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Simple Summary: Infertility is a global issue and the currently available treatments for infertility
are known to pose some risks and are lacking in solving infertility problems that are closely related
to genetic disorders. In this review, we summarized the use of autologous mesenchymal stem
cells (MSCs) as the cell-based treatment for infertility and the future treatments of infertility using
various methods.

Abstract: Infertility could be associated with a few factors including problems with physical and
mental health, hormonal imbalances, lifestyles, and genetic factors. Given that there is a concern
about the rise of infertility globally, increased focus has been given to its treatment for the last
several decades. Traditional assisted reproductive technology (ART) has been the prime option for
many years in solving various cases of infertility; however, it contains significant risks and does
not solve the fundamental problem of infertility such as genetic disorders. Attention toward the
utilization of MSCs has been widely regarded as a promising option in the development of stem-cell-
based infertility treatments. This narrative review briefly presents the challenges in the current ART
treatment of infertility and the various potential applications of autologous MSCs in the treatment of
these reproductive diseases.

Keywords: infertility; mesenchymal stem cells; assisted reproductive technology

1. Introduction

In clinical practice, infertility is defined as a disease of the male or female reproductive
system in failure of conceiving within 12 months of regular, unprotected sexual intercourse
in women less than 35 years old or within 6 months in women 35 years and older [1]. Ac-
cording to the latest data from World Health Organization, this condition affects 48 million
reproductive-age couples worldwide and is categorized into primary and secondary infer-
tility. Primary infertility is when a person has never achieved a successful pregnancy while
secondary infertility is when a person is having difficulty getting pregnant after a prior
successful pregnancy [2]. The general perception of infertility is predominantly caused
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by women; however, the causes are equally distributed among men and women. Men
and women each contributed 40% as a sole or a contributing cause of infertility, and in
the remaining 20%, it is the male and the female partner or unidentifiable cause termed
unexplained infertility [3].

An increasing number of infertile couples are turning to ART as the most effective
way in treating infertility in humans. Nonetheless, the presence of a few limitations within
this method has diverted scientists’ attention toward stem cells, particularly germ-like
stem cells in the treatment of infertility [4–8]. Research on MSCs is intriguing compared
to ESCs that involve the destruction of a human embryo which sparked some serious
ethical issues debate [9,10]. Therefore, spindle-shaped cells of MSCs with the ability to
differentiate into multiple germ layers coupled with the unique characteristics of MSCs
have been suggested as an ideal candidate for regenerative medicine [11]. Different reports
have presented solid evidence on the role of MSCs in the recovery of fertility and the future
outlook of infertility treatment [8,12,13]. However, due to the immunogenicity and the
risk of anti-donor immune response with allogeneic MSCs application, this present review
specifically focuses on the advantage of only using autologous MSCs as a safer treatment
of infertility, which was not discussed by previous reports.

2. Causes and Mechanisms Leading to Infertility

Couples that fail to conceive within a year will usually undergo initial evaluation
for the standard clinical diagnosis that includes semen analysis, assessment of ovulation,
and tubal patency test [14]. In 20% of the cases, this standard fertility evaluation fails to
identify any abnormalities, termed unexplained infertility [15]. In known causes among
infertile couples, there are various environmental and internal identifiable factors that play
a role including ovulatory dysfunction, tubal diseases, male infertility factors, lifestyle,
and environmental factors such as smoking and obesity that can adversely affect fertility
(Table 1) [16–19]. Most of these factors impacted several biological systems such as the neu-
roendocrine systems, the reproductive organs, and the immature and growing follicles or
sperm. The most known common factors in infertility include infection [20–22], congenital
defects [23,24], and gonadotoxins [25–28].

Table 1. Common causes of infertility in male and female.

Common Causes of Male Infertility Common Causes of Female Infertility

Hypothalamic hypophyseal causes Ovulation Disorders Causes

Pituitary insufficiency Ageing (diminished ovarian reserve)

Hyperprolactinemia Premature ovarian failure/insufficiency
(POF/POI)

Kallmann’s syndrome (anosmia) Endocrine disorders (such as PCOS)

Testicular Disorders Tubal Causes

Klinefelter syndrome Pelvic inflammatory disease

Chromosome anomalies (AZF microdeletions) Tubal surgery

Testicular atrophy Previous ectopic pregnancy

Varicocele (excessive heats) Salpingectomy

Cryptorchidism Uterine/Cervical Causes

Infections (such as mumps) Congenital uterine anomaly

Disorders of the Seminal Tract Fibroids (Asherman’s syndrome)

Retrograde Ejaculation Endometriosis

Obstructive azoospermia Poor cervical mucus quality/quantity

Immunological causes Infection (salpingitis)
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Table 1. Cont.

