Cell-Free Therapies: The Use of Cell Extracts to Mitigate Irradiation-Injured Salivary Glands
Abstract
:Simple Summary
Abstract
1. Introduction
2. Cell Extract Therapies and IR-Damage SG
2.1. Bone Marrow Stem Cell Extract and Bone Marrow Cell Extract Therapies
2.2. Embryonic Stem Cell, Adipose Stem Cell, and White Blood Cell Extract Therapies
2.3. Other Cell Extract Candidates
3. Optimization of Cell Extract Treatments
3.1. Dosage, Frequency, and Timing
3.2. Delivery Methods
3.3. Cell Extract Preparation
4. Constituents in Cell Extracts and Their Mechanisms
5. Advantages and Limitations
5.1. Cell Extract and Cell-Based Therapies
5.2. Cell Extract and Other Cell-Free Therapies
5.2.1. Conditioned Medium Therapies
5.2.2. Other Potential Cell-Free Therapies
5.2.3. Comparison of Cell Extracts to Other Cell-Free Therapies
5.3. Limitations of Cell Extract Treatment
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
SG | Salivary glands |
IR | Irradiation |
HNC | Head and neck cancer |
RT | Radiotherapy |
IMRT | Intensity-modulated radiotherapy |
CE | Cell extract |
MSC | Mesenchymal stem cells |
BMSC | Bone marrow stem cells |
BMSCE | Bone marrow stem cell extract |
BMCE | Bone marrow cell extract |
MC | Mononuclear cells |
GC | Granulocytes |
RBC | Red blood cell extract |
MCE | Mononuclear cell extract |
MI | Myocardial infarction |
GCE | Granulocytes extract |
RBCE | Red blood cell extract |
2D | Two-dimensional |
3D | Three-dimensional |
AQP1 | Aquaporin 1 |
AQP5 | Aquaporin 5 |
PSP | Parotid secretory protein |
ESCE | Embryonic stem cell extract |
ESC | Embryonic stem cells |
WBC | White blood cells |
ADSC | Adipose stem cells |
ADSCE | Adipose stem cell extract |
LSC | Labial stem cells |
LSCE | Labial stem cell extract |
I.P | Intraperitoneally injection |
I.V | Intravenous injection |
I.G | Intra-glandular delivery route |
ER | Endoplasmic reticulum |
SDF-1 | Stromal cell-derived factor 1 |
MMPs | Matrix metallopeptidases |
CD26 | Cluster of differentiation 26 |
OPN | Osteopontin |
VEGF | Vascular endothelial growth factor |
PAI-1 | Plasminogen activator inhibitor-1 |
FGF2 | Fibroblast Growth Factor 2 |
TIMPs | Tissue inhibitors of metalloproteinases |
uPA | Urokinase plasminogen activator |
TGF-beta | Transforming growth factor beta |
IL-3, -6, -8, -17 | Interleukin-3, -6, -8, -17 |
ANGs | Angiopoietin-related growth factors |
BMPs | Bone morphogenetic proteins |
CM | Conditioned medium |
EVs | Extracellular vesicles |
PRP | Platelet-rich plasma |
IGF-1 | Insulin-like growth factor 1 |
LS/MS/MS | liquid chromatography–tandem mass spectrometry |
GM-CSF | Granulocyte–macrophage colony-stimulating factor |
UCB | Umbilical cord blood |
References
- Roblegg, E.; Coughran, A.; Sirjani, D. Saliva: An all-rounder of our body. Eur. J. Pharm. Biopharm. 2019, 142, 133–141. [Google Scholar] [CrossRef]
- Pinna, R.; Guglielmo Campus; Cumbo, E.; Mura, I.; Milia, E. Xerostomia induced by radiotherapy: An overview of the physiopathology, clinical evidence, and management of the oral damage. Therm. Clin. Risk Manage. 2015, 11, 171–188. [Google Scholar] [CrossRef]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed]
- Jasmer, K.J.; Gilman, K.E.; Forti, K.M.; Weisman, G.A.; Limesand, K.H. Radiation-Induced Salivary Gland Dysfunction: Mechanisms, Therapeutics and Future Directions. J. Clin. Med. 2020, 9, 4095. [Google Scholar] [CrossRef]
- Dreizen, S.; Brown, L.R.; Handler, S.; Levy, B.M. Radiation-induced xerostomia in cancer patients.Effect on salivary and serum electrolytes. Cancer 1976, 38, 273–278. [Google Scholar] [CrossRef]
- Ben-Aryeh, H.; Miron, D.; Berdicevsky, I.; Szargel, R.; Gutman, D. Xerostomia in the Elderly: Prevalence, Diagnosis, Complications and Treatment1. Gerodontology 1985, 4, 77–82. [Google Scholar] [CrossRef]
