The Co-Evolution Aspects of the Biogeochemical Role of Phytoplankton in Aquatic Ecosystems: A Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Biogeochemical Evolution
3. Physiological Role of Some Metals in Microalgae and Cyanobacteria
4. Phytoplankton and the Biogeochemical Cycle of Some Nutrients
4.1. Carbon
4.2. Silicon
4.3. Nitrogen
4.4. Phosphorus
4.5. Sulfur
4.6. Iron
5. Multi-Element Composition and Phytoplankton Stoichiometry: Evaluation and Application Issues
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fischer, W.W.; Hemp, J.; Johnson, J.E. Evolution of Oxygenic Photosynthesis. Annu. Rev. Earth Planet. Sci. 2016, 44, 647–683. [Google Scholar] [CrossRef]
- Hohmann-Marriott, M.F.; Blankenship, R.E. Evolution of Photosynthesis. Annu. Rev. Plant Biol. 2011, 62, 515–548. [Google Scholar] [CrossRef] [Green Version]
- Yoon, H.S.; Hackett, J.D.; Ciniglia, C.; Pinto, G.; Bhattacharya, D. A Molecular Timeline for the Origin of Photosynthetic Eukaryotes. Mol. Biol. Evol. 2004, 21, 809–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olson, J.M.; Blankenship, R.E. Thinking About the Evolution of Photosynthesis. Photosynth. Res. 2004, 80, 373–386. [Google Scholar] [CrossRef] [PubMed]
- Litchman, E.; Tezanos Pinto, P.; Edwards, K.F.; Klausmeier, C.A.; Kremer, C.T.; Thomas, M.K. Global biogeochemical impacts of phytoplankton: A trait-based perspective. J. Ecol. 2015, 103, 1384–1396. [Google Scholar] [CrossRef] [Green Version]
- Field, C.B.; Behrenfeld, M.J.; Randerson, J.T.; Falkowski, P.G. Primary Production of the Biosphere: Integrating Terrestrial and Oceanic Components. Science 1998, 281, 237–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falkowski, P.G. The role of phytoplankton photosynthesis in global biogeochemical cycles. Photosynth. Res. 1994, 39, 235–258. [Google Scholar] [CrossRef] [Green Version]
- Robinson, C. Phytoplankton Biogeochemical Cycles; Castellani, C., Edward, M., Eds.; Oxford University Press: Oxford, UK, 2017; Volume 1. [Google Scholar]
- Morel, F.M.M.; Price, N.M. The Biogeochemical Cycles of Trace Metals in the Oceans. Science 2003, 300, 944–947. [Google Scholar] [CrossRef] [Green Version]
- Morel, F.M.M.; Milligan, A.J.; Saito, M.A. Marine Bioinorganic Chemistry: The Role of Trace Metals in the Oceanic Cycles of Major Nutrients. In Treatise on Geochemistry; Holland, H.D., Turekian, K.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2003; Volume 6, pp. 113–143. [Google Scholar]
- Sunda, W.G. Trace Metal/Phytoplankton Interactions in the Sea. In Chemistry of Aquatic Systems: Local and Global Perspectives; Springer: Dordrecht, The Netherlands, 1994; pp. 213–247. [Google Scholar]
- Fowler, S.W.; Knauer, G.A. Role of large particles in the transport of elements and organic compounds through the oceanic water column. Prog. Oceanogr. 1986, 16, 147–194. [Google Scholar] [CrossRef]
- Collier, R.; Edmond, J. The trace element geochemistry of marine biogenic particulate matter. Prog. Oceanogr. 1984, 13, 113–199. [Google Scholar] [CrossRef]
- Leonova, G.A.; Bobrov, V.A. Geochemical Role of Plankton of Continental Water Bodies in Siberian in Concentration and Biosedimentation of Microelements; Geo: Novosibirsk, Russia, 2012. [Google Scholar]
- Lee, B.-G.; Fisher, N.S. Release rates of trace elements and protein from decomposing planktonic debris. 1. Phytoplankton debris. J. Mar. Res. 1993, 51, 391–421. [Google Scholar] [CrossRef]
- Hutchins, D.A.; Wang, W.-X.; Fisher, N.S. Copepod grazing and the biogeochemical fate of diatom iron. Limnol. Oceanogr. 1995, 40, 989–994. [Google Scholar] [CrossRef]
- Fisher, N.; Stupakoff, I.; Sañudo-Wilhelmy, S.; Wang, W.; Teyssié, J.; Fowler, S.; Crusius, J. Trace metals in marine copepods:a field test of a bioaccumulation model coupled to laboratory uptake kinetics data. Mar. Ecol. Prog. Ser. 2000, 194, 211–218. [Google Scholar] [CrossRef]
- Lobus, N.V.; Kulikovskiy, M.S.; Maltsev, Y.I. Multi-Element Composition of Diatom Chaetoceros spp. from Natural Phytoplankton Assemblages of the Russian Arctic Seas. Biology 2021, 10, 1009. [Google Scholar] [CrossRef]
- Bidoglio, G.; Stumm, W. Chemistry of Aquatic Systems: Local and Global Perspectives; Bidoglio, G., Stumm, W., Eds.; Springer: Dordrecht, The Netherlands, 1994; ISBN 978-90-481-4410-5. [Google Scholar]
- Morel, F.M.M.; Lam, P.J.; Saito, M.A. Trace Metal Substitution in Marine Phytoplankton. Annu. Rev. Earth Planet. Sci. 2020, 48, 491–517. [Google Scholar] [CrossRef] [Green Version]
- Planavsky, N.J.; Crowe, S.A.; Fakhraee, M.; Beaty, B.; Reinhard, C.T.; Mills, B.J.W.; Holstege, C.; Konhauser, K.O. Evolution of the structure and impact of Earth’s biosphere. Nat. Rev. Earth Environ. 2021, 2, 123–139. [Google Scholar] [CrossRef]
- Lobus, N.V. Biogeochemical Role of Algae in Aquatic Ecosystems: Basic Research and Applied Biotechnology. J. Mar. Sci. Eng. 2022, 10, 1846. [Google Scholar] [CrossRef]