Common Causes of Male Infertility Common Causes of Female Infertility

Autoimmunity to sperm Others

Tumours/treatment

Obesity

Environment

3. Limitations in The Current Conception Treatment

The treatments received by couples depend on the cause of the problems. Couples
with presenting fertility issues will either receive medication, surgical procedures, and/or
in combination with assisted conception such as intrauterine insemination (IUI), in vitro
fertilization (IVF), or intracytoplasmic sperm injection (ICSI) [14]. Medications that are
commonly used to invoke ovulation include clomiphene, letrozole, tamoxifen, metformin,
and gonadotropins [29]. On the other hand, women usually undergo surgical procedures
on fallopian tubes with a presentation of fibroid, polycystic ovarian syndromes (PCOS), or
endometriosis issues. In men with varicocele [30], a corrective surgical procedure will be
performed and sperm retrieval will be done on the block epididymal [31]. On the other
hand, the gold standard treatment for cancer and non-cancerous patients that need to
undergo chemotherapy treatments involves cryopreservation of the gonadal tissues [32].
Many known complications are associated with ART despite it being envisioned as the
solution for infertile couples.

3.1. Multifetal Gestations and The Effects

ART is a known risk for conceiving higher multifetal gestations due to the transfer-
ring of more than one embryo. From a total of 1.8% of infants born using ART in the
United States, ART procedures resulted in 16.4% of multiple gestations with 16.2% of twins
and 19.4% of triplets or higher order pregnancies [33]. Some of these ART procedures
are accompanied by clomiphene, letrozole, and gonadotrophin as oral ovarian induction
agents, which show to possess a risk of multiple gestations based on a review [34]. Mul-
tifetal gestation also leads to various maternal complications such as birth defects [35]
and stillbirths [36], which imposed serious effects on the fetus. Besides that, maternal
complications are also present in singleton births conceived via ART. A comparison of
singleton births between naturally conceived and ART revealed a significantly low birth
weight and preterm birth [37] with 1.1% extreme preterm birth (20–27 gestational weeks)
and 2.2% very preterm birth (28–32 gestational weeks) in ART conceived babies [38]. The
double risk of cardiovascular, genitourinary, and musculoskeletal systems on the fetus after
a cycle of ICSI has been reviewed [39]. This is a worrying fact since it consists of 70% of
ART treatments worldwide [40].

3.2. Ectopic Pregnancy

Ectopic pregnancy following infertility treatments is one of the risk factors of ART [41],
which has been also associated with significant morbidity and mortality [42]. It was
reported that the incidence is <5% in ART pregnancies [43]. Tubal factor infertility is
suggested to contribute to the highest percentage of ectopic pregnancy up to 11% among
infertile patients [44,45] and the highest rate is after tubal reconstructive surgery [46].
Hormonal changes that happen after infertility treatments could also affect the expression
of signaling molecules that are needed for the interaction between the embryo, Fallopian
tube, and endometrium [47,48]. Evidence also exists on the increased risk of ectopic
pregnancy due to the immunological changes after embryo transfer [49].
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3.3. Ovarian Hyperstimulation Syndrome (OHSS)

The development of OHSS during ART is an iatrogenic side effect of using high-dose
ovary stimulatory agents, mainly gonadotrophin [50], and can be fatal. This often resulted
in multi-follicular growth characterized by abdominal tenderness, nausea, vomiting, renal
failure, and swelling due to increased ovarian volume. After decades, an alternative
stimulation to triggering final oocyte maturation has eliminated the risk of severe OHS,
nonetheless, it reduces the probability of achieving pregnancy [51].

3.4. Birth Defects

Major congenital malformations, aneuploidy, and mosaicism are examples of worrying
issues in IVF and ICSI [52–54]. The high prevalence of this occurrence could be due to the
transferring of poor embryos during the procedure [55] and the most well-documented
evidence is the twinning effects or higher-order pregnancies [56]. Much debate also revolves
around the possible factor of ovulation induction [56,57] and the micromanipulation of the
techniques themselves [58], which resulted in injuries to the internal structure of oocytes
leading to deleterious consequences such as aneuploidy and chromosomal abnormalities.

3.5. Cryopreservation of Testes and Ovary

Cryopreservation of testicular or ovarian tissue is one method of fertility preservation
in childhood cancer patients [59,60]. Thus far, all ovary transplanted studies reported
freezing and ischemic injury limitations. Transplantation resulted in far greater ovarian
follicle damage compared to cryopreservation due to ischemic and oxygen deficit [61].
Using a sheep model, the survival of the primordial follicles and the formation of secondary
follicles on different sites have been successfully established [62]. However, according to
the study, a longer experimental study evaluating hormone recovery, follicular maturation,
and successful pregnancy are critical for clinical reference.