- Pedersen, A.M.L.; Sørensen, C.E.; Proctor, G.B.; Carpenter, G.; Ekström, J. Salivary secretion in health and disease. J. Oral Rehabil. 2018, 45, 730–746. [Google Scholar] [CrossRef] [PubMed]
- Konings, A.W.; Coppes, R.P.; Vissink, A. On the mechanism of salivary gland radiosensitivity. Int. J. Radiat. Oncol. 2005, 62, 1187–1194. [Google Scholar] [CrossRef]
- Coppes, R.P.; Roffel, A.F.; Zeilstra, L.J.W.; Vissink, A.; Konings, A.W.T. Early Radiation Effects on Muscarinic Receptor-Induced Secretory Responsiveness of the Parotid Gland in the Freely Moving Rat. Radiat. Res. 2000, 153, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Coppes, R.P.; Zeilstra, L.J.W.; Kampinga, H.; Konings, A.W.T. Early to late sparing of radiation damage to the parotid gland by adrenergic and muscarinic receptor agonists. Br. J. Cancer 2001, 85, 1055–1063. [Google Scholar] [CrossRef] [Green Version]
- Takagi, K.; Yamaguchi, K.; Sakurai, T.; Asari, T.; Hashimoto, K.; Terakawa, S. Secretion of Saliva in X-Irradiated Rat Submandibular Glands. Radiat. Res. 2003, 159, 351–360. [Google Scholar] [CrossRef]
- Tanaka, J.; Mishima, K. Application of regenerative medicine to salivary gland hypofunction. Jpn Dent. Sci. Rev. 2021, 57, 54–59. [Google Scholar] [CrossRef]
- Mizrachi, A.; Cotrim, A.P.; Katabi, N.; Mitchell, J.B.; Verheij, M.; Haimovitz-Friedman, A. Radiation-Induced Microvascular Injury as a Mechanism of Salivary Gland Hypofunction and Potential Target for Radioprotectors. Radiat. Res. 2016, 186, 189–195. [Google Scholar] [CrossRef]
- Xu, J.; Yan, X.; Gao, R.; Mao, L.; Cotrim, A.P.; Zheng, C.; Zhang, C.; Baum, B.J.; Wang, S. Effect of Irradiation on Microvascular Endothelial Cells of Parotid Glands in the Miniature Pig. Int. J. Radiat. Oncol. 2010, 78, 897–903. [Google Scholar] [CrossRef] [PubMed]
- Nagler, R.M. The enigmatic mechanism of irradiation-induced damage to the major salivary glands. Oral Dis. 2002, 8, 141–146. [Google Scholar] [CrossRef]
- Zeilstra, L.J.; Vissink, A.; Konings, A.W.; Coppes, R.P. Radiation induced cell loss in rat submandibular gland and its relation to gland function. Int. J. Radiat. Biol. 2000, 76, 419–429. [Google Scholar] [PubMed]
- Chambers, M.S.; Garden, A.S.; Kies, M.S.; Martin, J.W. Radiation-induced Xerostomia in patients with head and neck cancer: Pathogenesis, impact on quality of life, and management. Head Neck 2004, 26, 796–807. [Google Scholar] [CrossRef] [PubMed]
- Furness, S.; Bryan, G.; McMillan, R.; Worthington, H.V. Interventions for the management of dry mouth: Non-pharmacological interventions. Cochrane Database Syst. Rev. 2013, 8, P.Cd009603. [Google Scholar]
- Fox, N.F.; Xiao, C.; Sood, A.J.; Lovelace, T.L.; Nguyen, S.A.; Sharma, A.; Day, T.A. Hyperbaric oxygen therapy for the treatment of radiation-induced xerostomia: A systematic review. Oral Surgery Oral Med. Oral Pathol. Oral Radiol. 2015, 120, 22–28. [Google Scholar] [CrossRef]
- López-Jornet, P.; Camacho-Alonso, F.; Rodriguez-Aguado, C. Evaluation of the clinical efficacy of a betaine-containing mouthwash and an intraoral device for the treatment of dry mouth. J. Oral Pathol. Med. 2011, 41, 201–206. [Google Scholar] [CrossRef]
- Łysik, D.; Niemirowicz-Laskowska, K.; Bucki, R.; Tokajuk, G.; Mystkowska, J. Artificial Saliva: Challenges and Future Perspectives for the Treatment of Xerostomia. Int. J. Mol. Sci. 2019, 20, 3199. [Google Scholar] [CrossRef] [Green Version]
- Gil-Montoya, J.; Silvestre, F.; Barrios, R.; Silvestre-Rangil, J. Treatment of xerostomia and hyposalivation in the elderly: A systematic review. Med. Oral Patol. Oral Cirugía Buccal 2016, 21, e355–e366. [Google Scholar] [CrossRef]
