2 mg (107%) | 237 μg (33%)! | 2.5 μg (16%)! | 5 mg (63%) | 1.1 mg (85%) | 2.0 mg (141%) | 157 μg (78%) | 5.8 μg (383%) | 69 mg (171%) | 838 μg (N/A) | 0.5 | 0.5 |
U | M | 30 | 24.6 | No | LC | 16.1 mg (184%) | 36.9 μg (52%)! | 10.7 mg (112%) | 937 μg (133%) | 15.2 μg (101%) | 18.7 mg (230%) | 1.6 mg (122%) | 2.8 mg (199%) | 296 μg (147%) | 5.7 μg (380%) | 103 mg (256%) | 1068 μg (N/A) | 1.0 | 7.0 |
V | M | 25 | 24.9 | MVC | S | 12.8 mg (146%) | 24.8 μg (33%)! | 5.5 mg (57%)! | 329 μg (46%) | 7.0 μg (46%)! | 5.3 mg (65%) | 0.8 mg (61%)! | 0.8 mg (55%)! | 235 μg (117%) | 1.0 μg (66%) | 126 mg (315%) | 2079 μg (N/A) | 3.0 | 18.0 |
Z | F | 25 | 22 | No | S | 5.2 mg (35%)! | 59 μg (99%) | 5.7 mg (71%) | 454 μg (37%) | 0.3 μg (2%)! | 5.4 mg (38%) | 1 mg (94%) | 0.8 mg (69%) | 149 μg (33%)! | 4.8 μg (200%) | 31 mg (16%)! | 1800 μg (36%) | 0.25 | 7.0 |
References
- Dong, E.; Du, H.; Gardner, L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect. Dis. 2020, 20, 533–534. [Google Scholar] [CrossRef]
- Marshall, M. The lasting misery of coronavirus long-haulers. Nature 2020, 585, 339–342. [Google Scholar] [CrossRef] [PubMed]
- Yelin, D.; Wirtheim, E.; Vetter, P.; Kalil, A.C.; Bruchfeld, J.; Runold, M.; Guaraldi, G.; Mussini, C.; Gudiol, C.; Pujol, M.; et al. Long-term consequences of COVID-19: Research needs. Lancet Infect. Dis. 2020, 20, 1115–1117. [Google Scholar] [CrossRef]
- Phetsouphanh, C.; Darley, D.R.; Wilson, D.B.; Howe, A.; Munier, C.M.L.; Patel, S.K.; Juno, J.A.; Burrell, L.M.; Kent, S.L.; Dore, G.J.; et al. Immunological dysfunction persists for 8 months following initial mild-to-moderate SARS-CoV-2 infection. Nat. Immunol. 2022, 23, 210–216. [Google Scholar] [CrossRef]
- Rank, A.; Tzortzini, A.; Kling, E.; Schmid, C.; Claus, R.; Löll, E.; Burge, R.; Römmele, C.; Dhillon, C.; Müller, K.; et al. One Year after Mild COVID-19: The Majority of Patients Maintain Specific Immunity, But One in Four Still Suffer from Long-Term Symptoms. J. Clin. Med. 2021, 10, 3305. [Google Scholar] [CrossRef]
- Gudbjartsson, D.F.; Norddahl, G.L.; Melsted, P.; Gunnarsdottir, K.; Holm, H.; Eythorsson, E.; Arnthorsson, A.O.; Helgason, D.; Bjarnadottir, K.; Ingvarsson, R.F.; et al. Humoral Immune Response to SARS-CoV-2 in Iceland. N. Engl. J. Med. 2020, 383, 1724–1734. [Google Scholar] [CrossRef] [PubMed]
- Wajnberg, A.; Amanat, F.; Firpo, A.; Altman, D.R.; Bailey, M.J.; Mansour, M.; McMahon, M.; Meade, P.; Mendu, D.R.; Muellers, K.; et al. Robust neutralizing antibodies to SARS-CoV-2 infection persist for months. Science 2020, 370, 1227–1230. [Google Scholar] [CrossRef]
- Self, W.H.; Tenforde, M.W.; Stubblefield, W.B.; Feldstein, L.R.; Steingrub, J.S.; Shapiro, N.I.; Ginde, A.A.; Prekker, M.E.; Brown, S.M.; Peltan, I.D.; et al. Decline in SARS-CoV-2 Antibodies After Mild Infection Among Frontline Health Care Personnel in a Multistate Hospital Network—12 States, April–Aμgust 2020. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 1762–1766. [Google Scholar] [CrossRef]
- Xiang, T.; Liang, B.; Fang, Y.; Lu, S.; Li, S.; Wang, H.; Li, H.; Yang, X.; Shen, S. Declining Levels of Neutralizing Antibodies Against SARS-CoV-2 in Convalescent COVID-19 Patients One Year Post Symptom Onset. Front. Immunol. 2021, 12, 708523. [Google Scholar] [CrossRef]
- Merino, J.; Joshi, A.D.; Nguyen, L.H.; Leeming, E.R.; Mazidi, M.; Drew, D.A.; Gibson, R.; Graham, M.S.; Lo, H.-H.; Capdevila, J.; et al. Diet quality and risk and severity of COVID-19: A prospective cohort study. Gut 2021, 70, 2096–2104. [Google Scholar] [CrossRef]
- Salazar-Robles, E.; Kalantar-Zadeh, K.; Badillo, H.; Calderón-Juárez, M.; García-Bárcenas, C.A.; Ledesma-Pérez, P.D.; Ledesma-Pérez, P.D.; Abel Lerma, A.; Lerma, C. Association between severity of COVID-19 symptoms and habitual food intake in adult outpatients. BMJ Nutr. Prev. Health 2021, 4, 469–478. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Rebholz CMHegde, S.; Lafiura, C.; Raghavan, M.; Lloyd, J.F.; Cheng, S.; Seidelmann, S.B. Plant-based diets, pescatarian diets and COVID-19 severity: A population-based case-control study in six countries. BMJ Nutr. Prev. Health 2021, 4, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Bernardi, S.; Toffoli, B.; Zennaro, C.; Tikellis, C.; Monticone, S.; Losurdo, P.; Bellini, G.; Thomas, M.C.; Fallo, F.; Veglio, F.; et al. High-salt diet increases glomerular ACE/ACE2 ratio leading to oxidative stress and kidney damage. Nephrol. Dial. Transplant. 2012, 27, 1793–1800. [Google Scholar] [CrossRef] [PubMed]