4. MSCs and Their Mechanism in The Treatment of Infertility

With the shortcomings of the ART treatments, the heightened pathological immune
response following infection and inflammation leading to deleterious effects on fertility,
and gonadal disorders that are seen to impede normal pregnancy necessitates a good
balance between immune activation and immune suppression, and tissue replenishment.
A long search for an alternative treatment in correcting limitations in ART or conditions
that are untreatable through ART has set stem cells as an appealing new treatment with
the possession of several biological characteristics that qualify them to be used for cellular
therapy and new hope in infertility treatments.

Stem cells have the ability to renew themselves for long periods without significant
changes in their general properties. Under certain physiological or environmental condi-
tions, these cells are able to differentiate into various specialized cells. Despite the research
excitement on embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), they
possess ethical concerns, immune rejection after transplantation, and teratoma formation
issues. This exposes MSCs and tissue-specific stem cells as an area of great interest [63] since
they can be expanded and manipulated ex vivo. MSCs are a subset of non-hematopoietic
adult stem cells that originate from the mesoderm and possess self-renewal abilities and
multilineage differentiation. MSCs can differentiate into mesoderm lineages [64–66] and
are harvested from multiple adult tissues including the following: skeletal muscle, cervical
tissue [67], menstrual blood [68], bone marrow, adipose tissue [69], umbilical cord [70],
umbilical cord blood [71], amnion [72], placenta [73], and fetal tissues such as blood, liver,
and bone marrow [74]. While tissue-specific stem cells are derived from reproductive
organs known as germline stem cells such as from the testis [75] and ovary [76] for the
continuous production of sperm and oocytes. The precise mechanisms of MSCs are still not
fully understood. However, in relation to infertility possible actions, the four most promi-
nent are their biological characteristics of differentiation, secretory capacity, mitochondrial
transfer, and immunomodulatory and anti-inflammatory capacity (Figure 1):



Biology 2023, 12, 108 5 of 21
Biology 2022, 11, x FOR PEER REVIEW 7 of 21 
 

 

 
Figure 1. The possible mechanism of actions of bone-marrow stem cells (BMSCs), adipose tissue 
stem cells (ADSCs), menstrual stem cells (Men-SCs), endometrial MSCs, and germline-derived stem 
cells: spermatogonial stem cells (SSCs), oogonial stem cells (OSCs), and thecal stem cells in treating 
various male and female infertility problems (Created with Biorender.com). 

5. Potential Usage of MSCs in Infertility  
ART is undoubtedly a well-recognized method for achieving pregnancy for infertile 

couples. Despite that, it presents challenges to public health as evidenced by the high rate 
of multifetal gestation, preterm delivery, and low birth weight of infants [116]. Exhaustion 
of traditional treatments and genetic defects that lead to gamete deficiency have led to 
mounting preclinical studies on animals and clinical studies on humans using stem cells 

Figure 1. The possible mechanism of actions of bone-marrow stem cells (BMSCs), adipose tissue stem
cells (ADSCs), menstrual stem cells (Men-SCs), endometrial MSCs, and germline-derived stem cells:
spermatogonial stem cells (SSCs), oogonial stem cells (OSCs), and thecal stem cells in treating various
male and female infertility problems (Created with Biorender.com).

Differentiative capacity. MSCs are capable of differentiating, albeit limited to the
mesoderm layer, into various cell types such as epithelial, stromal, and endothelial cells [77].
This highlighted the potential of MSCs for advanced tissue repair treatments for infertile
couples with damaged endometrial [78], restoring endometrial function [77], or ovarian
tissues [79]. Although according to some studies that MSCs improve and help ovarian
function recovery, the number of differentiated and functionally integrated MSCs is too
small to observe improvements in ovarian function. However, it remains unclear on the
mechanism of MSCs differentiation into target cells such as oocytes or supporting cells
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after migrating to the injured tissues to improve and correct ovarian dysfunction [80]. A
new hypothesis also emerges by indicating that rather than assuming the engraftment
and differentiation of MSC in diseased tissues or organs, an alternative mode of rescue
and repair could enhance the cell viability and proliferation responses of MSC, which is
discussed in the point below.