- Han, P.; Suarez-Durall, P.; Mulligan, R. Dry mouth: A critical topic for older adult patients. J. Prosthodont. Res. 2015, 59, 6–19. [Google Scholar] [CrossRef]
- Pow, E.H.; Kwong, D.L.; McMillan, A.S.; Wong, M.C.; Sham, J.S.; Leung, L.H.; Leung, W.K. Xerostomia and quality of life after intensity-modulated radiotherapy vs. conventional radiotherapy for early-stage nasopharyngeal carcinoma: Initial report on a randomized controlled clinical trial. Int. J. Radiat. Oncol. 2006, 66, 981–991. [Google Scholar] [CrossRef] [PubMed]
- Kam, M.K.; Leung, S.-F.; Zee, B.C.-Y.; Chau, R.M.; Suen, J.J.; Mo, F.; Lai, M.; Ho, R.; Cheung, K.-Y.; Yu, B.K.; et al. Prospective Randomized Study of Intensity-Modulated Radiotherapy on Salivary Gland Function in Early-Stage Nasopharyngeal Carcinoma Patients. J. Clin. Oncol. 2007, 25, 4873–4879. [Google Scholar] [CrossRef] [PubMed]
- Jellema, A.P.; Slotman, B.J.; Muller, M.J.; Leemans, C.R.; Smeele, L.E.; Hoekman, K.; Langendijk, J.A. Radiotherapy alone, versus radiotherapy with amifostine 3 times weekly, versus radiotherapy with amifostine 5 times weekly: A prospective randomized study in squamous cell head and neck cancer. Cancer 2006, 107, 544–553. [Google Scholar] [CrossRef]
- Vissink, A.; Mitchell, J.B.; Baum, B.J.; Limesand, K.H.; Jensen, S.B.; Fox, P.C.; Elting, L.S.; Langendijk, J.A.; Coppes, R.P.; Reyland, M.E. Clinical Management of Salivary Gland Hypofunction and Xerostomia in Head-and-Neck Cancer Patients: Successes and Barriers. Int. J. Radiat. Oncol. 2010, 78, 983–991. [Google Scholar] [CrossRef]
- Vissink, A.; Luijk, P.; Langendijk, J.; Coppes, R. Current ideas to reduce or salvage radiation damage to salivary glands. Oral Dis. 2014, 21, e1–e10. [Google Scholar] [CrossRef]
- Sood, A.J.; Fox, N.F.; O’Connell, B.P.; Lovelace, T.L.; Nguyen, S.A.; Sharma, A.K.; Hornig, J.D.; Day, T.A. Salivary gland transfer to prevent radiation-induced xerostomia: A systematic review and meta-analysis. Oral Oncol. 2014, 50, 77–83. [Google Scholar] [CrossRef]
- Okoturo, E.; Trivedi, N.; Kekatpure, V.; Gangoli, A.; Shetkar, G.; Mohan, M.; Kuriakose, M. A retrospective evaluation of submandibular gland involvement in oral cavity cancers: A case for gland preservation. Int. J. Oral Maxillofac. Surg. 2012, 41, 1383–1386. [Google Scholar] [CrossRef]
- Jensen, D.H.; Oliveri, R.S.; Kølle, S.-F.T.; Fischer-Nielsen, A.; Specht, L.; Bardow, A.; von Buchwald, C. Mesenchymal stem cell therapy for salivary gland dysfunction and xerostomia: A systematic review of preclinical studies. Oral Surgery Oral Med. Oral Pathol. Oral Radiol. 2014, 117, 335–342.e1. [Google Scholar] [CrossRef] [PubMed]
- Kagami, H. The potential use of cell-based therapies in the treatment of oral diseases. Oral Dis. 2015, 21, 545–549. [Google Scholar] [CrossRef]
- Blitzer, G.C.; Rogus-Pulia, N.M.; Mattison, R.J.; Varghese, T.; Ganz, O.; Chappell, R.; Kimple, R.J. Marrow-Derived Autologous Stromal Cells for the Restoration of Salivary Hypofunction (MARSH): Study protocol for a phase 1 dose-escalation trial of patients with xerostomia after radiation therapy for head and neck cancer: MARSH: Marrow-Derived Autologous Stromal Cells for the Restoration of Salivary Hypofunction. Cytotherapy 2022, 24, 534–543. [Google Scholar]
- Fang, D.; Su, X.; Liu, Y.; Lee, J.C.; Seuntjens, J.; Tran, S.D. Cell extracts from spleen and adipose tissues restore function to irradiation-injured salivary glands. J. Tissue Eng. Regen. Med. 2017, 12, e1289–e1296. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Liu, Y.; Bakkar, M.; Elkashty, O.; El-Hakim, M.; Seuntjens, J.; Tran, S. Labial Stem Cell Extract Mitigates Injury to Irradiated Salivary Glands. J. Dent. Res. 2020, 99, 293–301. [Google Scholar] [CrossRef]