- Verdecchia, P.; Cavallini, C.; Spanevello, A.; Angeli, F. The pivotal link between ACE2 deficiency and SARS-CoV-2 infection. Eur. J. Intern. Med. 2020, 76, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Maggini, S.; Wintergerst, E.S.; Beveridge, S.; Hornig, D.H. Selected vitamins and trace elements support immune function by strengthening epithelial barriers and cellular and humoral immune responses. Br. J. Nutr. 2007, 98, S29–S35. [Google Scholar] [CrossRef]
- Gregori, S.; Casorati, M.; Amuchastegui, S.; Smiroldo, S.; Davalli, A.M.; Adorini, L. Regulatory T cells induced by 1 alpha,25-dihydroxyvitamin D3 and mycophenolate mofetil treatment mediate transplantation tolerance. J. Immunol. 2001, 167, 1945–1953. [Google Scholar] [CrossRef]
- Tang, J.; Zhou, R.; Lμger, D.; Zhu, W.; Silver, P.B.; Grajewski, R.S.; Su, S.-B.; Chan, C.-C.; Adorini, L.; Caspi, R.R. Calcitriol suppresses antiretinal autoimmunity throμgh inhibitory effects on the Th17 effector response. J. Immunol. 2009, 182, 4624–4632. [Google Scholar] [CrossRef]
- Shi, Y.-Y.; Liu, T.-J.; Fu, J.-H.; Xu, W.; Wu, L.-L.; Hou, A.-N.; Xue, X.-D. Vitamin D/VDR signaling attenuates lipopolysaccharide-induced acute lung injury by maintaining the integrity of the pulmonary epithelial barrier. Mol. Med. Rep. 2016, 13, 1186–1194. [Google Scholar] [CrossRef]
- Annweiler, C.; Hanotte, B.; Grandin de l’Eprevier, C.; Sabatier, J.M.; Lafaie, L.; Célarier, T. Vitamin D and survival in COVID-19 patients: A quasi-experimental study. J. Steroid Biochem. Mol. Biol. 2020, 204, 105771. [Google Scholar] [CrossRef]
- Martineau, A.R.; Jolliffe, D.A.; Hooper, R.L.; Greenberg, L.; Aloia, J.F. Vitamin D supplementation to prevent acute respiratory tract infections systematic review and meta-analysis of individual participant data. BMJ 2017, 356, i6583. [Google Scholar] [CrossRef] [Green Version]
- Annweiler, G.; Corvaisier, M.; Gautier, J.; Dubee, V.; Legrand, E. Vitamin D supplementation associated to be survival in hospitalized frail elderly GERIA-COVID quasi-experimental study. Nutrients 2020, 12, 3377. [Google Scholar] [CrossRef] [PubMed]
- Entrenas Castillo, M.; Entrenas Costa, L.M.; Vaquero Barrios, J.M.; Alcalá Díaz, J.F.; López Miranda, J.; Bouillon, R.; Gomezd, J.M.Q. Effect of calcifediol treatment and best available therapy versus best available therapy on intensive care unit admission and mortality among patients hospitalized for COVID-19: A pilot randomized clinical study. J. Steroid Biochem. Mol. Biol. 2020, 203, 105751. [Google Scholar] [CrossRef] [PubMed]
- Panagiotou, G.; Tee, S.A.; Ihsan, Y.; Athar, W.; Marchitelli, G.; Kelly, D.; Boot, C.S.; Stock, N.; Macfarlane, J.; Martineau, A.R.; et al. Low Serum 25(OH)D levels in patients hospitalised with COVID-19 are associated with greater disease severity. Clin. Endocrinol. 2020, 93, 508–511. [Google Scholar] [CrossRef]
- Liu, X.; Wang, J.; Xu, X.; Liao, G.; Chen, Y.; Hu, C.H. Patterns of IgG and IgM antibody response in COVID-19 patients. Emerg. Microbes Infect. 2020, 9, 1269–1274. [Google Scholar] [CrossRef] [PubMed]
- Centres for Disease Control and Prevention; CDC. People at Increased Risk of COVID-19, People with Certain Medical Conditions 2021. Available online: https://www.cdc.gov/coronavirus/2019-ncov/need-extra-precautions/people-with-medical-conditions.html (accessed on 16 March 2021).
- World Health Organisation. Population-Based Age-Stratified Seroepidemiological Investigation Protocol for Coronavirus 2019 (COVID-19) Infection; 2020; p. 18–19. Available online: https://www.who.int/publications/i/item/WHO-2019-nCoV-Seroepidemiology-2020.2 (accessed on 21 December 2021).