Secretory capacity. At present, this new hypothesis is widely accepted among re-
searchers in which MSCs’ effect on reproductive treatment thus far is linked to various
bioactive secretome factors such as insulin-like growth factor (IGF), vascular endothelial
growth factor (VEGF), cytokines, and other growth factors [81,82]. Nevertheless, the im-
portance of the paracrine effects of MSCs and their secretomes in restoring the cellular
composition of tissues via regulating the immune response, stimulating angiogenesis, and
maintaining the viability of the microenvironment [83] is highlighted by several groups.
Some evidence includes the paracrine activity mechanisms driving the improved ovarian
function [84,85] and endometrial reserve [86,87] than its stimulatory effects on cell growth
and differentiation. For example, the paracrine activity of VEGF, as a strong proangiogenic
factor in ovary vascularization [88], secreted by MSCs has been shown to enhance ovarian
function by restoring its structure [89]. Apart from the secretomes, some miRNAs and exo-
somes carried by the MSCs have been found to be useful biomarkers in targeting infertility
issues. miRNA-644-5p and miRNA-144-5p carried by bone marrow-derived mesenchymal
stem cells (BMSCs)-derived exosomes have been shown to promote the recovery of ovarian
function in chemotherapy-induced POI in a rat model [90,91]. As well in men, MSC-derived
exosomes are able to induce spermatogenesis in the testes of infertile azoospermic mice
models [92]. These findings underpin the role of the gene expression regulated by miRNA
in MSC-based therapy outcomes and its importance in regulating stem cells self-renewal
and differentiation by repressing selected mRNA translation [93].

Mitochondrial transfer. In reproduction, mitochondria are transmitted to the off-
spring exclusively by the oocytes from the mother. This organelle is important for optimal
oocyte quality, proper fertilization, and embryo development [94]. Therefore, the mitochon-
drial transfer (MT) technique is seen as an utmost strategy for improving oocyte quality in
women with a history of poor oocyte quality, advanced maternal age women, and patients
with previous IVF failures which shared defects at the oocyte level. MT can be accomplished
heterologously (using a donor oocyte) or autologously from ovarian stem cells or granulosa
cells [95]. However, heterologous MT introduces a third source of DNA [96] while the
existence of ovarian stem cells remains questionable [97] and granulosa cells undergo an
aging process along with the oocyte [98]. In an animal model of aged mice, autologous
adipose-derived stem cells MT rescues the oocyte quality with a significant mitochondrial
oocyte difference between the young and aged mice [98], while another study found no
advantage of MT [99]. This difference in the observation could be explained by the different
genetic backgrounds of the mice. There is also a growing body of evidence on the ability of
Sertoli cells, which is now believed to possess some MSCs characteristic [100], to exhibit
the properties of MT [101]. Acknowledging the lack of studies on MSCs MT in infertility,
a review study highlighted few studies on the importance of MT from MSCs in restoring
normal physiological function and disease recovery [102]. Therefore, with extensive further
research using in vivo models and human studies, MT could provide a valid treatment
strategy for low fertility or infertility in women and men. While MSCs can give some effect
of cell-to-cell interaction via MT, their secreted properties of MSCs via exosome can help to
modulate the immune system.

Immunomodulatory and anti-inflammatory capacity. MSCs, via their exosomes,
have been shown to possess broad immunoregulatory abilities by influencing both adaptive
and innate immune responses. Findings showed that MSCs can inhibit T cell proliferation
and conversion to regulatory T cells (Tregs) through the reprogramming of M1 macrophage
cells to M2 phenotype, leading to tissue repair and healing [103,104]. PCOS, as one of
the most common endocrine–reproductive–metabolic disorders in women [105], exhibited
higher Th1 inflammatory responses [106,107]. Therefore, the capability of MSCs to suppress
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Th1 may influence the internal PCOS inflammatory environment hence restoring ovarian
function via the cessation of the autoimmune reaction and the regression of the endocrine
disease [108]. Bacterial infection-induced pelvic inflammatory animal models showed a
promising immunomodulatory role of MSCs in partially restoring fertility, in which the
MSCs repair the tubal epithelium structure subjected to chronic inflammation, decreasing
the inflammatory factors, and restoring the oviductal glycoprotein secretion level [109,110].
In the same study, inducing E. coli in rabbits showed decreased inflammatory factors and
increased oviductal glycoprotein expression, reflecting improved sperm fertilization capac-
ity [109]. Improved pregnancy rate, ovary morphology, and apoptotic oocytes were also
observed in inflammation-induced ovary mice [111]. Antisperm antibody (ASA) that is
naturally present in the fertile population or due to traumatic testis rupture [112] resulted
in autoimmunization against spermatozoa in the form of a humoral immune response.
An in vivo mice model study revealed that MSCs are able to suppress the production of
ASA by modulating the humoral immune response [113] thus increasing sperm concen-
tration and motility. Considering that COVID-19 virus infection affected male fertility
by reducing sperm count and motility [114], studies on MSCs could be advantageous in
COVID-19-induced infection and inflammation [115] and semen quality.