- Robbins, L.J.; Lalonde, S.V.; Planavsky, N.J.; Partin, C.A.; Reinhard, C.T.; Kendall, B.; Scott, C.; Hardisty, D.S.; Gill, B.C.; Alessi, D.S.; et al. Trace elements at the intersection of marine biological and geochemical evolution. Earth-Sci. Rev. 2016, 163, 323–348. [Google Scholar] [CrossRef]
- Anbar, A.D.; Knoll, A.H. Proterozoic Ocean Chemistry and Evolution: A Bioinorganic Bridge? Science 2002, 297, 1137–1142. [Google Scholar] [CrossRef] [Green Version]
- Morel, F.M.M.; Milligan, A.J.; Saito, M.A. Marine Bioinorganic Chemistry: The Role of Trace Metals in the Oceanic Cycles of Major Nutrients. In Treatise on Geochemistry, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2013; ISBN 9780080983004. [Google Scholar]
- Williams, R.P.; Frausto da Silva, J.J.R. Evolution was Chemically Constrained. J. Theor. Biol. 2003, 220, 323–343. [Google Scholar] [CrossRef]
- Björn, L.O. Govindjee The evolution of photosynthesis and its environmental impact. In Photobiology: The Science of Light and Life, 3rd ed.; Björn, L.O., Ed.; Springer: New York, NY, USA, 2015; pp. 207–230. ISBN 9781493914685. [Google Scholar]
- Wächtershäuser, G. Groundworks for an evolutionary biochemistry: The iron-sulphur world. Prog. Biophys. Mol. Biol. 1992, 58, 85–201. [Google Scholar] [CrossRef] [PubMed]
- Williams, R.J.; Fraústo da Silva, J.J. The Chemistry of Evolution: The Development of Our Ecosystem; Elsevier: Amsterdam, The Netherlands, 2006; ISBN 978-0-444-521 156. [Google Scholar]
- Sharoni, S.; Halevy, I. Geologic controls on phytoplankton elemental composition. Proc. Natl. Acad. Sci. USA 2022, 119, e2113263118. [Google Scholar] [CrossRef] [PubMed]
- Fischer, W.W.; Hemp, J.; Johnson, J.E. Manganese and the Evolution of Photosynthesis. Orig. Life Evol. Biosph. 2015, 45, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Frausto da Silva, J.J.R.; Williams, R.J.P. The Biological Chemistry of the Elements: The Inorganic Chemistry of Life, 2nd ed.; Oxford University Press: New York, NY, USA, 2001; ISBN 019850848. [Google Scholar]
- Anbar, A.D. Elements and Evolution. Science 2008, 322, 1481–1483. [Google Scholar] [CrossRef]
- Antia, A.N.; Burkill, P.H.; Balzer, W.; de Baar, H.J.W.; Mantoura, R.F.C.; Simó, R.; Wallace, D. Coupled Biogeochemical Cycling and Controlling Factors. In Marine Science Frontiers for Europe; Wefer, G., Lamy, F., Mantoura, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2003; pp. 147–162. ISBN 3-540-40168-7. [Google Scholar]
- de Baar, H.J.W.; La Roche, J. Trace Metals in the Oceans: Evolution, Biology and Global Change. In Marine Science Frontiers for Europe; Springer: Berlin/Heidelberg, Germany, 2003; pp. 79–105. ISBN 3-540-40168-7. [Google Scholar]
- Sunda, W.G.; Huntsman, S.A. Processes regulating cellular metal accumulation and physiological effects: Phytoplankton as model systems. Sci. Total Environ. 1998, 219, 165–181. [Google Scholar] [CrossRef]
- Ho, T.-Y.; Quigg, A.; Finkel, Z.V.; Milligan, A.J.; Wyman, K.; Falkowski, P.G.; Morel, F.M.M. The elemental composition of some marine phytoplankton. J. Phycol. 2003, 39, 1145–1159. [Google Scholar] [CrossRef]
- Twining, B.S.; Baines, S.B. The Trace Metal Composition of Marine Phytoplankton. Ann. Rev. Mar. Sci. 2013, 5, 191–215. [Google Scholar] [CrossRef] [Green Version]
- Raven, J.A.; Evans, M.C.W.; Korb, R.E. The role of trace metals in photosynthetic electron transport in O2-evolving organisms. Photosynth. Res. 1999, 60, 111–150. [Google Scholar] [CrossRef]
- Fox, J.M.; Zimba, P.V. Minerals and Trace Elements in Microalgae. In Microalgae in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2018; pp. 177–193. ISBN 9780128114056. [Google Scholar]
- Blaby-Haas, C.E.; Merchant, S.S. Regulating cellular trace metal economy in algae. Curr. Opin. Plant Biol. 2017, 39, 88–96. [Google Scholar] [CrossRef] [Green Version]
- Hankamer, B.; Barber, J.; Boekema, E.J. Structure and membrane organization of Photosystem II in green plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1997, 48, 641–671. [Google Scholar] [CrossRef]
- Whittaker, S.; Bidle, K.D.; Kustka, A.B.; Falkowski, P.G. Quantification of nitrogenase in Trichodesmium IMS 101: Implications for iron limitation of nitrogen fixation in the ocean. Environ. Microbiol. Rep. 2011, 3, 54–58. [Google Scholar] [CrossRef] [PubMed]
- Stal, L.J. Nitrogen Fixation in Cyanobacteria. eLS 2015, 1–9. [Google Scholar] [CrossRef]
- Capone, D.G.; Zehr, J.P.; Paerl, H.W.; Bergman, B.; Carpenter, E.J. Trichodesmium, a Globally Significant Marine Cyanobacterium. Science 1997, 276, 1221–1229. [Google Scholar] [CrossRef] [Green Version]
- Stanier, R.Y.; Cohen-Bazire, G. Phototrophic prokaryotes: The cyanobacteria. Annu. Rev. Microbiol. 1977, 31, 225–274. [Google Scholar] [CrossRef] [PubMed]
- Andersson, I.; Backlund, A. Structure and function of Rubisco. Plant Physiol. Biochem. 2008, 46, 275–291. [Google Scholar] [CrossRef]
- Young, J.N.; Rickaby, R.E.M.; Kapralov, M.V.; Filatov, D.A. Adaptive signals in algal Rubisco reveal a history of ancient atmospheric carbon dioxide. Philos. Trans. R. Soc. B Biol. Sci. 2012, 367, 483–492. [Google Scholar] [CrossRef]