- Trinidad Rodríguez, J.; Fernández Ballart, G.; Cucó Pastor, E.; Biarnés Jordà, V.; Arija, V. Validation of a short questionnaire on frequency of dietary intake: Reproducibility and validity. Hosp. Nutr. 2008, 23, 242–252. [Google Scholar]
- Ju, B.; Zhang, Q.; Ge, J.; Wang, R.; Sun, J.; Ge, X.; Yu, J.; Shan, S.; Zhou, B.; Song, S.; et al. Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature 2020, 584, 115–119. [Google Scholar] [CrossRef]
- Richard, D.M.; Dawes, M.A.; Mathias, C.W.; Acheson, A.; Hill-Kapturczak, N.; Doμgherty, D.M. Tryptophan: Basic Metabolic Functions, Behavioral Research and Therapeutic Indications. Int. J. Tryptophan Res. 2009, 2, IJTR.S2129. [Google Scholar] [CrossRef]
- Sudre, C.H.; Murray, B.; Varsavsky, T.; Graham, M.S.; Penfold, R.S.; Bowyer, R.C.; Pujol, J.C.; Klaser, K.; Antonelli, M.; Canas, L.S.; et al. Attributes and predictors of long COVID. Nat. Med. 2021, 27, 626–631. [Google Scholar] [CrossRef]
- Widyadharma, I.P.E.; Sari, N.N.S.P.; Pradnyaswari, K.E.; Yuwana, K.T.; Adikarya, I.P.G.D.; Tertia, C.; Wijayanti, I.A.S.; Indrayani, I.A.S.; Utami, D.K.I. Pain as clinical manifestations of COVID-19 infection and its management in the pandemic era: A literature review. Egypt. J. Neurol. Psychiatry Neurosurg. 2020, 56, 121. [Google Scholar] [CrossRef]
- Li, X.; Geng, M.; Peng, Y.; Meng, L.; Lu, S. Molecular immune pathogenesis and diagnosis of COVID-19. J. Pharm. Anal. 2020, 10, 102–108. [Google Scholar] [CrossRef]
- Chen, G.; Wu, D.; Guo, W.; Cao, Y.; Huang, D.; Wang, H.; Tertia, C.; Sri Wijayanti, I.S.; Sri Indrayani, I.A.; Utami, D.K.I. Clinical and immunological features of severe and moderate coronavirus disease 2019. J. Clin. Investig. 2020, 130, 2620–2629. [Google Scholar] [CrossRef] [Green Version]
- Morris, G.; Maes, M. Mitochondrial dysfunctions in Myalgic Encephalomyelitis / chronic fatigue syndrome explained by activateitricno-inflammatory, oxidative and nitrosative stress pathways. Metab. Brain Dis. 2014, 29, 19–36. [Google Scholar] [CrossRef] [PubMed]
- Tansey, C.M. One-Year Outcomes and Health Care Utilization in Survivors of Severe Acute Respiratory Syndrome. Arch. Intern. Med. 2007, 167, 1312. [Google Scholar] [CrossRef] [PubMed]
- Crook, H.; Raza, S.; Nowell, J.; Young, M.; Edison, P. Long COVID—mechanisms, risk factors, and management. Br. Med. J. 2021, 374, n1648. [Google Scholar] [CrossRef] [PubMed]
- Molteni, E.; Sudre, C.H.; Canas, L.S.; Bhopal, S.S.; Hμghes, R.C.; Antonelli, M.; Murray, B.; Kläser, K.; Kerfoot, E.; Chen, L.; et al. Illness duration and symptom profile in symptomatic UK school-aged children tested for SARS-CoV-2. Lancet Child Adolesc. Health 2021, 5, 708–718. [Google Scholar] [CrossRef]
- Lechien, J.R.; Chiesa-Estomba, C.M.; Place, S.; van Laethem, Y.; Cabaraux, P.; Mat, Q.; Huet, K.; Plzak, J.; Horoi, M.; Hans, S.; et al. Clinical and epidemiological characteristics of 1420 European patients with mild-to-moderate coronavirus disease 2019. J. Intern. Med. 2020, 288, 335–344. [Google Scholar] [CrossRef]
- Dee, K.; Goldfarb, D.M.; Haney, J.; Amat, J.A.R.; Szemiel, A.M.; Baguelin, M.; Murcia, P.R. Human Rhinovirus Infection Blocks Severe Acute Respiratory Syndrome Coronavirus 2 Replication Within the Respiratory Epithelium: Implications for COVID-19 Epidemiology. J. Infect. Dis. 2021, 224, 1. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Shin, E.-C. The type I interferon response in COVID-19: Implications for treatment. Nat. Rev. Immunol. 2020, 20, 585–586. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-M.; Shin, E.-C. Type I and III interferon responses in SARS-CoV-2 infection. Exp. Mol. Med. 2021, 53, 750–760. [Google Scholar] [CrossRef]
- Sajdel-Sulkowska, E.M. A Dual-Route Perspective of SARS-CoV-2 Infection: Lung- vs. Gut-specific Effects of ACE-2 Deficiency. Front. Pharmacol. 2021, 12, 684610. [Google Scholar] [CrossRef]
- Kumar, N.G.; Contaifer, D.; Madurantakam, P.; Carbone, S.; Price, E.T.; van Tassell, B.; Brophy, D.F.; Wijesinghe, D.S. Dietary Bioactive Fatty Acids as Modulators of Immune Function: Implications on Human Health. Nutrients 2019, 11, 2974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radzikowska, U.; Rinaldi, A.O.; Çelebi Sözener, Z.; Karaguzel, D.; Wojcik, M.; Cypryk, K.; Akdis, M.; Akdis, C.A.; Sokolowska, M. The Influence of Dietary Fatty Acids on Immune Responses. Nutrients 2019, 11, 2990. [Google Scholar] [CrossRef] [PubMed]