- Yamamura, Y.; Yamada, H.; Sakurai, T.; Ide, F.; Inoue, H.; Muramatsu, T.; Mishima, K.; Hamada, Y.; Saito, I. Treatment of salivary gland hypofunction by transplantation with dental pulp cells. Arch. Oral Biol. 2013, 58, 935–942. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.-S.; Lee, S.; Kim, Y.-M.; Lim, J.-Y. Hypoxia-Activated Adipose Mesenchymal Stem Cells Prevents Irradiation-Induced Salivary Hypofunction by Enhanced Paracrine Effect Through Fibroblast Growth Factor 10. Stem Cells 2018, 36, 1020–1032. [Google Scholar] [CrossRef]
- Sumita, Y.; Liu, Y.; Khalili, S.; Maria, O.M.; Xia, D.; Key, S.; Cotrim, A.P.; Mezey, E.; Tran, S.D. Bone marrow-derived cells rescue salivary gland function in mice with head and neck irradiation. Int. J. Biochem. Cell Biol. 2011, 43, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Sumita, Y.; Yoshida, T.; Honma, R.; Iwatake, M.; Raudales, J.L.M.; Shizuno, T.; Asahina, I. Anti-inflammatory and vasculogenic conditioning of peripheral blood mononuclear cells reinforces their therapeutic potential for radiation-injured salivary glands. Stem Cell Res. Ther. 2019, 10, 304. [Google Scholar] [CrossRef]
- Grønhøj, C.; Jensen, D.H.; Glovinski, P.V.; Jensen, S.B.; Bardow, A.; Oliveri, R.S.; Specht, L.; Thomsen, C.; Darkner, S.; Kiss, K.; et al. First-in-man mesenchymal stem cells for radiation-induced xerostomia (MESRIX): Study protocol for a randomized controlled trial. Trials 2017, 18, 108. [Google Scholar] [CrossRef] [PubMed]
- Lynggaard, C.D.; Grønhøj, C.; Christensen, R.; Fischer-Nielsen, A.; Melchiors, J.; Specht, L.; Andersen, E.; Mortensen, J.; Oturai, P.; Barfod, G.H.; et al. Intraglandular Off-the-Shelf Allogeneic Mesenchymal Stem Cell Treatment in Patients with Radiation-Induced Xerostomia: A Safety Study (MESRIX-II). Stem Cells Transl. Med. 2022, 11, 478–489. [Google Scholar] [CrossRef]
- Tran, S.D.; Liu, Y.; Xia, D.; Maria, O.M.; Khalili, S.; Wang, R.W.-J.; Quan, V.-H.; Hu, S.; Seuntjens, J. Paracrine Effects of Bone Marrow Soup Restore Organ Function, Regeneration, and Repair in Salivary Glands Damaged by Irradiation. PLoS ONE 2013, 8, e61632. [Google Scholar] [CrossRef] [Green Version]
- Fang, D.; Hu, S.; Liu, Y.; Quan, V.-H.; Seuntjens, J.; Tran, S.D. Identification of the active components in Bone Marrow Soup: A mitigator against irradiation-injury to salivary glands. Sci. Rep. 2015, 5, 16017. [Google Scholar] [CrossRef]
- An, H.-Y.; Shin, H.-S.; Choi, J.-S.; Kim, H.J.; Lim, J.-Y.; Kim, Y.-M. Adipose Mesenchymal Stem Cell Secretome Modulated in Hypoxia for Remodeling of Radiation-Induced Salivary Gland Damage. PLoS ONE 2015, 10, e0141862. [Google Scholar] [CrossRef]
- Lee, R.H.; Oh, J.Y.; Choi, H.; Bazhanov, N. Therapeutic factors secreted by mesenchymal stromal cells and tissue repair. J. Cell. Biochem. 2011, 112, 3073–3078. [Google Scholar] [CrossRef]
- Na, Y.K.; Ban, J.-J.; Lee, M.; Im, W.; Kim, M. Wound healing potential of adipose tissue stem cell extract. Biochem. Biophys. Res. Commun. 2017, 485, 30–34. [Google Scholar] [CrossRef]
- Angeli, F.S.; Zhang, Y.; Sievers, R.; Jun, K.; Yim, S.; Boyle, A.; Yeghiazarians, Y. Injection of Human Bone Marrow and Mononuclear Cell Extract into Infarcted Mouse Hearts Results in Functional Improvement. Open Cardiovasc. Med. J. 2012, 6, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Ryu, J.H.; Kim, Y.; Kim, M.J.; Park, J.; Kim, J.W.; Park, H.S.; Shin, Y.I. Membrane-Free Stem Cell Extract Enhances Blood-Brain Barrier Integrity by Suppressing NF-κB-Mediated Activation of NLRP3 Inflammasome in Mice with Ischemic Stroke. Life 2022, 12, 503. [Google Scholar] [CrossRef]