- Harmaza, Y.M.; Slobozhanina, E.I. Zinc essentiality and toxicity. Biophysical aspects. Biophysics 2014, 59, 264–275. [Google Scholar] [CrossRef] [Green Version]
- Dupont, C.L.; Yang, S.; Palenik, B.; Bourne, P.E. Modern proteomes contain putative imprints of ancient shifts in trace metal geochemistry. Proc. Natl. Acad. Sci. USA 2006, 103, 17822–17827. [Google Scholar] [CrossRef] [Green Version]
- Andreini, C.; Bertini, I.; Rosato, A. Metalloproteomes: A bioinformatic approach. Acc. Chem. Res. 2009, 42, 1471–1479. [Google Scholar] [CrossRef]
- Wolfe-Simon, F.; Grzebyk, D.; Schofield, O.; Falkowski, P.G. The role and evolution of superoxide dismutases in algae. J. Phycol. 2005, 41, 453–465. [Google Scholar] [CrossRef]
- Peers, G.; Price, N.M. A role for manganese in superoxide dismutases and growth of iron-deficient diatoms. Limnol. Oceanogr. 2004, 49, 1774–1783. [Google Scholar] [CrossRef] [Green Version]
- La Fontaine, S.; Quinn, J.M.; Nakamoto, S.S.; Dudley Page, M.; Göhre, V.; Moseley, J.L.; Kropat, J.; Merchant, S. Copper-dependent iron assimilation pathway in the model photosynthetic eukaryote Chlamydomonas reinhardtii. Eukaryot. Cell 2002, 1, 736–757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maldonado, M.T.; Allen, A.E.; Chong, J.S.; Lin, K.; Leus, D.; Karpenko, N.; Harris, S.L. Copper-dependent iron transport in coastal and oceanic diatoms. Limnol. Oceanogr. 2006, 51, 1729–1743. [Google Scholar] [CrossRef] [Green Version]
- Lane, T.W.; Morel, F.M.M. A biological function for cadmium in marine diatoms. Proc. Natl. Acad. Sci. USA 2000, 97, 4627–4631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Y.; Tang, D.; Shaked, Y.; Morel, F.M.M. Zinc, cadmium, and cobalt interreplacement and relative use efficiencies in the coccolithophore Emiliania huxleyi. Limnol. Oceanogr. 2007, 52, 2294–2305. [Google Scholar] [CrossRef]
- Xu, Y.; Morel, F.M.M. Cadmium in marine phytoplankton. In Cadmium: From Toxicity to Essentiality; Sigel, A., Sigel, H., Sigel, R., Eds.; Springer: London, UK, 2013; Volume 11, pp. 509–528. [Google Scholar]
- Peers, G.; Price, N.M. Copper-containing plastocyanin used for electron transport by an oceanic diatom. Nature 2006, 441, 341–344. [Google Scholar] [CrossRef]
- Strzepek, R.F.; Harrison, P.J. Photosynthetic architecture differs in coastal and oceanic diatoms. Nature 2004, 431, 689–692. [Google Scholar] [CrossRef]
- Zurbriggen, M.D.; Tognetti, V.B.; Carrillo, N. Stress-inducible flavodoxin from photosynthetic microorganisms. The mystery of flavodoxin loss from the plant genome. IUBMB Life 2007, 59, 355–360. [Google Scholar] [CrossRef]
- Romankevich, E.A.; Vetrov, A.A. Carbon in the World Ocean; GEOS: Moscow, Russia, 2021; ISBN 978-5-89118-835-8. [Google Scholar]
- Lobus, N.V.; Glushchenko, A.M.; Osadchiev, A.A.; Maltsev, Y.I.; Kapustin, D.A.; Konovalova, O.P.; Kulikovskiy, M.S.; Krylov, I.N.; Drozdova, A.N. Production of Fluorescent Dissolved Organic Matter by Microalgae Strains from the Ob and Yenisei Gulfs (Siberia). Plants 2022, 11, 3361. [Google Scholar] [CrossRef]
- Basu, S.; Mackey, K. Phytoplankton as Key Mediators of the Biological Carbon Pump: Their Responses to a Changing Climate. Sustainability 2018, 10, 869. [Google Scholar] [CrossRef]
- Le Moigne, F.A.C. Pathways of Organic Carbon Downward Transport by the Oceanic Biological Carbon Pump. Front. Mar. Sci. 2019, 6, 634. [Google Scholar] [CrossRef] [Green Version]
- Häder, D.-P.; Villafañe, V.E.; Helbling, E.W. Productivity of aquatic primary producers under global climate change. Photochem. Photobiol. Sci. 2014, 13, 1370–1392. [Google Scholar] [CrossRef] [PubMed]
- Bar-On, Y.M.; Phillips, R.; Milo, R. The biomass distribution on Earth. Proc. Natl. Acad. Sci. USA 2018, 115, 6506–6511. [Google Scholar] [CrossRef] [Green Version]
- Drozdova, A.N.; Nedospasov, A.A.; Lobus, N.V.; Patsaeva, S.V.; Shchuka, S.A. CDOM Optical Properties and DOC Content in the Largest Mixing Zones of the Siberian Shelf Seas. Remote Sens. 2021, 13, 1145. [Google Scholar] [CrossRef]
- Romankevich, E.A.; Vetrov, A.A. Masses of carbon in the Earth’s hydrosphere. Geochem. Int. 2013, 51, 431–455. [Google Scholar] [CrossRef]
- Romankevich, E. Geochemistry of Organic Matter in the Ocean; Springer: Berlin/Heidelberg, Germany, 1984. [Google Scholar]
- Vincent, F.; Bowler, C. Diatoms Are Selective Segregators in Global Ocean Planktonic Communities. mSystems 2020, 5, e00444-19. [Google Scholar] [CrossRef] [Green Version]
- Malviya, S.; Scalco, E.; Audic, S.; Vincent, F.; Veluchamy, A.; Poulain, J.; Wincker, P.; Iudicone, D.; de Vargas, C.; Bittner, L.; et al. Insights into global diatom distribution and diversity in the world’s ocean. Proc. Natl. Acad. Sci. USA 2016, 113, E1516–E1525. [Google Scholar] [CrossRef] [Green Version]