5. Potential Usage of MSCs in Infertility

ART is undoubtedly a well-recognized method for achieving pregnancy for infertile
couples. Despite that, it presents challenges to public health as evidenced by the high rate
of multifetal gestation, preterm delivery, and low birth weight of infants [116]. Exhaustion
of traditional treatments and genetic defects that lead to gamete deficiency have led to
mounting preclinical studies on animals and clinical studies on humans using stem cells
one of which is using MSCs. This MSCs therapy-based technology could generate auxiliary
factors in improving the functional roles of various cell types in the reproductive systems.
Manipulation of BMSCs, umbilical cord stem cells, amniotic fluid mesenchymal stem cells,
menstrual stem cells (MenSCs), adipose-derived stem cells (ADSCs), and endometrial MSCs
with the options using autologous or allogeneic treatments proved the effectiveness of MSCs
in infertility. The success of these interventions in pre-clinical and clinical studies has brought
huge hope in improving female and male reproductive health [12]. Nonetheless, autologous
treatment is favorable among researchers for several reasons. Following MSCs therapy, studies
reported the potential of immunogenicity after allogeneic applications [117–119]. In one of
the studies, in the effort of preserving infarcted heart function using allogeneic MSCs, a
biphasic immune response was seen after 5 months of implantation suggesting the MSCs
transition from immunoprivilege to an immunogenic state [120]. Due to the potential risk
of anti-donor immune responses, several strategies were suggested in a systematic review
including the use of immunosuppressive drugs in combination with MSCs therapy [121].
To date, the risks and limitations of both autologous and allogeneic therapeutic applications
are highly debated such as in terms of the potential impact of donor-donor heterogeneity.
Since there is a lack of review studies on the autologous applications of MSCs in infertility
treatment, in this section, we focus on the available autologous MSCs treatments for
infertility issues, completed or ongoing, in both animal models and human clinical trials.

5.1. Preclinical Studies

Current in vitro studies involve using MSCs alone or in combination with other
drugs or stimulants for the potential application of ovarian dysfunction and endometrial
disorders in females and spermatogenesis in males. ADSCs are a type of MSCs that can
be easily isolated and collected in a minimally invasive procedure and an abundant in
quantities. It is also safe to be transplanted autologously into a host [122]. Apart from
the whole cells, mitochondria from ADSCs have also been used to correct aging as a
predisposing factor to fertility health using an animal study [98]. The microinjection of
ADSCs mitochondria promotes oocyte quality, embryonic development, and fertility in
elderly mice thus promising an exciting strategy for elderly women.
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Since the concept of pluripotent stem cells could differentiate into functional gametes,
few germline stem cells have been associated with the recruitment and stimulation or
conversion into functional gametes [123]. These extragonadal sources of gametes could
aid in the hampered spermatogenesis by testicular damage or oogenesis in producing
healthy eggs. An earlier study on autologous transplantation of spermatogonial stem cells
(SSC) done on monkeys showed positive results on the structure of the testes [124], yet no
evidence on sperm quality. A later study using macaque supported the finding with the
same increase in the size of the testes and evidence of the successful production of healthy
sperm [125]. Table 2 shows a list of autologous MSCs stem cell transplantation for various
infertility issues using animal models.

Table 2. Animal models of autologous stem cell treatment for infertility issues.

Cell
Source Disease Mode of Treatment Model Outcome Reference

ADSCs

POI (aging mice) Microinjection into
oocytes Mice

1. Reduction of aneuploidy rates in the eggs
2. Improve the quality of mature eggs
3. Promote embryo development
4. Rescue fertility in aged mice

[98]

POI (aging mice) Microinjection into
oocytes Mice Did not mitigate the poor fertilization and

embryonic development rates of aged oocytes [99]

POI Melatonin-pretreated
intraovarian injection Mouse

1. Recovered serum hormone levels and
reproductive function

2. Increased primordial follicle mean counts
[126]

BMSCs
Testicular

damage due to
chemotherapy

Injection into the testes Rats

1. Homing of the stem cells at the germinal
epithelium

2. Differentiate into spermatogonia cells
3. Did not differentiate into Sertoli cells

[127]

ADSCs—adipose tissue-derived stem cell; BMSCs—bone marrow-derived stem cell.

5.2. Clinical Studies

Translating the fundamental approach of preclinical studies to human studies is
challenging. Most clinical trials have yet to acquire full regulatory approval thus hindering
the promotion of stem cells into clinical practice. Despite that, there is encouraging news
that could pave a way for the use of MSCs in infertility treatments in the future. One
successful intervention was the birth of a baby after transplanting autologous BMSCs
into an ovary of a POI woman [128]. However, there is a lack of data on serum hormone
levels, MSC preparation details, and imaging data. A pilot result from a clinical trial
fulfilled these void data and presented a report showing a 50% increase in ovarian volume
compared to the atrophic contralateral ovary and a 150% increase in estrogen level. This trial
showed enhanced fertility health with a resumption of menses and diminished menopausal
symptoms [129]. Successful transplantation of BMSCs using various methods in intrauterine
adhesion (IUA) or known as Asherman’s syndrome showed positive outcomes for clinical
practice [130–134]. Subendometrial transplantation of BMSCs resulted in menstruation
restoration in 5 of 6 IUA cases [132]. In addition, BMSCs also could be a promising
therapy for advanced reproductive-age women with ovarian reserve issues [135]. Loss
of the anti-Mullerian hormone and antral follicle count that is associated with aging is
restored with BMSCs potentially via the homing ability of stem cells. Together with other
multiple paracrine factors, these cells differentiate into a variety of cells to facilitate ovarian
recovery [136]. In azoospermic condition, a promising result was obtained in a pilot clinical
study [137] with various clinical trials being performed or are underway on the injection of
BMSCs to the rete testis to assess the hormonal level, testicular size, and sexual potency
(Table 3).