- Suleiman, S.; Di Fiore, R.; Cassar, A.; Formosa, M.M.; Schembri-Wismayer, P.; Calleja-Agius, J. Axolotl Ambystoma mexicanum extract induces cell cycle arrest and differentiation in human acute myeloid leukemia HL-60 cells. Tumor Biol. 2020, 42, 1010428320954735. [Google Scholar] [CrossRef] [PubMed]
- Nishikawa, T.; Maeda, K.; Nakamura, M.; Yamamura, T.; Sawada, T.; Mizutani, Y.; Ito, T.; Ishikawa, T.; Furukawa, K.; Ohno, E.; et al. Filtrated Adipose Tissue-Derived Mesenchymal Stem Cell Lysate Ameliorates Experimental Acute Colitis in Mice. Dig. Dis. Sci. 2020, 66, 1034–1044. [Google Scholar] [CrossRef] [PubMed]
- Michel, G.; Blery, P.; Hénoux, M.; Guicheux, J.; Weiss, P.; Brouard, S.; Malard, O.; Espitalier, F. Bone marrow cell extract promotes the regeneration of irradiated bone. PLoS ONE 2017, 12, e0178060. [Google Scholar] [CrossRef]
- Choi, J.M.; Park, H.S.; He, M.T.; Kim, Y.S.; Kim, H.Y.; Lee, A.Y.; Cho, E.J. Membrane-Free Stem Cells and Pyridoxal 5′-Phosphate Synergistically Enhance Cognitive Function in Alzheimer’s Disease Mouse Model. Antioxidants 2022, 11, 601. [Google Scholar] [CrossRef] [PubMed]
- Mangir, N.; Akbal, C.; Tarcan, T.; Simsek, F.; Turkeri, L. Mesenchymal stem cell therapy in treatment of erectile dysfunction: Autologous or allogeneic cell sources? Int. J. Urol. 2014, 21, 1280–1285. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-W.; Hsiao, W.-T.; Lee, O.K.-S. Mesenchymal stromal cell-based therapies reduce obesity and metabolic syndromes induced by a high-fat diet. Transl. Res. 2016, 182, 61–74.e8. [Google Scholar] [CrossRef]
- Khubutiya, M.S.; Temnov, A.A.; Vagabov, V.A.; Sklifas, A.N.; Rogov, K.A.; Zhgutov, Y.A. Effect of Conditioned Medium and Bone Marrow Stem Cell Lysate on the Course of Acetaminophen-Induced Liver Failure. Bull. Exp. Biol. Med. 2015, 159, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Abughanam, G.; Elkashty, O.A.; Liu, Y.; Bakkar, M.O.; Tran, S.D. Mesenchymal Stem Cells Extract (MSCsE)-Based Therapy Alleviates Xerostomia and Keratoconjunctivitis Sicca in Sjogren’s Syndrome-Like Disease. Int. J. Mol. Sci. 2019, 20, 4750. [Google Scholar] [CrossRef] [PubMed]
- Taranger, C.K.; Noer, A.; Sørensen, A.L.; Håkelien, A.-M.; Boquest, A.C.; Collas, P. Induction of Dedifferentiation, Genomewide Transcriptional Programming, and Epigenetic Reprogramming by Extracts of Carcinoma and Embryonic Stem Cells. Mol. Biol. Cell 2005, 16, 5719–5735. [Google Scholar] [CrossRef]
- Phosri, S.; Jangpromma, N.; Chang, L.C.; Tan, G.T.; Wongwiwatthananukit, S.; Maijaroen, S.; Anwised, P.; Payoungkiattikun, W.; Klaynongsruang, S. Siamese Crocodile White Blood Cell Extract Inhibits Cell Proliferation and Promotes Autophagy in Multiple Cancer Cell Lines. J. Microbiol. Biotechnol. 2018, 28, 1007–1021. [Google Scholar] [CrossRef]
- Argyropoulou, A.; Aligiannis, N.; Trougakos, I.P.; Skaltsounis, A.-L. Natural compounds with anti-ageing activity. Nat. Prod. Rep. 2013, 30, 1412–1437. [Google Scholar] [CrossRef]
- Lim, J.S.; Yoo, G. Effects of Adipose-derived Stromal Cells and of their Extract on Wound Healing in a Mouse Model. J. Korean Med. Sci. 2010, 25, 746–751. [Google Scholar] [CrossRef]
- Albersen, M.; Fandel, T.M.; Lin, G.; Wang, G.; Banie, L.; Lin, C.-S.; Lue, T.F. Injections of Adipose Tissue-Derived Stem Cells and Stem Cell Lysate Improve Recovery of Erectile Function in a Rat Model of Cavernous Nerve Injury. J. Sex Med. 2010, 7, 3331–3340. [Google Scholar] [CrossRef]
- He, M.; Park, H.; Kim, Y.; Lee, A.; Cho, E. Protective Effect of Membrane-Free Stem Cells against Lipopolysaccharide and Interferon-Gamma-Stimulated Inflammatory Responses in RAW 264.7 Macrophages. Int. J. Mol. Sci. 2021, 22, 6894. [Google Scholar] [CrossRef]
- Hsu, M.F.; Yu, S.H.; Chuang, S.J.; Kuo, T.K.C.; Singal, P.K.; Huang, C.Y.; Kuo, C.H. Can mesenchymal stem cell lysate reverse aging? Aging 2018, 10, 2900–2910. [Google Scholar] [CrossRef] [PubMed]