- Krumhardt, K.M.; Lovenduski, N.S.; Long, M.C.; Levy, M.; Lindsay, K.; Moore, J.K.; Nissen, C. Coccolithophore Growth and Calcification in an Acidified Ocean: Insights From Community Earth System Model Simulations. J. Adv. Model. Earth Syst. 2019, 11, 1418–1437. [Google Scholar] [CrossRef] [Green Version]
- Moore, D. Coccolithophore Cultivation and Deployment. In Aquaculture: Ocean Blue Carbon Meets UN-SDGS; Springer: Cham, Switzerland, 2022; pp. 155–176. ISBN 978-3-030-94846-7. [Google Scholar]
- Wollast, R.; Mackenzie, F.T. Global Biogeochemical Cycles and Climate. In Climate and Geo-Sciences; Springer: Dordrecht, The Netherlands, 1989; pp. 453–473. [Google Scholar]
- Conley, D.J.; Schelske, C.L. Biogenic Silica. In Environmental Change Using Lake Sediments; Smol, J.P., Birks, H.J.B., Last, W.M., Eds.; Springer: Dordrecht, The Netherlands, 2002; pp. 281–293. [Google Scholar]
- Paasche, E. Silicon. In The Physiological Ecology of Phytoplankton, Studies in Ecology; Morris, I., Ed.; University California Press: Berkeley, CA, USA, 1980; pp. 259–284. [Google Scholar]
- Tréguer, P.J.; Sutton, J.N.; Brzezinski, M.; Charette, M.A.; Devries, T.; Dutkiewicz, S.; Ehlert, C.; Hawkings, J.; Leynaert, A.; Liu, S.M.; et al. Reviews and syntheses: The biogeochemical cycle of silicon in the modern ocean. Biogeosciences 2021, 18, 1269–1289. [Google Scholar] [CrossRef]
- Sarmiento, J.L.; Gruber, N.; Brzezinski, M.A.; Dunne, J.P. High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature 2004, 427, 56–60. [Google Scholar] [CrossRef]
- Baines, S.B.; Chen, X.; Vogt, S.; Fisher, N.S.; Twining, B.S.; Landry, M.R. Microplankton trace element contents: Implications for mineral limitation of mesozooplankton in an HNLC area. J. Plankton Res. 2016, 38, 256–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conley, D.J.; Kilham, S.S.; Theriot, E. Differences in silica content between marine and freshwater diatoms. Limnol. Oceanogr. 1989, 34, 205–212. [Google Scholar] [CrossRef] [Green Version]
- Martin, J.H.; Knauer, G.A. The elemental composition of plankton. Geochim. Cosmochim. Acta 1973, 37, 1639–1653. [Google Scholar] [CrossRef]
- Martin-Jézéquell, V.; Lopez, P.J. Silicon—A Central Metabolite for Diatom Growth and Morphogenesis. In Silicon Biomineralization, Progress in Molecular and Subcellular Biology; Müller, W.E.G., Ed.; Springer: Berlin/Heidelberg, Germany, 2003; pp. 99–124. [Google Scholar]
- Paasche, E. Silicon content of five marine plankton diatom species measured with a rapid filter method. Limnol. Oceanogr. 1980, 25, 474–480. [Google Scholar] [CrossRef]
- Tesson, B.; Genet, M.J.; Fernandez, V.; Degand, S.; Rouxhet, P.G.; Martin-Jézéquel, V. Surface chemical composition of diatoms. ChemBioChem 2009, 10, 2011–2024. [Google Scholar] [CrossRef] [PubMed]
- Pančić, M.; Torres, R.R.; Almeda, R.; Kiørboe, T. Silicified cell walls as a defensive trait in diatoms. Proc. R. Soc. B Biol. Sci. 2019, 286, 20190184. [Google Scholar] [CrossRef] [Green Version]
- Brzezinski, M.A. The Si:C:N ratio of marine diatoms: Interspecific variability and the effect of some en-vironmental variables. J. Phycol. 1985, 21, 347–357. [Google Scholar] [CrossRef]
- Nelson, D.M.; Tréguer, P.; Brzezinski, M.A.; Leynaert, A.; Quéguiner, B. Production and dissolution of biogenic silica in the ocean: Revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Global Biogeochem. Cycles 1995, 9, 359–372. [Google Scholar] [CrossRef]
- Tréguer, P.J.; De La Rocha, C.L. The World Ocean Silica Cycle. Ann. Rev. Mar. Sci. 2013, 5, 477–501. [Google Scholar] [CrossRef]
- Hayes, C.T.; Costa, K.M.; Anderson, R.F.; Calvo, E.; Chase, Z.; Demina, L.L.; Dutay, J.; German, C.R.; Heimbürger-Boavida, L.; Jaccard, S.L.; et al. Global Ocean Sediment Composition and Burial Flux in the Deep Sea. Global Biogeochem. Cycles 2021, 35, e2020GB006769. [Google Scholar] [CrossRef]
- Rahman, S.; Aller, R.C.; Cochran, J.K. The Missing Silica Sink: Revisiting the Marine Sedimentary Si Cycle Using Cosmogenic 32 Si. Global Biogeochem. Cycles 2017, 31, 1559–1578. [Google Scholar] [CrossRef]
- Baines, S.B.; Twining, B.S.; Brzezinski, M.A.; Krause, J.W.; Vogt, S.; Assael, D.; McDaniel, H. Significant silicon accumulation by marine picocyanobacteria. Nat. Geosci. 2012, 5, 886–891. [Google Scholar] [CrossRef]
- Brzezinski, M.A.; Krause, J.W.; Baines, S.B.; Collier, J.L.; Ohnemus, D.C.; Twining, B.S. Patterns and regulation of silicon accumulation in Synechococcus spp. J. Phycol. 2017, 53, 746–761. [Google Scholar] [CrossRef] [PubMed]
- Ohnemus, D.C.; Krause, J.W.; Brzezinski, M.A.; Collier, J.L.; Baines, S.B.; Twining, B.S. The chemical form of silicon in marine Synechococcus. Mar. Chem. 2018, 206, 44–51. [Google Scholar] [CrossRef]
- Conley, D.J. Riverine contribution of biogenic silica to the oceanic silica budget. Limnol. Oceanogr. 1997, 42, 774–777. [Google Scholar] [CrossRef] [Green Version]
- Hutchins, D.A.; Capone, D.G. The marine nitrogen cycle: New developments and global change. Nat. Rev. Microbiol. 2022, 20, 401–414. [Google Scholar] [CrossRef]