- Sui, Y.-H.; Luo, W.-J.; Xu, Q.-Y.; Hua, J. Dietary saturated fatty acid and polyunsaturated fatty acid oppositely affect hepatic NOD-like receptor protein 3 inflammasome throμgh regulating nuclear factor-kappa B activation. World J. Gastroenterol. 2016, 22, 2533. [Google Scholar] [CrossRef]
- Teague, H.; Fhaner, C.J.; Harris, M.; Duriancik, D.M.; Reid, G.E.; Shaikh, S.R. n-3 PUFAs enhance the frequency of murine B-cell subsets and restore the impairment of antibody production to a T-independent antigen in obesity. J. Lipid Res. 2013, 54, 3130–3138. [Google Scholar] [CrossRef]
- Ramon, S.; Gao, F.; Serhan, C.N.; Phipps, R.P. Specialized Proresolving Mediators Enhance Human B Cell Differentiation to Antibody-Secreting Cells. J. Immunol. 2012, 189, 1036–1042. [Google Scholar] [CrossRef]
- Miles, E.A.; Calder, P.C. Effects of Citrus Fruit Juices and Their Bioactive Components on Inflammation and Immunity: A Narrative Review. Front. Immunol. 2021, 12, 2558. [Google Scholar] [CrossRef] [PubMed]
- Forcados, G.E.; Muhammad, A.; Oladipo, O.O.; Makama, S.; Meseko, C.A. Metabolic Implications of Oxidative Stress and Inflammatory Process in SARS-CoV-2 Pathogenesis: Therapeutic Potential of Natural Antioxidants. Front. Cell. Infect. Microbiol. 2021, 11, 654813. [Google Scholar] [CrossRef]
- Faria, S.B.A.; Rosse Vitras, J.F.; Moreira Xavier, N.; Azeredo, V.B. Effect of grape juice consumption on antioxidant activity and interleukin-6 concentration in lactating rats. Nutr. Hosp. 2016, 33, 1418–1423. [Google Scholar] [CrossRef]
- Clementi, N.; Scagnolari, C.; D’Amore, A.; Palombi, F.; Criscuolo, E.; Frasca, F.; Pierangeli, A.; Mancini, N.; Antonelli, G.; Clementi, M.; et al. Naringenin is a powerful inhibitor of SARS-CoV-2 infection in vitro. Pharmacol. Res. 2021, 163, 105255. [Google Scholar] [CrossRef]
- Neumann, C.; Gewa, C.; Bwibo, N.O. Child nutrition in developing countries. Pediatric Ann. 2004, 33, 658–674. [Google Scholar] [CrossRef]
- Hickman, D.; Jones, M.K.; Zhu, S.; Kirkpatrick, E.; Ostrov, D.A.; Wang, X.; Ukhanova, M.; Sun, Y.; Mai, V.; Salemi, M.; et al. The effect of malnutrition on norovirus infection. mBio 2014, 5, e01032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rytter, M.J.H.; Kolte, L.; Briend, A.; Friis, H.; Christensen, V.B. The Immune System in Children with Malnutrition—A Systematic Review. PLoS ONE 2014, 9, e105017. [Google Scholar] [CrossRef] [PubMed]
- Hajimohammadebrahim-Ketabforoush, M.; Vahdat Shariatpanahi, Z.; Vahdat Shariatpanahi, M.; Shahbazi, E.; Shahbazi, S. Protein and Energy Intake Assessment and Their Association with In-Hospital Mortality in Critically Ill COVID-19 Patients: A Prospective Cohort Study. Front. Nutr. 2021, 8, 708271. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Chatterjee, R.; Ronanki, A.; Ye, K. Circulating Polyunsaturated Fatty Acids and COVID-19: A Prospective Cohort Study and Mendelian Randomization Analysis. Front. Med. 2022, 16, 9. [Google Scholar] [CrossRef] [PubMed]
- Innes, J.K.; Calder, P.C. Omega-6 fatty acids and inflammation. Prostaglandins Leukot. Essent. Fat. Acids 2018, 132, 41–48. [Google Scholar] [CrossRef]
- Sarohan, A.R.; Kızıl, M.; İnkaya, A.Ç.; Mahmud, S.; Akram, M.; Cen, O. A novel hypothesis for COVID-19 pathogenesis: Retinol depletion and retinoid signaling disorder. Cell. Signal. 2021, 87, 110121. [Google Scholar] [CrossRef]
- Sarohan, A.R.; Akelma, H.; Araç, E.; Aslan, Ö. Retinol Depletion in Severe COVID-19. Clin. Nutr. Open Sci. 2022, 43, 85–94. [Google Scholar] [CrossRef]
- Masri, O.A. Role of vitamins in gastrointestinal diseases. World J. Gastroenterol. 2015, 1, 5191. [Google Scholar] [CrossRef]
- Al Sulaiman, K.; Aljuhani, O.; Al Dossari, M.; Alshahrani, A.; Alharbi, A.; Algarni, R.; Al Jeraisy, M.; Al Harbi, S.; Al Katheri, A.; Al Eidan, F.; et al. Evaluation of thiamine as adjunctive therapy in COVID-19 critically ill patients: A two-center propensity score matched study. Crit. Care 2021, 25, 223. [Google Scholar] [CrossRef]
- Yu-meng, C.; Jin-lai, W.; Rui-si, Q.; Jin-ping, H.; Guangchao, Z.; Guang-yuan, Z.; Ting-ting, C. Folic acid: A potential inhibitor against SARS-CoV-2 nucleocapsid protein. Pharm. Biol. 2022, 60, 862–878. [Google Scholar] [CrossRef]