- Yeghiazarians, Y.; Zhang, Y.; Prasad, M.; Shih, H.; Saini, S.A.; Takagawa, J.; Sievers, R.E.; Wong, M.L.; Kapasi, N.K.; Mirsky, R.; et al. Injection of Bone Marrow Cell Extract Into Infarcted Hearts Results in Functional Improvement Comparable to Intact Cell Therapy. Mol. Ther. 2009, 17, 1250–1256. [Google Scholar] [CrossRef] [PubMed]
- Misuno, K.; Tran, S.D.; Khalili, S.; Huang, J.; Liu, Y.; Hu, S. Quantitative Analysis of Protein and Gene Expression in Salivary Glands of Sjogren’s-Like Disease NOD Mice Treated by Bone Marrow Soup. PLoS ONE 2014, 9, e87158. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Fang, D.; Liu, Y.; Ruan, G.; Seuntjens, J.; Kinsella, J.; Tran, S. Lyophilized bone marrow cell extract functionally restores irradiation-injured salivary glands. Oral Dis. 2018, 24, 202–206. [Google Scholar] [CrossRef]
- Su, X.; Liu, Y.; ElKashty, O.; Seuntjens, J.; Yamada, K.; Tran, S. Human Bone Marrow Cell Extracts Mitigate Radiation Injury to Salivary Gland. J. Dent. Res. 2022, 101, 1645–1653. [Google Scholar] [CrossRef]
- Zhou, W.B.S.; Shi, X.Q.; Liu, Y.; Tran, S.D.; Beaudry, F.; Zhang, J. Unbiased proteomic analysis detects painful systemic inflammatory profile in the serum of nerve-injured mice. Pain 2022, 164, e77–e90. [Google Scholar] [CrossRef]
- Zhan, W.; Liu, Z.; Liu, Y.; Ke, Q.; Ding, Y.; Lu, X.; Wang, Z. Modulation of rabbit corneal epithelial cells fate using embryonic stem cell extract. Mol. Vis. 2010, 16, 1154–1161. [Google Scholar]
- Talaei-Khozani, T.; Kharazinejad, E.; Rohani, L.; Vojdani, Z.; Pour, Z.M.; Tabei, S.Z. Expression of pluripotency markers in human granulosa cells after embryonic stem cell extract exposure and epigenetic modification. Iran. J. Reprod. Med. 2012, 10, 193–200. [Google Scholar]
- Byeon, Y.-E.; Ryu, H.-H.; Park, S.S.; Koyama, Y.; Kikuchi, M.; Kim, W.H.; Kang, K.-S.; Kweon, O.-K. Paracrine effect of canine allogenic umbilical cord blood-derived mesenchymal stromal cells mixed with beta-tricalcium phosphate on bone regeneration in ectopic implantations. Cytotherapy 2010, 12, 626–636. [Google Scholar] [CrossRef] [PubMed]
- Saad, N.; Alberio, R.; Johnson, A.D.; Emes, R.D.; Giles, T.C.; Clarke, P.; Grabowska, A.M.; Allegrucci, C. Cancer reversion with oocyte extracts is mediated by cell cycle arrest and induction of tumour dormancy. Oncotarget 2018, 9, 16008–16027. [Google Scholar] [CrossRef]
- Joompang, A.; Anwised, P.; Luangpraditkun, K.; Jangpromma, N.; Viyoch, J.; Viennet, C.; Klaynongsruang, S. Anti-Melanogenesis Activity of Crocodile (Crocodylus siamensis) White Blood Cell Extract on Ultraviolet B-Irradiated Melanocytes. J. Med. Food 2022, 25, 818–827. [Google Scholar] [CrossRef]
- Patathananone, S.; Thammasirirak, S.; Daduang, J.; Chung, J.G.; Temsiripong, Y.; Daduang, S. Bioactive compounds from crocodile (Crocodylus siamensis) white blood cells induced apoptotic cell death in hela cells. Environ. Toxicol. 2015, 31, 986–997. [Google Scholar] [CrossRef] [PubMed]
- López, J.F.; Sarkanen, J.-R.; Huttala, O.; Kaartinen, I.S.; Kuokkanen, H.O.; Ylikomi, T. Adipose tissue extract shows potential for wound healing: In vitro proliferation and migration of cell types contributing to wound healing in the presence of adipose tissue preparation and platelet rich plasma. Cytotechnology 2018, 70, 1193–1204. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Xia, J.; Chen, H.; Wang, L.; Deng, C.; Lu, F. Human adipose liquid extract induces angiogenesis and adipogenesis: A novel cell-free therapeutic agent. Stem Cell Res. Ther. 2019, 10, 252. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Deng, M.; Cai, Y.; Zheng, H.; Wang, X.; Yu, Z.; Zhang, W.; Li, W. Cell-Free Fat Extract Increases Dermal Thickness by Enhancing Angiogenesis and Extracellular Matrix Production in Nude Mice. Aesthetic Surg. J. 2020, 40, 904–913. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Li, Y.; Du, M.-J.; Zhang, C.; Zhang, X.-Y.; Tong, H.-Z.; Liu, L.; Han, T.-L.; Li, W.-D.; Yan, L.; et al. Characterization of a Self-renewing and Multi-potent Cell Population Isolated from Human Minor Salivary Glands. Sci. Rep. 2015, 5, srep10106. [Google Scholar] [CrossRef]