- Hecky, R.E.; Kilham, P. Nutrient limitation of phytoplankton in freshwater and marine environments: A review of recent evidence on the effects of enrichment. Limnol. Oceanogr. 1988, 33, 796–822. [Google Scholar] [CrossRef] [Green Version]
- Brandes, J.A.; Devol, A.H.; Deutsch, C. New developments in the marine nitrogen cycle. Chem. Rev. 2007, 107, 577–589. [Google Scholar] [CrossRef]
- Edwards, M. Plankton and Global Change. In Marine Plankton: A Practical Guide to Ecology, Methodology, and Taxonomy; Castellani, C., Edwards, M., Eds.; Oxford University Press: Oxford, UK, 2017; pp. 67–80. [Google Scholar]
- Fowler, D.; Coyle, M.; Skiba, U.; Sutton, M.A.; Cape, J.N.; Reis, S.; Sheppard, L.J.; Jenkins, A.; Grizzetti, B.; Galloway, J.N.; et al. The global nitrogen cycle in the twenty-first century. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20130164. [Google Scholar] [CrossRef] [Green Version]
- Zehr, J.P.; Ward, B.B. Nitrogen cycling in the ocean: New perspectives on processes and paradigms. Appl. Environ. Microbiol. 2002, 68, 1015–1024. [Google Scholar] [CrossRef]
- Barsanti, L.; Gualtieri, P. Algae: Anatomy, Biochemistry, and Biotechnology; CRC Press: Pisa, Italy, 2014; ISBN 9781439867334. [Google Scholar]
- Moore, L.R.; Post, A.F.; Rocap, G.; Chisholm, S.W. Utilization of different nitrogen sources by the marine cyanobacteria Prochlorococcus and Synechococcus. Limnol. Oceanogr. 2002, 47, 989–996. [Google Scholar] [CrossRef]
- Gruber, N. The Marine Nitrogen Cycle: Overview and Challenges. In Nitrogen in the Marine Environmen; Capone, D., Bronk, D., Mulholland, M., Carpenter, E., Eds.; Academic Press: Cambridge, MA, USA, 2008; pp. 1–50. ISBN 9780123725226. [Google Scholar]
- Zehr, J.P.; Kudela, R.M. Nitrogen Cycle of the Open Ocean: From Genes to Ecosystems. Ann. Rev. Mar. Sci. 2011, 3, 197–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paerl, H. The cyanobacterial nitrogen fixation paradox in natural waters. F1000Research 2017, 6, 244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howarth, R.W.; Marino, R.; Cole, J.J. Nitrogen fixation in freshwater, estuarine, and marine ecosystems. 2. Biogeochemical controls. Limnol. Oceanogr. 1988, 33, 688–701. [Google Scholar] [CrossRef]
- Howarth, R.W.; Marino, R.; Lane, J.; Cole, J.J. Nitrogen fixation in freshwater, estuarine, and marine ecosystems. 1. Rates and importance. Limnol. Oceanogr. 1988, 33, 669–687. [Google Scholar] [CrossRef]
- Bergman, B.; Sandh, G.; Lin, S.; Larsson, J.; Carpenter, E.J. Trichodesmium–a widespread marine cyanobacterium with unusual nitrogen fixation properties. FEMS Microbiol. Rev. 2013, 37, 286–302. [Google Scholar] [CrossRef] [Green Version]
- Kana, T.M. Oxygen Cycling in Cyanobacteria, with Specific Reference to Oxygen Protection in Trichodesmium spp. In Marine Pelagic Cyanobacteria: Trichodesmium and Other Diazotrophs; Carpenter, E.J., Capone, D.G., Rueter, J.G., Eds.; Springer: Dordrecht, The Netherlands, 1992; pp. 29–41. [Google Scholar]
- Carpenter, E.; Montoya, J.; Burns, J.; Mulholland, M.; Subramaniam, A.; Capone, D. Extensive bloom of a N2-fixing diatom/cyanobacterial association in the tropical Atlantic Ocean. Mar. Ecol. Prog. Ser. 1999, 185, 273–283. [Google Scholar] [CrossRef] [Green Version]
- Voss, M.; Bange, H.W.; Dippner, J.W.; Middelburg, J.J.; Montoya, J.P.; Ward, B. The marine nitrogen cycle: Recent discoveries, uncertainties and the potential relevance of climate change. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20130121. [Google Scholar] [CrossRef]
- Gruber, N.; Sarmiento, J.L. Global patterns of marine nitrogen fixation and denitrification. Global Biogeochem. Cycles 1997, 11, 235–266. [Google Scholar] [CrossRef]
- Duce, R.A.; LaRoche, J.; Altieri, K.; Arrigo, K.R.; Baker, A.R.; Capone, D.G.; Cornell, S.; Dentener, F.; Galloway, J.; Ganeshram, R.S.; et al. Impacts of atmospheric anthropogenic nitrogen on the open ocean. Science 2008, 320, 893–897. [Google Scholar] [CrossRef]
- Galloway, J.N.; Dentener, F.J.; Capone, D.G.; Boyer, E.W.; Howarth, R.W.; Seitzinger, S.P.; Asner, G.P.; Cleveland, C.C.; Green, P.A.; Holland, E.A.; et al. Nitrogen Cycles: Past, Present, and Future. Biogeochemistry 2004, 70, 153–226. [Google Scholar] [CrossRef]
- Canfield, D.E.; Glazer, A.N.; Falkowski, P.G. The Evolution and Future of Earth’s Nitrogen Cycle. Science 2010, 330, 192–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reinhard, C.T.; Planavsky, N.J.; Gill, B.C.; Ozaki, K.; Robbins, L.J.; Lyons, T.W.; Fischer, W.W.; Wang, C.; Cole, D.B.; Konhauser, K.O. Evolution of the global phosphorus cycle. Nature 2017, 541, 386–389. [Google Scholar] [CrossRef]
- Filippelli, G.M. The Global Phosphorus Cycle: Past, Present, and Future. Elements 2008, 4, 89–95. [Google Scholar] [CrossRef]
- Falkowski, P.G.; Raven, J.A. Aquatic Photosynthesis, 2nd ed.; Princeton University Press: Princeton, NJ, USA, 2007. [Google Scholar]