ADSCs clinical trials have been performed in POI [138], IUA [139,140], azoospermia,
and post-prostate cancer treatment for erectile dysfunction [141]. Subendometrial injection
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in women with thin endometrium lining is associated with a total of 13 pregnancies and
9 live births [140], while subendometrial transplantation increases endometrium lining
to 7 mm in 3 out of 6 cases [139]. This small cohort of patients granted replication and
expansion before drawing any conclusion since these trials have not resulted in complete
positive outcomes for most of the participants. In POI treatments, each of the patients in the
trial experienced variable ovarian volume, anti-Mullerian hormone, and antral follicular
count after transplantation. Although menstruation was resumed in two patients, the
other patients showed no improvement, while all patients demonstrated inconsistent FSH
levels [138]. Meanwhile, only 47% of men showed recovered erectile dysfunction and were
able to accomplish sexual intercourse after stem cell transplantation [141].

Another promising trial is the transplantation of autologous MenSCs for severe IUA
syndrome patients. Two independent research studies demonstrated improved endometrial
thickness in women with thin endometrium. One study reported increased endometrial
thickness to 7 mm and an improved pregnancy rate between 47% [142] to 50% [143]. These
data open new hope for infertility female patients caused by IUA with the ease of sample
collection and less invasive method compared to other sources of MSCs. As reported in a
reviewed study, almost 130 cryopreservation have been conducted worldwide. However,
frozen ovarian tissue cryopreservation transplantation showed evidence of relapse or re-
introduction of cancer cells [144] and needs further improvement in pregnancy rates [145].

Clinical use of endometrium MSCs in a case presentation of a woman with multiple
failed ART cycles successfully increases the endometrium receptivity of the woman. Ul-
trasound examination prior to embryo transfer showed that the endometrium thickness
improves 2.15-fold after endometrial MSCs transplant [146] and the patient achieved a
live successful pregnancy. Despite the increase in the endometrium thickness not within
the optimal range, a cocktail of growth factors, cytokines, and hormones may assist in the
endometrial receptivity for pregnancy [147].

Table 3. Clinical trials of autologous stem cells treatment for infertility issues.

Cell
Source Disease Mode of Treatment Outcome Reference/

NCT ID

BMSCs

IUA (Asherman’s
syndrome)

Transplantation in the
endometrial cavity

Restoration of the menstrual cycle [132]

Increased endometrium thickness and
good vascularity [130]

IUA (Asherman’s
syndrome)

Intra-arterial to
the uterus

1. Increase the volume and duration
of menses

2. Increase the thickness of endometrium
and angiogenesis process

3. Decrease IUA score
4. Spontaneous conception

[131]

IUA (Asherman’s
syndrome)

BMSCs-loaded collagen
scaffold

1. Restore endometrial regeneration
2. Increased successful pregnancy and

live births
[133]

IUA (Asherman’s
syndrome)

Transplantation to the
uterine cavity Recovered endometrium [148]
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Table 3. Cont.

Cell
Source Disease Mode of Treatment Outcome Reference/

NCT ID

BMSCs

POI

Laparoscopic
instillation into ovaries

1. Improved AMH level
2. Successful pregnancy with live birth [149]

Injection into the ovary

1. Successful pregnancy in 1 patient
out of 10

2. Regained menstruation
[128]

1. Resumed ovarian estrogen production
2. Resumed menses [129]

1. Increased endometrial thickness
2. Normalization of FSH level
3. Pregnancy occurs within 12 months

of follow-up
4. Recovered folliculogenesis

NCT03069209

1. Elevation in serum AMH and
estrogen level

2. Decline in serum FSH level
3. Disappearance of

menopausal symptoms

NCT02043743

1. Elevation in serum AMH and
estrogen level

2. Decline in serum FSH level
NCT02062931

Injection via
peripheral vein No results posted (unknown status) NCT02779374

Azoospermia Injection into rete testis
1. Increased testicular size
2. Elevation of testosterone level
3. Reduction of FSH level

[137]

Azoospermia Intra-testicular
transplantation No results posted (recruiting) NCT02641769

Azoospermia
(Klinefelter Syndrome)