- Schmid, D.; Schurch, C.; Blum, P.; Belser, E.; Zulli, F. Plant stem cell extract for longevity of skin and hair. SOFW J.-Seifen Ole Fette Wachse 2008, 134, 30–35. [Google Scholar]
- Boisvert, W.A.; Yu, M.; Choi, Y.; Jeong, G.H.; Zhang, Y.-L.; Cho, S.; Choi, C.; Lee, S.; Lee, B.-H. Hair growth-promoting effect of Geranium sibiricum extract in human dermal papilla cells and C57BL/6 mice. BMC Complement. Altern. Med. 2017, 17, 109. [Google Scholar] [CrossRef]
- Meunier, M.; Scandolera, A.; Chapuis, E.; Lambert, C.; Jarrin, C.; Robe, P.; Reynaud, R. From stem cells protection to skin microbiota balance: Orobanche rapum extract, a new natural strategy. J. Cosmet. Dermatol. 2019, 18, 1140–1154. [Google Scholar] [CrossRef]
- Nazari, J.; Payamnoor, V.; Sadeghzadeh, Z.; Asadi, J.; Kavosi, M.R. Increased Induction of Apoptosis in ESCC (Esophageal Squamous-Cell Carcinoma) by Betula pendula Roth Stem Cell Extract Containing Triterpenoids Compared to Doxorubicin. Anti-Cancer Agents Med. Chem. 2020, 21, 100–107. [Google Scholar] [CrossRef]
- Fang, D.; Shang, S.; Liu, Y.; Bakkar, M.; Sumita, Y.; Seuntjens, J.; Tran, S.D. Optimal timing and frequency of bone marrow soup therapy for functional restoration of salivary glands injured by single-dose or fractionated irradiation. J. Tissue Eng. Regen. Med. 2018, 12, e1195–e1205. [Google Scholar] [CrossRef]
- Wang, Z.; Zourelias, L.; Wu, C.; Edwards, P.; Trombetta, M.; Passineau, M.J. Ultrasound-assisted nonviral gene transfer of AQP1 to the irradiated minipig parotid gland restores fluid secretion. Gene Ther. 2015, 22, 739–749. [Google Scholar] [CrossRef]
- Hu, L.; Zhu, Z.; Hai, B.; Chang, S.; Ma, L.; Xu, Y.; Li, X.; Feng, X.; Wu, X.; Zhao, Q.; et al. Intragland Shh gene delivery mitigated irradiation-induced hyposalivation in a miniature pig model. Theranostics 2018, 8, 4321–4331. [Google Scholar] [CrossRef]
- Baum, B.J.; Alevizos, I.; Zheng, C.; Cotrim, A.P.; Liu, S.; McCullagh, L.; Goldsmith, C.M.; Burbelo, P.D.; Citrin, D.E.; Mitchell, J.B.; et al. Early responses to adenoviral-mediated transfer of the aquaporin-1 cDNA for radiation-induced salivary hypofunction. Proc. Natl. Acad. Sci. USA 2012, 109, 19403–19407. [Google Scholar] [CrossRef] [PubMed]
- Sumita, Y.; Iwamoto, N.; Seki, M.; Yoshida, T.; Honma, R.; Iwatake, M.; Ohba, S.; Takashi, I.; Hotokezaka, Y.; Harada, H.; et al. Phase 1 clinical study of cell therapy with effective-mononuclear cells (E-MNC) for radiogenic xerostomia (first-in-human study) (FIH study on E-MNC therapy for radiogenic xerostomia). Medicine 2020, 99, e20788. [Google Scholar] [CrossRef]
- Islam, M.S.; Aryasomayajula, A.; Selvaganapathy, P.R. A Review on Macroscale and Microscale Cell Lysis Methods. Micromachines 2017, 8, 83. [Google Scholar] [CrossRef]
- Graham, J.M. Fractionation of Subcellular Organelles. Curr. Protoc. Cell Biol. 2015, 69, 3.1.1–3.1.22. [Google Scholar] [CrossRef] [PubMed]
- Rajasingh, J.; Hamada, H.; Bord, E.; Thorne, T.; Goukassian, I.; Lambers, E.; Krishnamurthy, P.; Qin, G.; Schlauch, K.; Rosen, K.; et al. Cell-free Embryonic Stem Cell Extract-mediated Derivation of Multi-potent Stem Cells from NIH3T3 Fibroblasts for Functional and Anatomical Ischemic Tissue Repair. Nat. Précéd. 2008, 102, e107–e117. [Google Scholar] [CrossRef]