- Geider, R.; La Roche, J. Redfield revisited: Variability of C:N:P in marine microalgae and its biochemical basis. Eur. J. Phycol. 2002, 37, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Cooper, G.M.; Hausman, R.E. The Cell: A Molecular Approach; ASM Press: Washington, DC, USA, 2007; ISBN 0878932208. [Google Scholar]
- Blake, R.E.; O’Neil, J.R.; Surkov, A.V. Biogeochemical cycling of phosphorus: Insights from oxygen isotope effects of phosphoenzymes. Am. J. Sci. 2005, 305, 596–620. [Google Scholar] [CrossRef]
- Lin, S.; Litaker, R.W.; Sunda, W.G. Phosphorus physiological ecology and molecular mechanisms in marine phytoplankton. J. Phycol. 2016, 52, 10–36. [Google Scholar] [CrossRef]
- Tyrrell, T. The relative influences of nitrogen and phosphorus on oceanic primary production. Nature 1999, 400, 525–531. [Google Scholar] [CrossRef]
- Benitez-Nelson, C.R. The biogeochemical cycling of phosphorus in marine systems. Earth-Sci. Rev. 2000, 51, 109–135. [Google Scholar] [CrossRef]
- Moore, C.M.; Mills, M.M.; Arrigo, K.R.; Berman-Frank, I.; Bopp, L.; Boyd, P.W.; Galbraith, E.D.; Geider, R.J.; Guieu, C.; Jaccard, S.L.; et al. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 2013, 6, 701–710. [Google Scholar] [CrossRef]
- Ruttenberg, K.C. Reassessment of the oceanic residence time of phosphorus. Chem. Geol. 1993, 107, 405–409. [Google Scholar] [CrossRef]
- Morel, F.M.M. Kinetics of nutrient uptake and growth in phytoplankton. J. Phycol. 1987, 23, 137–150. [Google Scholar] [CrossRef]
- Droop, M.R. Some thoughts on nutrient limitation in algae. J. Phycol. 1973, 9, 264–272. [Google Scholar] [CrossRef]
- Kornberg, A. Inorganic polyphosphate: A molecule of many functions. Inorg. Polyphosphates Prog. Mol. Subcell. Biol. 1999, 23, 1–18. [Google Scholar] [CrossRef]
- Sañudo-Wilhelmy, S.A.; Tovar-Sanchez, A.; Fu, F.-X.; Capone, D.G.; Carpenter, E.J.; Hutchins, D.A. The impact of surface-adsorbed phosphorus on phytoplankton Redfield stoichiometry. Nature 2004, 432, 897–901. [Google Scholar] [CrossRef] [Green Version]
- Fu, F.-X.; Zhang, Y.; Leblanc, K.; Sañudo-Wilhelmy, S.A.; Hutchins, D.A. The biological and biogeochemical consequences of phosphate scavenging onto phytoplankton cell surfaces. Limnol. Oceanogr. 2005, 50, 1459–1472. [Google Scholar] [CrossRef]
- Canfield, D.E.; Kristensen, E.; Thamdrup, B. The Phosphorus Cycle. In Advances in Marine Biology; Canfield, D.E., Kristensen, E., Thamdrup, B., Eds.; Academic Press: Cambridge, MA, USA, 2005; Volume 48, pp. 419–440. ISBN 9780120261475. [Google Scholar]
- Mainstone, C.P.; Parr, W. Phosphorus in rivers—Ecology and management. Sci. Total Environ. 2002, 282–283, 25–47. [Google Scholar] [CrossRef]
- Qin, B.; Zhou, J.; Elser, J.J.; Gardner, W.S.; Deng, J.; Brookes, J.D. Water Depth Underpins the Relative Roles and Fates of Nitrogen and Phosphorus in Lakes. Environ. Sci. Technol. 2020, 54, 3191–3198. [Google Scholar] [CrossRef]
- Canfield, D.E. The evolution of the Earth surface sulfur reservoir. Am. J. Sci. 2004, 304, 839–861. [Google Scholar] [CrossRef]
- Giordano, M.; Norici, A.; Ratti, S.; Raven, J.A. Role of Sulfur for Algae: Acquisition, Metabolism, Ecology and Evolution. In Sulfur Metabolism in Phototrophic Organisms, Advances in Photosynthesis and Respiration; Hell, R., Dahl, C., Knaff, D., Leustek, T., Eds.; Springer: Dordrecht, The Netherlands, 2008; pp. 397–415. [Google Scholar]
- Giordano, M.; Raven, J.A. Nitrogen and sulfur assimilation in plants and algae. Aquat. Bot. 2014, 118, 45–61. [Google Scholar] [CrossRef]
- Norici, A.; Hell, R.; Giordano, M. Sulfur and primary production in aquatic environments: An ecological perspective. Photosynth. Res. 2005, 86, 409–417. [Google Scholar] [CrossRef]
- Shibagaki, N.; Grossman, A. The State of Sulfur Metabolism in Algae: From Ecology to Genomics. In Sulfur Metabolism in Phototrophic Organisms, Advances in Photosynthesis and Respiration; Hell, R., Dahl, C., Knaff, D., Leustek, T., Eds.; Springer: Dordrecht, The Netherlands, 2008; pp. 231–267. [Google Scholar]
- Hell, R.; Wirtz, M. Metabolism of Cysteine in Plants and Phototrophic Bacteria. In Sulfur Metabolism in Phototrophic Organisms, Advances in Photosynthesis and Respiration; Springer: Dordrecht, The Netherlands, 2008; Volume 59, pp. 59–91. [Google Scholar]
- Giordano, M.; Prioretti, L. Sulphur and Algae: Metabolism, Ecology and Evolution. In The Physiology of Microalgae; Borowitzka, M.A., Beardall, J., Raven, J.A., Eds.; Springer International Publishing: Cham, Switzerland, 2016; Volume 6, pp. 185–209. ISBN 978-3-319-24943-8. [Google Scholar]
- Mazel, D.; Marlière, P. Adaptive eradication of methionine and cysteine from cyanobacterial light-harvesting proteins. Nature 1989, 341, 245–248. [Google Scholar] [CrossRef] [PubMed]
- Baudouin-Cornu, P.; Schuerer, K.; Marlière, P.; Thomas, D. Intimate Evolution of Proteins:Proteome atomic content correlates with genome base composition. J. Biol. Chem. 2004, 279, 5421–5428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gage, D.A.; Rhodes, D.; Nolte, K.D.; Hicks, W.A.; Leustek, T.; Cooper, A.J.L.; Hanson, A.D. A new route for synthesis of dimethylsulphoniopropionate in marine algae. Nature 1997, 387, 891–894. [Google Scholar] [CrossRef]