Injection into testicular
tubules and artery No results posted (recruiting) NCT02414295

Non-obstructive
azoospermia Injection into testis No results posted (recruiting) NCT02041910

Non-obstructive
azoospermia Injection into testis No results posted (recruiting) NCT02008799

Ovarian reserve Intra-ovarian
artery injection

1. Increased antral follicular count
2. Increase in anti-mullerian hormone
3. Improved ovarian function

[135]

ADSCs

Thin endometrium
syndrome

Subendometrial
injection

1. Increased endometrium thickness
2. Increased successful pregnancy and

live birth
[140]

IUA (Asherman’s
syndrome)

Transcervical
instillation

1. Resume menstruation in amenorrhea
2. Higher menstruation amount

in oligomenorrhea
[139]

Azoospermia and
oligozoospermia Injection into testis No results posted (Enrolling by invitation) NCT03762967

POI Intra ovarian
transplantation

1. Resumption of menses
2. Decreased FSH serum levels
3. Variable ovarian volume, anti-Mullerian

hormone, and antral follicular count

[138]

POI and Ovarian
Ageing Injection into ovary

1. Increased number of follicles
2. Increased number of blastocysts
3. Improved endometrial thickness

[150]

Post-cancer surgical
removal of erectile

dysfunction

Single intracavernous
injection Improved erectile function [141]
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Table 3. Cont.

Cell
Source Disease Mode of Treatment Outcome Reference/

NCT ID

MenSCs IUA (Asherman’s
syndrome)

Transplanted into
uterus

Regenerating the endometrium, prolonging
menstrual duration, and increasing the
rate of pregnancy

[142]

Transplantation 1. Increased endometrial thickness
2. Improved pregnancy [143]

Endometrial-
MSCs

Thin endometrium
syndrome Submucosal injection

1. Increased endometrium thickness
2. Increased successful pregnancy and

live birth
[146]

6. New Strategies and Future Perspectives

There are hundreds of registered clinical trials trying to explore multipotent MSCs
in imaginable infertility treatments for clinical application. However, these clinical-stage
MSCs therapies are unable to meet the primary efficacy endpoints as their administration in
humans is not as robust as demonstrated in preclinical studies. Meanwhile, the translation
of cell-based therapy is impaired by the biological differences between normal and stem
cells from the same tissues (heterogeneity population) and it is not a straightforward
application. Therefore, leveraging other possible perspectives are needed to achieve more
potent and versatile autologous therapies as proposed in Figure 2.

6.1. Cell-Free Therapy

Although autologous stem cell treatments have been widely used in reproductive
medicine due to their promising properties, extensive clinical application is impeded by its
safety, high cost, low quality, and manufacturing. In recent years, mounting evidence has
emerged linking the secretion of extracellular vesicles (EVs) such as exosomes from MSCs
as the main driver of the mechanism of action. Although the isolation methods involve
differential centrifugation [151], extracting these exosomes from low-immunogenic MSCs
could solve challenges associated with autologous or allogeneic stem cell treatments. As
such, this has attracted the attention of researchers in making use of these cell-derived EVs
with a concept known as cell-free therapy.

6.1.1. MSCs-Derived Exosomes/miRNA

In understanding the potential use of the miRNA-derived exosomes, miRNA-21
was overexpressed in the MSCs. Upregulation of the miRNA-21 increases the estrogen,
decreases the FSH level, and decreases granulosa cells apoptosis by downregulating
the programmed cell death protein 4 (PDCD4) and phosphatase and tensin homolog
(PTEN) [152]. The full potential of the exosomes derived from MSCs is reflected in mul-
tiple studies. Using the POI animal model, the ovarian function was restored by the
downregulation of PDCD4 and PTEN and regulation of reproductive hormone levels via
miRNA-155-5p [91] while miRNA-644-5p acted by targeting the p53 [90]. In a model of
IUA, miRNA-29a [153] and miRNA-340 [154] have been shown to inhibit fibrosis during
an endometrial repair. Although the exact mechanism is unknown, it is speculated that the
exosomes reverse the epithelial-mesenchymal transition (EMT) and promote endometrial
repair via TGF-β1/Smad signaling pathway [155] and this was further proved in cuta-
neous wound healing [156]. In addition to possessing a repair mechanism, the exosomes
exhibit a protective effect against sperm genomic integrity injuries (such as cell membrane
injury and DNA damage) and ROS [157], which raises the possibility of exosome therapy
for asthenozoospermia.