- Lozada-Nur, F.; Chainani-Wu, N.; Fortuna, G.; Sroussi, H. Dysgeusia in COVID-19: Possible Mechanisms and Implications. Oral Surgery, Oral Medicine. Oral Pathol. Oral Radiol. 2020, 130, 344–346. [Google Scholar] [CrossRef] [PubMed]
- Carr, A.C.; Maggini, S. Vitamin C and immune function. Nutrients 2017, 9, 1211. [Google Scholar] [CrossRef]
- Abioye, A.I.; Bromage, S.; Fawzi, W. Effect of micronutrient supplements on influenza and other respiratory tract infections among adults: A systematic review and meta-analysis. BMJ Glob. Health 2021, 6, e003176. [Google Scholar] [CrossRef] [PubMed]
- Johnston, C.S. Effect of a single oral dose of ascorbic acid on body temperature and trace mineral fluxes in healthy men and women. J. Am. Coll. Nutr. 1990, 9, 150–154. [Google Scholar] [CrossRef] [PubMed]
- Ringsdorff, W.M.; Cheraskin, E. Vitamin C and Tolerance of Heat and Cold: Human Evidence. Orthomol. Psychiatry 1982, 11, 128–131. [Google Scholar]
- Rawat, D.; Roy, A.; Maitra, S.; Gulati, A.; Khanna, P.; Baidya, D.K. Vitamin C and COVID-19 treatment: A systematic review and meta-analysis of randomized controlled trials. Diabetes Metab. Syndr. Clin. Res. Rev. 2021, 15, 102324. [Google Scholar] [CrossRef]
- Kazemi, A.; Mohammadi, V.; Aghababaee, S.K.; Golzarand, M.; Clark, C.C.T.; Babajafari, S. Association of Vitamin D Status with SARS-CoV-2 Infection or COVID-19 Severity: A Systematic Review and Meta-analysis. Adv. Nutr. 2021, 12, 1636–1658. [Google Scholar] [CrossRef]
- Lee, G.; Han, S. The Role of Vitamin E in Immunity. Nutrients 2018, 10, 1614. [Google Scholar] [CrossRef] [PubMed]
- Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids; National Academies Press: Washington, DC, USA, 2000. [CrossRef]
- Schmidt, S.M. The role of iron in viral infections. Front. Biosci. 2020, 25, 4839. [Google Scholar] [CrossRef]
- Tojo, K.; Sμgawara, Y.; Oi, Y.; Ogawa, F.; Higurashi, T.; Yoshimura, Y.; Miyata, N.; Hajime Hayami, H.; Yamaguchi, Y.; Ishikawa, Y.; et al. The U-shaped association of serum iron level with disease severity in adult hospitalized patients with COVID-19. Sci. Rep. 2021, 11, 13431. [Google Scholar] [CrossRef]
- Ward, R.J.; Crichton, R.R.; Taylor, D.L.; Corte, L.D.; Srai, S.K.; Dexter, D.T. Iron and the immune system. J. Neural Transm. 2011, 118, 315–328. [Google Scholar] [CrossRef]
- Taneri, P.E.; Gómez-Ochoa, S.A.; Llanaj, E.; Raguindin, P.F.; Rojas, L.Z.; Roa-Díaz, Z.M.; Salvador, D., Jr.; Groothof, D.; Minder, B.; Kopp-Heim, D.; et al. Anemia and iron metabolism in COVID-19: A systematic review and meta-analysis. Eur. J. Epidemiol. 2020, 35, 763–773. [Google Scholar] [CrossRef] [PubMed]
- Bo, S.; Durazzo, M.; Gambino, R.; Berutti, C.; Milanesio, N.; Caropreso, A.; Gentile, L.; Cassader, M.; Cavallo-Perin, P.; Pagano, G. Associations of Dietary and Serum Copper with Inflammation, Oxidative Stress, and Metabolic Variables in Adults. J. Nutr. 2008, 138, 305–310. [Google Scholar] [CrossRef] [PubMed]
- Andreou, A.; Trantza, S.; Fillippou, D.; Sipsas, N.; Tsiodrass, S. COVID-19: The Potential Role of Copper and N-acetylcysteine (NAC) in a Combination of Candidate Antiviral Treatments Against SARS-CoV-2. In Vivo 2020, 34, 1567–1588. [Google Scholar] [CrossRef] [PubMed]
- Hackler, J.; Heller, R.A.; Sun, Q.; Schwarzer, M.; Diegmann, J.; Bachmann, M.; Moghaddam, A.; Schomburg, L. Relation of Serum Copper Status to Survival in COVID-19. Nutrients 2021, 13, 1898. [Google Scholar] [CrossRef]
- Fakhrolmobasheri, M.; Mazaheri-Tehrani, S.; Kieliszek, M.; Zeinalian, M.; Abbasi, M.; Karimi, F.; Mozafari, A.M. COVID-19 and Selenium Deficiency: A Systematic Review. Biol. Trace Elem. Res. 2021, 200, 3945–3956. [Google Scholar] [CrossRef]
- Komai, M.; Goto, T.; Suzuki, H.; Takeda, T.; Furukawa, Y. Zinc deficiency and taste dysfunction; Contribution of carbonic anhydrase, a zinc-metalloenzyme, to normal taste sensation. BioFactors 2000, 12, 65–70. [Google Scholar] [CrossRef]
- Te Velthuis, A.J.W.; van den Worm, S.H.E.; Sim, S.A.C.; Baric, R.S.; Snijder, E.J.; van Hemert, M.J. Zn2+ Inhibits Coronavirus and Arterivirus RNA Polymerase Activity In Vitro and Zinc Ionophores Block the Replication of These Viruses in Cell Culture. PLoS Pathog. 2010, 6, e1001176. [Google Scholar] [CrossRef]