- Giordano, M.; Norici, A.; Hell, R. Sulfur and phytoplankton: Acquisition, metabolism and impact on the environment. New Phytol. 2005, 166, 371–382. [Google Scholar] [CrossRef]
- Kirst, G.O. Osmotic Adjustment in Phytoplankton and MacroAlgae. In Biological and Environmental Chemistry of DMSP and Related Sulfonium Compounds; Uchida, A., Ooguri, T., Ishida, T., Kitaguchi, H., Ishida, Y., Eds.; Springer: New York, NY, USA, 1996; pp. 121–129. [Google Scholar]
- Matrai, P.A.; Keller, M.D. Dimethylsulfide in a large-scale coccolithophore bloom in the Gulf of Maine. Cont. Shelf Res. 1993, 13, 831–843. [Google Scholar] [CrossRef]
- Ginzburg, B.; Chalifa, I.; Gun, J.; Dor, I.; Hadas, O.; Lev, O. DMS Formation by Dimethylsulfoniopropionate Route in Freshwater. Environ. Sci. Technol. 1998, 32, 2130–2136. [Google Scholar] [CrossRef]
- Alcolombri, U.; Ben-Dor, S.; Feldmesser, E.; Levin, Y.; Tawfik, D.S.; Vardi, A. Identification of the algal dimethyl sulfide–releasing enzyme: A missing link in the marine sulfur cycle. Science 2015, 348, 1466–1469. [Google Scholar] [CrossRef] [PubMed]
- Shemi, A.; Alcolombri, U.; Schatz, D.; Farstey, V.; Vincent, F.; Rotkopf, R.; Ben-Dor, S.; Frada, M.J.; Tawfik, D.S.; Vardi, A. Dimethyl sulfide mediates microbial predator–prey interactions between zooplankton and algae in the ocean. Nat. Microbiol. 2021, 6, 1357–1366. [Google Scholar] [CrossRef]
- Simó, R. Production of atmospheric sulfur by oceanic plankton: Biogeochemical, ecological and evolutionary links. Trends Ecol. Evol. 2001, 16, 287–294. [Google Scholar] [CrossRef]
- Kettle, A.J.; Andreae, M.O. Flux of dimethylsulfide from the oceans: A comparison of updated data sets and flux models. J. Geophys. Res. Atmos. 2000, 105, 26793–26808. [Google Scholar] [CrossRef]
- Wang, W.-L.; Song, G.; Primeau, F.; Saltzman, E.S.; Bell, T.G.; Moore, J.K. Global ocean dimethyl sulfide climatology estimated from observations and an artificial neural network. Biogeosciences 2020, 17, 5335–5354. [Google Scholar] [CrossRef]
- Charlson, R.J.; Lovelock, J.E.; Andreae, M.O.; Warren, S.G. Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 1987, 326, 655–661. [Google Scholar] [CrossRef]
- Deng, X.; Chen, J.; Hansson, L.-A.; Zhao, X.; Xie, P. Eco-chemical mechanisms govern phytoplankton emissions of dimethylsulfide in global surface waters. Natl. Sci. Rev. 2021, 8, 2021. [Google Scholar] [CrossRef]
- Tagliabue, A.; Bowie, A.R.; Boyd, P.W.; Buck, K.N.; Johnson, K.S.; Saito, M.A. The integral role of iron in ocean biogeochemistry. Nature 2017, 543, 51–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behnke, J.; LaRoche, J. Iron uptake proteins in algae and the role of Iron Starvation-Induced Proteins (ISIPs). Eur. J. Phycol. 2020, 55, 339–360. [Google Scholar] [CrossRef]
- Sunda, W.G.; Huntsman, S.A. Iron uptake and growth limitation in oceanic and coastal phytoplankton. Mar. Chem. 1995, 50, 189–206. [Google Scholar] [CrossRef] [Green Version]
- Morrissey, J.; Bowler, C. Iron utilization in marine cyanobacteria and eukaryotic algae. Front. Microbiol. 2012, 3, 43. [Google Scholar] [CrossRef] [Green Version]
- Twining, B.S.; Antipova, O.; Chappell, P.D.; Cohen, N.R.; Jacquot, J.E.; Mann, E.L.; Marchetti, A.; Ohnemus, D.C.; Rauschenberg, S.; Tagliabue, A. Taxonomic and nutrient controls on phytoplankton iron quotas in the ocean. Limnol. Oceanogr. Lett. 2021, 6, 96–106. [Google Scholar] [CrossRef]
- Hutchins, D.A.; Boyd, P.W. Marine phytoplankton and the changing ocean iron cycle. Nat. Clim. Chang. 2016, 6, 1072–1079. [Google Scholar] [CrossRef]
- Ussher, S.J.; Achterberg, E.P.; Worsfold, P.J. Marine Biogeochemistry of Iron. Environ. Chem. 2004, 1, 67. [Google Scholar] [CrossRef]
- Sutak, R.; Camadro, J.M.; Lesuisse, E. Iron Uptake Mechanisms in Marine Phytoplankton. Front. Microbiol. 2020, 11, 2831. [Google Scholar] [CrossRef] [PubMed]
- de Baar, H.J.W.; de Jong, J.T.M. Distributions, Sources and Sinks of Iron in Seawater. In The Biogeochemistry of Iron in Seawater; Turner, D.R., Hunter, K.A., Eds.; John Wiley & Sons Ltd.: Chichester, UK, 2001; pp. 123–253. ISBN 978-0-471-49068-5. [Google Scholar]
- Hopkinson, B.M.; Morel, F.M.M. The role of siderophores in iron acquisition by photosynthetic marine microorganisms. BioMetals 2009, 22, 659–669. [Google Scholar] [CrossRef] [PubMed]
- Whitfield, M. Interactions between phytoplankton and trace metals in the ocean. In Advances in Marine Biology; Academic Press: Cambridge, MA, USA, 2001; Volume 41, pp. 1–128. [Google Scholar]
- Klausmeier, C.A.; Litchman, E.; Daufresne, T.; Levin, S.A. Phytoplankton stoichiometry. Ecol. Res. 2008, 23, 479–485. [Google Scholar] [CrossRef]
- Sterner, R.W.; Elser, J.J. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere; Princeton University Press: Princeton, NJ, USA, 2002; ISBN 9781400885695. [Google Scholar]