6.1.2. ADSCs-Derived Exosomes/miRNA

Few studies also explored the outcomes of exosomes derived from ADSCs in a few
infertility issues. One study demonstrated that ADSC-exosome promoted endometrial
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regeneration and receptivity thus restoring fertility [158]. Transplantation of the exosomes
in the tissue grafts of the POI model, on the other hand, showed decreased apoptosis by
downregulating the Fas ligand and increased the SMAD5 expression [159]. Both notions
hold great promise in addressing implantation and pregnancy facilitation in infertile
patients. Using a PCOS model, miRNA-323-3p extracted from modified ADSCs provided
new insight into developing new strategies for PCOS patients since the miRNA promoted
cell proliferation and inhibit cumulus cell apoptosis [134]. The ADSCs-derived exosomes
were also explored in male infertility whereby in a diabetic rat model, transplantation of
the exosomes ameliorates erectile function [160], suggesting possible erectile correction in
human infertile males.

6.1.3. Menstrual SCs-Derived Exosomes/miRNA

Results from the transplantation of MenSCs on the POI animal model were successfully
replicated in the in vivo and in vitro MenSCs-derived exosomes study. Exosome exposure
inhibits follicle apoptosis and promotes the proliferation of granulosa cells while in vivo
models presented with promoted follicle development, restored estrous cycle and serum
hormone levels, and improved live birth [161]. This exciting outcome suggests a desirable
cell-free bioresource in infertility treatments. Applying exosomes to living tissues has
grabbed the focus as the future therapeutic effects since it does not induce inflammation,
teratomas, and degraded by enzymes. Many potentials of the exosome’s effects on tissue
engineering, regenerative, and reproductive medicine [162] have been depicted, which
could be the answer to filling the gap in clinical trials-bedside of infertility treatment.

6.2. Very Small Embryonic-like Stem Cells (VSELs)

Over a decade, a small population of small, early-development stem cells known as
VSELs was identified as pluripotent stem cells based on their primitive morphology and
gene expression profiles [163,164]. Researchers proposed that these cells originate from the
germ line, are deposited in the developing organs during embryogenesis, and play a crucial
role as a backup population for monopotent tissue-committed stem cells. VSELs are highly
quiescent when residing in the adult tissues due to the erasure of the regulatory sequences
for certain imprinted genes [165] and they possess large nuclei containing euchromatin
and a thin rim of cytoplasm enriched in spherical mitochondria. During stress situations or
induced to proliferate, they are activated and released into circulation (as reviewed in [166]).
Although these cells are evolutionarily conserved in mammals (reviewed in [167]) and
demonstrated in a small number, a recent study has successfully expanded the cells ex vivo
without feeder layer cells while preserving their capacity to differentiate into organ-specific
cells [168]. Convincingly as well, these cells can be isolated from the testes [169] and ovarian
surface epithelium of young and postmenopausal women [170], which can differentiate into
oocyte-like cells in response to sperm cells and release zona pellucida [171]. The existence
of these cells in azoospermic testicular biopsies of an adult male cancer survivor [172] and
busulfan and cyclophosphamide ovaries-treated mouse model [173] is anticipated to open
a new avenue for fertility restoration in cancer survivors. Despite the very existence of
these cells being highly questionable among the experts in the field, it is hopeful that these
cells can be the new hope for the collection of autologous pluripotent stem cells treatments
in infertility issues such as delaying menopause and most importantly enable aged mothers
to have better egg quality.

6.3. Regenerative Therapy

Furthermore, the use of microfluidic chip devices and BMSCs and ADMSCs has been
able to promote stem cell maintenance and differentiation into functional organ mod-
els [174]. Although this novel study of stem cells and microfluidic chip-based model was
performed on a bone, this has created an interesting area to be explored and manipulated
on reproductive organs to understand their physiological function and disease modeling
before transplantation. This chip-based model in turn could provide a unique opportunity
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for infertile patients with impaired gametogenesis caused by congenital disorders in sex
development or cancer survivors [175] that is lacking in the current infertility treatments.
One recent study has taken a step forward in generating regenerative therapies in the
treatment of type 1 diabetes using scalable GMP-grade human pancreas organoids [176]. A
similar approach could be devised in infertility treatments by developing endometrium
organoids from small endometrial biopsies and transplanting autologously to restore
damaged epithelium hence would avoid allogeneic immune responses.
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7. Conclusion

In summary, stem cells provide an exciting opportunity in developing potential new
treatments for infertility in both men and women. Both allogeneic and autologous MSCs are
the key player in cell-based therapy; however, autologous stem cell treatment is regarded
as safer and immunoprivileged. The combined effects of MSCs transplantation and the
secretomes or exosomes predominantly play an important role in the recovery of failing
reproductive tissues or organs. Considering that many MSCs are in the preclinical investiga-
tional stage, the progress in using these potential MSCs as stem cell therapy requires further
long-term planning with strict evaluation and supervision to ensure accuracy, quality, and
safety before implementing these approaches at the bedside. The emergence of invaluable
cell sources such as VSELs, EVs, and the cutting-edge technology of organoids could offer
promise in the quest to overcome human infertility.
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