- Yusuf, S.; Soenarto, Y.; Juffrie, M.; Lestariana, W. The effect of zinc supplementation on pro-inflammatory cytokines (TNF-α, IL-1 and IL-6) in mice with Escherichia coli LPS-induced diarrhea. Iran. J. Microbiol. 2019, 11, 412–418. [Google Scholar] [CrossRef] [PubMed]
- Ceylan, M.N.; Akdas, S.; Yazihan, N. The Effects of Zinc Supplementation on C-Reactive Protein and Inflammatory Cytokines: A Meta-Analysis and Systematical Review. J. Interferon Cytokine Res. 2021, 41, 81–101. [Google Scholar] [CrossRef]
- Thomas, S.; Patel, D.; Bittel, B.; Wolski, K.; Wang, Q.; Kumar, A.; Il’Giovine, Z.J.; Mehra, R.; McWilliams, C.; Nissen, S.; et al. Effect of High-Dose Zinc and Ascorbic Acid Supplementation vs Usual Care on Symptom Length and Reduction among Ambulatory Patients with SARS-CoV-2 Infection. JAMA Netw. Open 2021, 4, e210369. [Google Scholar] [CrossRef] [PubMed]
- Guimarães Sousa, S.; Kleiton de Sousa, A.; Maria Carvalho Pereira, C.; Sofia Miranda Loiola Araújo, A.; de Aguiar Magalhães, D.; Vieira de Brito, T.; Araújo, A.S.M.L. SARS-CoV-2 infection causes intestinal cell damage: Role of interferon’s imbalance. Cytokine 2022, 152, 155826. [Google Scholar] [CrossRef] [PubMed]
- Yeoh, Y.K.; Zuo, T.; Lui, G.C.Y.; Zhang, F.; Liu, Q.; Li, A.Y.L.; Chung, A.C.K.; Cheung, C.P.; Tso, E.Y.K.; Fung, K.S.C.; et al. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut 2021, 70, 698–706. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, G.; Zhao, L.; Wang, W. Nutritional Modulation of Gut Microbiota Alleviates Severe Gastrointestinal Symptoms in a Patient with Post-Acute COVID-19 Syndrome. MBio 2022, 13. [Google Scholar] [CrossRef] [PubMed]
- Imai, K.; Kitagawa, Y.; Tabata, S.; Kubota, K.; Nagura-Ikeda, M.; Matsuoka, M.; Miyoshi, K.; Jun Sakai, J.; Noriomi Ishibashi, N.; Tarumoto, N.; et al. Antibody response patterns in COVID-19 patients with different levels of disease severity in Japan. J. Med. Virol. 2021, 93, 3211–3218. [Google Scholar] [CrossRef]
- Klein, S.L.; Pekosz, A.; Park, H.-S.; Ursin, R.L.; Shapiro, J.R.; Benner, S.E.; Littlefield, K.; Kumar, S.; Naik, H.M.; Betenbaμgh, M.J.; et al. Sex, age, and hospitalization drive antibody responses in a COVID-19 convalescent plasma donor population. J. Clin. Investig. 2020, 130, 6141–6150. [Google Scholar] [CrossRef]
- Dan, J.M.; Mateus, J.; Kato, Y.; Hastie, K.M.; Yu, E.D.; Faliti, C.E.; Grifoni, A.; Ramirez, S.I.; Haupt, S.; Frazier, A.; et al. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science 2021, 371, eabf4063. [Google Scholar] [CrossRef]
- Bellavite, P.; Donzelli, A. Hesperidin and SARS-CoV-2: New Light on the Healthy Function of Citrus Fruits. Antioxidants 2020, 9, 742. [Google Scholar] [CrossRef]
- Alzaabi, A.H.; Ahmed, L.A.; Rabooy, A.E.; Zaabi, A.A.; Alkaabi, M.; AlMahmoud, F.; Hamed, M.F.; Bashaeb, K.O.; Bakhsh, A.R.; Adil, S.; et al. Longitudinal changes in IgG levels among COVID-19 recovered patients: A prospective cohort study. PLoS ONE 2021, 16, e0251159. [Google Scholar] [CrossRef]
- Marklund, E.; Leach, S.; Axelsson, H.; Nyström, K.; Norder, H.; Bemark, M.; Angeletti, D.; Lundgren, A.; Nilsson, S.; Andersson, L.-M.; et al. Serum-IgG responses to SARS-CoV-2 after mild and severe COVID-19 infection and analysis of IgG non-responders. PLoS ONE 2020, 15, e0241104. [Google Scholar] [CrossRef]
- Huang, A.; Garcia-Carreras, B.; Hitchings, M.; Yang, B.; Katzelnick, L.; Rattigan, S.; Borgert, B.A.; Moreno, C.A.; Solomon, B.D.; Trimmer-Smith, L.; et al. A systematic review of antibody mediated immunity to coronaviruses: Antibody kinetics, correlates of protection, and association of antibody responses with severity of disease. Nat. Commun. 2020, 11, 4704. [Google Scholar] [CrossRef] [PubMed]
- Dorigatti, I.; Lavezzo, E.; Manuto, L.; Ciavarella, C.; Pacenti, M.; Boldrin, C.; Cattai, M.; Saluzzo, F.; Franchin, E.; Vecchio, C.D.; et al. SARS-CoV-2 antibody dynamics and transmission from community-wide serological testing in the Italian municipality of Vo’. Nat. Commun. 2021, 12, 4383. [Google Scholar] [CrossRef] [PubMed]
Group 1 (AS) | Group 2 (S) | Group 3 (LC) |
---|---|---|
Asymptomatic/without symptoms | Mild/Moderately Symptomatic with no long-term COVID | Mild/moderately Symptomatic with long-term COVID |
Total Cohort (N = 55) | AS Group (n = 15) | S Group (n = 15) | LC Group (n = 25) | |