- Redfield, A.C. The biological control of chemical factors in the environment. Am. Sci. 1958, 46, 205–221. [Google Scholar] [CrossRef]
- Flemming, R.H. Composition of plankton and units for reporting populations and production. In Proceedings of the Sixth Pacific Scientific Congress; University of California Press: Berkeley, CA, USA, 1940; pp. 535–540. [Google Scholar]
- Falkowski, P.G. Rationalizing elemental ratios in unicellular algae. J. Phycol. 2000, 36, 3–6. [Google Scholar] [CrossRef] [Green Version]
- Lovelock, J. Gaia: A New Look at Life on Earth; Oxford University Press: Oxford, UK, 2016; ISBN 9780198784883. [Google Scholar]
- Morel, F.M.M.; Hudson, R.J.M.; Price, N.M. Limitation of productivity by trace metals in the sea. Limnol. Oceanogr. 1991, 36, 1742–1755. [Google Scholar] [CrossRef]
- Michaels, A.; Karl, D.; Capone, D. Element Stoichiometry, New Production and Nitrogen Fixation. Oceanography 2001, 14, 68–77. [Google Scholar] [CrossRef] [Green Version]
- Karl, D.M.; Björkman, K.M.; Dore, J.E.; Fujieki, L.; Hebel, D.V.; Houlihan, T.; Letelier, R.M.; Tupas, L.M. Ecological nitrogen-to-phosphorus stoichiometry at station ALOHA. Deep Sea Res. Part II Top. Stud. Oceanogr. 2001, 48, 1529–1566. [Google Scholar] [CrossRef] [Green Version]
- Quigg, A.; Finkel, Z.V.; Irwin, A.J.; Rosenthal, Y.; Ho, T.-Y.; Reinfelder, J.R.; Schofield, O.; Morel, F.M.M.; Falkowski, P.G. The evolutionary inheritance of elemental stoichiometry in marine phytoplankton. Nature 2003, 425, 291–294. [Google Scholar] [CrossRef]
- Lazareva, E.V.; Romankevich, E.A. Carbohydrates as indicators of biogeochemical processes. Oceanology 2012, 52, 335–344. [Google Scholar] [CrossRef]
- Agatova, A.I.; Lapina, N.M.; Togunova, N.I. Transformation rate of organic matter in ecosystems of Arctic seas. In Arctic and Antarctic; Kotlyakov, V.M., Ed.; Nauka: Moscow, Russia, 2004; pp. 171–195. [Google Scholar]
- Lasareva, E.V.; Parfenova, A.M.; Romankevich, E.A.; Lobus, N.V.; Drozdova, A.N. Organic Matter and Mineral Interactions Modulate Flocculation Across Arctic River Mixing Zones. J. Geophys. Res. Biogeosci. 2019, 124, 1651–1664. [Google Scholar] [CrossRef]
Metal | Enzyme(s) | Function(s) in a Cell |
---|---|---|
Fe | Cytochromes | Electron transport during photosynthesis and respiration |
Other Fe-S proteins | ||
Ferredoxin | Electron transport during photosynthesis and nitrogen fixation | |
NAD(P)H/PQ-oxidoreductase | Electron transport during photosynthesis | |
Nitrate and nitrite reductase | Converting nitrates to ammonia | |
Chelatase | Synthesis of porphyrin and phycobiliprotein | |
Nitrogenase * | Nitrogen fixation | |
Catalase | Protection of the cell from reactive oxygen species | |
Peroxidase | ||
Superoxide dismutase | ||
Zn | Carbonic anhydrase | Hydration and dehydration of CO2 |
Alkaline phosphatase | Hydrolysis of Phosphoric Acid Esters | |
RNA polymerase | Replication and transcription of nucleic acids | |
tRNA synthetase | tRNA synthesis | |
Reverse transcriptase | Synthesis of single-stranded DNA from RNA | |
Carboxypeptidase | Hydrolysis of peptide bonds | |
Superoxide dismutase | Protection of the cell from reactive oxygen species | |
Cu | Multicopper ferroxidase | High-affinity transmembrane Fe transport |
Superoxide dismutase | Protection of the cell from reactive oxygen species | |
Ascorbate oxidase | Oxidation and reduction of ascorbic acid | |
Cytochrome oxidase | Mitochondrial electron transport | |
Plastocyanin | Electron transport during photosynthesis | |
Mn | Phosphotransferases | Phosphorylation reactions |
Arginase | Hydrolysis of arginine to ornithine and urea | |
Superoxide dismutase | Protection of the cell from reactive oxygen species | |
O2-releasing enzymes | Water oxidation during photosynthesis | |
Mo | Nitrate reductase | Converting nitrates to ammonia |
Nitrogenase * | Nitrogen fixation | |
Ni | Superoxide dismutase | Protection of the cell from reactive oxygen species |
Urease | Hydrolysis of urea | |
Co | Vitamin B12 | Carbon and hydrogen transfer reactions |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lobus, N.V.; Kulikovskiy, M.S. The Co-Evolution Aspects of the Biogeochemical Role of Phytoplankton in Aquatic Ecosystems: A Review. Biology 2023, 12, 92. https://doi.org/10.3390/biology12010092
Lobus NV, Kulikovskiy MS. The Co-Evolution Aspects of the Biogeochemical Role of Phytoplankton in Aquatic Ecosystems: A Review. Biology. 2023; 12(1):92. https://doi.org/10.3390/biology12010092
Chicago/Turabian StyleLobus, Nikolay V., and Maxim S. Kulikovskiy. 2023. "The Co-Evolution Aspects of the Biogeochemical Role of Phytoplankton in Aquatic Ecosystems: A Review" Biology 12, no. 1: 92. https://doi.org/10.3390/biology12010092
APA StyleLobus, N. V., & Kulikovskiy, M. S. (2023). The Co-Evolution Aspects of the Biogeochemical Role of Phytoplankton in Aquatic Ecosystems: A Review. Biology, 12(1), 92. https://doi.org/10.3390/biology12010092