---|---|---|---|---|
Age (Years) | 32 (21 to 50) | 35 (23 to 48) | 29 (24 to 45) | 33 (21 to 50) |
Gender | ||||
Male | 15 (27%) | 2 (13%) | 6 (40%) | 7 (28%) |
Female | 40 (73%) | 13 (87%) | 9 (60%) | 18 (72%) |
BMI | 22.8 (19.1 to 35.7) | 23.2 (19.1 to 32.8) | 22.3 (19.2 to 31.6) | 23.1 (19.2 to 35.7) |
Smoker status | ||||
Current smoker | 9 (16%) | 3 (20%) | 2 (13%) | 4 (16%) |
Previous smoker | 10 (18%) | 2 (13%) | 2 (13%) | 6 (24%) |
Never smoked | 36 (66%) | 10 (67%) | 11 (74%) | 15 (60%) |
Questionnaires and Food diary | ||||
Both questionnaires and food diary completed | 53 (96%) | 14 (93%) | 14 (93%) | 25 (100%) |
FFQ + Food diary uncompleted | 2 (4%) | 1 (7%) | 1 (7%) | 0 (0%) |
Symptomology uncompleted | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) |
Number of participants that provided blood samples | 52 (95%) | 15 (27%) | 13 (24%) | 24 (44%) |
Two time point donors | 39 (75%) | 11 (73%) | 9 (69%) | 19 (79%) |
Single time point donors | 13 (25%) | 4 (27%) | 4 (31%) | 5 (21%) |
X2(1) | p | BF01 | OR | |
---|---|---|---|---|
Fatigue | N/A | 0.008 | 19.23 | 16.75 |
Throat pain | 7.11 | 0.008 | 12.99 | 8.23 |
Runny nose | 4.00 | 0.046 | 2.52 | 0.26 |
Nausea/vomiting | N/A | 0.033 | 5.85 | N/A |
Diarrhoea | N/A | 0.016 | 9.80 | N/A |
B | 95% CL for Odds Ratio | |||
---|---|---|---|---|
Lower | Odds Ratio | Upper | ||
Variables Included | ||||
Constant | −3.95 | |||
Fatigue | 2.05 [0.13, 22.63] | 0.61 | 7.73 | 97.74 |
Number of symptoms experienced | 0.63 [0.25, 2.11] | 1.15 | 1.88 | 3.07 |
Rhinorrhoea (Runny nose) | −2.41 [−26.7, −1.46] | 0.01 | 0.09 | 0.75 |
Food Group | Asymptomatic | Symptomatic | Long-Term COVID |
---|---|---|---|
Chicken or turkey | 2.5 a (0.0–7.0), 3.3 | 2.0 ab (0.0–4.5), 2.0 | 1.0 b (0.0–14.0), 2.0 |
Cream or chocolate cakes | 0.4 a (0.0–7.0), 1.0 | 0.2 ab (0.0–1.0), 0.3 | 0.0 b (0.0–1.3), 0.3 |
Sweets | 0.0 ab (0.0–1.3), 0.6 | 0.4 a (0.0–1.0), 0.8 | 0.0 b (0.0–1.0), 0.3 |
Ice cream | 0.3 ab (0.0–2.0), 1.0 | 0.6 a (0.0–3.0), 0.8 | 0.0 b (0.0–2.0), 0.8 |
White rice, paella | 1.0 ab (0.5–3.5), 1.0 | 1.5 a (0.7–4.5), 2.1 | 1.0 b (0.0–14.0), 0.6 |
AS Group | S Group | LC Group | DRV for Adults | |
---|---|---|---|---|
Energy (Kcal) | 1541 (886–2387), 439 | 1402 (935–2281), 561 | 1538 (749–3059), 572 | (M) 2550 (F) 1940 |
Carbohydrate (g) | 137 (71–216), 58 | 126 (82–267), 82 | 128 (46–303), 79 | 45–60 E% |
Protein (g) | 71 (45–119), 15 | 75 (48–102), 27 | 83 (55–201), 29 | 0.66–0.83 g/kg body wt/per day |
Fat (g) | 72 (32–122), 20 | 69 (33–97), 28 | 65 (34–100), 17 | 20–35 E% |
SFA (g) | 22 (9–40), 13 | 18 (8–32), 15 | 18 (8–43), 9 | |
MUFA fat (g) | 28 (8–46), 17 | 27 (5–45), 22 | 19 (7–47), 12 | |
PUFA (g) | 11 (3–29), 10 | 8 (5–16), 6 | 8 (3–18), 4 | |
PUFA/SFA ratio | 0.5 (0.2–1.3), 0.5 | 0.5 (0.2–1.1), 0.3 | 0.5 (0.2–1.1), 0.3 | |
Omega 3 (g) | 0.5 ab (0.1–2.7), 0.9 | 0.3 a (0.0–1.4), 0.4 | 0.7 b (0.1–2.7), 0.8 | |
Omega 6 (g) | 2.6 (0.6–6.6), 3.1 | 2.5 (0.2–5.2), 3.2 | 1.9 (0.5–6.3), 2.7 | |
ω6/ω3 ratio | 5.5 ab (1.1–14.6), 6.2 | 10.5 a (1.8–17.7), 9.7 | 4.1 b (0.3–8.6), 3.9 | 4:1 |
Fibre (g) | 17.1 (10.3–31.4), 6.2 | 15.9 (9.5–31.6), 8.8 | 14.1 (6.9–33.6), 7.1 | 25 g/d |
Alcohol (g) | 2.7 (0.0–19.8), 9.6 | 1.1 (0.0–22.0), 5.7 | 0.0 (0.0–42.2), 6.5 | |
Iron (mg) | 10.8 (5.2–23.8), 3.8 | 8.2 (5.0–15.6), 2.9 | 8.1 (5.4–22.6), 5.2 | (M) 6 mg/d (F) 7 mg/d |
Zinc (mg) | 7.1 (4.4–11.9), 3.8 | 6.0 (3.1–10.3), 3.0 | 6.7 (4.0–17.5), 4.4 | (M) 7.5–12.7 mg/d (F) 6.2–10.2 mg/d |
Selenium (μg) | 51 (27–89), 20 | 56 (25–102), 43 | 70 (26–210), 46 | 70 μg/d |
Copper (mg) | 0.8 (0.3–1.3), 0.7 | 0.7 (0.2–1.4), 0.4 | 0.7 (0.3–2.1), 0.7 | (M) 1.6 mg/d (F) 1.3 mg/d |
Vitamin A (μg) | 642 (426–1443), 219 | 511 (138–983), 270 | 549 (237–1978), 659 | (M) 900 μg/d (F) 700 μg/d |
Vitamin D (μg) | 2.0 (0.3–14.6), 4.9 | 3.7 (1.0–14.1), 5.6 | 4.1 (0.6–15.2), 3.8 | 15 μg/d |
Vitamin E (mg) | 8.6 a (2.5–16.0), 7.2 | 7.4 ab (3.2–14.7), 6.0 | 6.2 b (2.7–18.7), 3.8 | (M) 13 mg/d (F) 11 mg/d |
Vitamin K 1 (μg) | 33.4 (5.1–141.2), 60.9 | 39.1 (5.9–114), 68.8 | 27.6 (4.7–127.0), 36.1 | (M) 120 μg/d (F) 90 μg/d |
Thiamin (mg) | 1.1 (0.7–2.1), 0.7 | 1.2 (0.7–9.7), 0.5 | 1.2 (0.6–2.7), 0.7 | (M) 1.2 mg/d (F) 1.1 mg/d |
Riboflavin (mg) | 1.2 (0.6–2.6), 0.6 | 1.1 (0.5–1.4), 0.5 | 1.3 (0.5–2.4), 0.7 | 1.3 mg/d |
Niacin (mg) | 28.6 (16.6–75.4), 11.0 | 26.6 (12.8–42.2), 18.8 | 33.6 (13.5–92.4), 19.0 | (M) 16 mg/d (F) 14 mg/d |
Tryptophan (mg) | 606 (114–1010), 410 | 514 (139–1030), 324 | 640 (142–2419), 477 | 250–425 mg/d1 |
Vitamin B6 (mg) | 1.8 (0.7–2.9), 1.2 | 1.5 (0.8–2.8), 1.1 | 1.7 (0.9–3.8), 0.7 | (M) 1.5 mg/d (F) 1.3 mg/d |
Folate (μg) | 212 (132–319), 68 | 195 (84–345), 90 | 185 (97–513), 131 | 250 μg/d |
Vitamin B12 (μg) | 4.5 ab (1.0–12.7), 3.1 | 3.5 a (1.0–7.1), 3.5 | 5.4 b (2.0–19.2), 5.1 | 4 μg/d |
Biotin (μg) | 19.5 (5.7–78.5), 21.1 | 16.4 (5.4–32.5), 13.0 | 22.0 (6.4–69.4), 13.6 | 40 μg/d |
Vitamin C (mg) | 74 (31–193), 69 | 80 (15–264), 59 | 87 (23–376), 56 | (M) 90 mg/d (F) 80 mg/d |
Iodine (μg) | 100 (28–150), 67 | 76 (19–151), 53 | 94 (33–185), 71 | 150 μg/d |
Symptom/s | ‘Yes’ Mean (SD) | ‘No’ Mean (SD) | |
---|---|---|---|
FFQ (p/w) | |||
Citric fruits | Loss of sense of smell | 1.8 (2.2) | * 3.8 (4.4) |
Other fruits | Fever | 3.5 (3.1) | * 7.5 (6.0) |
Nuts | Loss of sense of smell Loss of sense of taste | 2.0 (2.8) 2.0 (1.0) | *** 3.6 (2.9) * 3.5 (2.8) |
Food diary | |||
Energy (Kcal) | Rhinorrhoea, GI symptoms | 1327 (358) 1287 (316) | * 1564 (428) * 1559 (430) |
Carbohydrate (g) | Rhinorrhoea, Loss of sense of taste | 114 (47) 125 (59) | * 147 (51) * 147 (43) |
Saturated fat (g) | Rhinorrhoea | 16.1 (7.3) | * 20.1 (7.3) |
Fibre (g) | Loss of sense of taste | 14.8 (6.4) | * 17.7 (5.6) |
Vitamin C (mg) | Fever | 117.4 (86.6) | * 78.0 (45.6) |
Vitamin E (mg) | GI symptoms | 5.8 (2.3) | * 8.2 (3.8) |
Folates (mg) | GI symptoms | 160 (38) | * 225 (93) |
Iron (mg) | GI symptoms | 7.0 (1.5) | *** 10.4 (4.3) |
Zinc (mg) | GI symptoms | 6.1 (1.2) | * 7.6 (2.8) |
Sodium (mg) | GI symptoms | 1243 (397) | ** 1814 (750) |
Symptom/s | ‘Yes’ | ‘No’ | |
---|---|---|---|
Food diary | |||
Carbohydrate (g) | Rhinorrhoea | 108 (46–216), 73 | * 141 (60–303), 69 |
Saturated fat (g) | Coμgh | 14.3 (8.0–42.7), 11.4 | * 19.7 (8.4–40.4), 9.8 |
Poly-unsaturated fat (g) | Rhinorrhoea | 7.0 (4.2–13.8), 4.1 | * 9.0 (3.2–29.2), 6.8 |
Monounsaturated fat (g) | Chills | 20.6 (5.0–47.0), 13.6 | * 27.1 (7.2–46.2), 20.0 |
Fatigue | 17.8 (5.0–44.6), 15.9 | * 28.1 (7.7–47.0), 17.1 | |
Coμgh | 15.1 (5.0–47.0), 15.4 | * 26.1 (7.4–46.2), 17.4 | |
Rhinorrhoea | 15.5 (5.0–38.8), 15.1 | * 25.1 (6.5–47.0), 17.0 | |
GI symptoms | 14.5 (6.5–36.5), 15.7 | * 25.7 (5.0–47.0), 17.9 | |
Fibre (g) | GI symptoms | 13.6 (8.4–19.3), 4.2 | * 16.0 (6.9–33.6), 7.4 |
Retinol (μg) | Coμgh | 118 (0–666), 90 | * 171 (37–496), 155 |
Vitamin E (mg) | Throat pain, Coμgh | 5.3 (2.7–18.7), 3.5 5.3 (3.2–18.7), 4.1 | * 8.0 (2.5–16.0) 5.2 * 7.7 (2.5–16.0), 5.2 |
Thiamine (mg) | GI symptoms | 0.9 (0.5–1.3), 0.5 | *** 1.2 (0.7–9.7) 0.7 |
Copper(mg) | Loss of sense of taste | 0.6 (0.2–2.1), 0.4 | * 0.9 (0.3–1.5), 0.4 |
Serum 25(OH)D Levels ng/mL Median (Range), IQR | |
---|---|
Asymptomatic n = 15 | 22.0 (12.4–33.7), 12.3 |
Symptomatic n = 13 | 22.4 (14.4–32.0), 7.5 |
Long COVID n = 24 | 24.9 (12.1–51.6), 9.4 |
Citric Fruits | Other Fruits | Natural Fruit Juices | |
---|---|---|---|
Whole group | |||
r | 0.107 | 0.289 * | −0.259 |
p | 0.437 | 0.032 | 0.056 |
Asymptomatic | |||
r | 0.079 | 0.489 * | −0.478 * |
p | 0.747 | 0.034 | 0.038 |
Symptomatic | |||
r | −0.049 | 0.027 | −0.240 |
p | 0.868 | 0.928 | 0.409 |
Long-term COVID | |||
r | 0.271 | 0.412 | −0.098 |
p | 0.234 | 0.063 | 0.671 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McDaid, K.M.; Chopra, M. A Pilot Study to Examine If Dietary Habits Can Affect Symptomology in Mild Pre-Vaccination COVID-19 Cases. Biology 2022, 11, 1274. https://doi.org/10.3390/biology11091274
McDaid KM, Chopra M. A Pilot Study to Examine If Dietary Habits Can Affect Symptomology in Mild Pre-Vaccination COVID-19 Cases. Biology. 2022; 11(9):1274. https://doi.org/10.3390/biology11091274
Chicago/Turabian StyleMcDaid, Kaine Moreno, and Mridula Chopra. 2022. "A Pilot Study to Examine If Dietary Habits Can Affect Symptomology in Mild Pre-Vaccination COVID-19 Cases" Biology 11, no. 9: 1274. https://doi.org/10.3390/biology11091274
APA StyleMcDaid, K. M., & Chopra, M. (2022). A Pilot Study to Examine If Dietary Habits Can Affect Symptomology in Mild Pre-Vaccination COVID-19 Cases. Biology, 11(9), 1274. https://doi.org/10.3390/biology11091274