- Goshima, H.; Forney-Stevens, K.M.; Liu, M.; Qian, K.K.; Tyagi, M.; Cicerone, M.T.; Pikal, M.J. Addition of Monovalent Electrolytes to Improve Storage Stability of Freeze-Dried Protein Formulations. J. Pharm. Sci. 2015, 105, 530–541. [Google Scholar] [CrossRef] [PubMed]
- Costantino, H.R.; Griebenow, K.; Mishra, P.; Langer, R.; Klibanov, A.M. Fourier-transform infrared spectroscopic investigation of protein stability in the lyophilized form. Biochim. Biophys. Acta (BBA)-Protein Struct. Mol. Enzym. 1995, 1253, 69–74. [Google Scholar] [CrossRef]
- Kobayashi, F.; Matsuzaka, K.; Inoue, T. The effect of basic fibroblast growth factor on regeneration in a surgical wound model of rat submandibular glands. Int. J. Oral Sci. 2016, 8, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Okumura, N.; Takimoto, K.; Okada, M.; Nakagawa, H. C6 glioma cells produce basic fibroblast growth factor that can stimulate their own proliferation. J. Biochem. 1989, 106, 904–909. [Google Scholar] [CrossRef] [PubMed]
- Thula, T.T.; Schultz, G.; Tran-Son-Tay, R.; Batich, C. Effects of EGF and bFGF on Irradiated Parotid Glands. Ann. Biomed. Eng. 2005, 33, 685–695. [Google Scholar] [CrossRef]
- Hosseini, Z.F.; Nelson, D.A.; Moskwa, N.; Sfakis, L.M.; Castracane, J.; Larsen, M. FGF2-dependent mesenchyme and laminin-111 are niche factors in salivary gland organoids. J. Cell Sci. 2018, 131, jcs208728. [Google Scholar] [CrossRef] [PubMed]
- Kojima, T.; Kanemaru, S.-I.; Hirano, S.; Tateya, I.; Suehiro, A.; Kitani, Y.; Kishimoto, Y.; Ohno, S.; Nakamura, T.; Ito, J. The protective efficacy of basic fibroblast growth factor in radiation-induced salivary gland dysfunction in mice. Laryngoscope 2011, 121, 1870–1875. [Google Scholar] [CrossRef]
- Li, J.; Chen, H.; Zhang, D.; Xie, J.; Zhou, X. The role of stromal cell-derived factor 1 on cartilage development and disease. Osteoarthr. Cartil. 2021, 29, 313–322. [Google Scholar] [CrossRef]
- Isaacson, B.; Hadad, T.; Glasner, A.; Gur, C.; Granot, Z.; Bachrach, G.; Mandelboim, O. Stromal Cell-Derived Factor 1 Mediates Immune Cell Attraction upon Urinary Tract Infection. Cell Rep. 2017, 20, 40–47. [Google Scholar] [CrossRef]
- Augustine, R.; Ur Rehman, S.R.; Joshy, K.S.; Hasan, A. Stromal cell-derived factor loaded co-electrospun hydrophilic/hydrophobic bicomponent membranes for wound protection and healing. RSC Adv. 2020, 11, 572–583. [Google Scholar] [CrossRef]
- Lawler, J. The functions of thrombospondin-1 and-2. Curr. Opin. Cell Biol. 2000, 12, 634–640. [Google Scholar] [CrossRef]
- Gutierrez, L.S. The Role of Thrombospondin 1 on Intestinal Inflammation and Carcinogenesis. Biomark. Insights 2008, 3, 171–178. [Google Scholar] [CrossRef]
- Yamagishi, S.-I.; Sata, M. Structure-Function Relationships of PEDF. Curr. Mol. Med. 2010, 10, 302–311. [Google Scholar] [CrossRef]
- Mazar, A.P.; McMahon, B.J.; Kwaan, H.C. The Apparent uPA/PAI-1 Paradox in Cancer: More than Meets the Eye. Semin. Thromb. Hemost. 2014, 39, 382–391. [Google Scholar] [CrossRef]
- Ries, C. Cytokine functions of TIMP-1. Cell. Mol. Life Sci. 2013, 71, 659–672. [Google Scholar] [CrossRef]
- Lambert, E.; Dassé, E.; Haye, B.; Petitfrère, E. TIMPs as multifacial proteins. Crit. Rev. Oncol. 2004, 49, 187–198. [Google Scholar] [CrossRef] [PubMed]
- Jin, K.; Zhu, Y.; Sun, Y.; Mao, X.O.; Xie, L.; Greenberg, D.A. Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc. Natl. Acad. Sci. USA 2002, 99, 11946–11950. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Smith, R.J.; Guan, H.; Ionita, C.N.; Khobragade, P.; Dziak, R.; Liu, Z.; Pang, M.; Wang, C.; Guan, G.; et al. Hybrid Biomaterial with Conjugated Growth Factors and Mesenchymal Stem Cells for Ectopic Bone Formation. Tissue Eng. Part A 2016, 22, 928–939. [Google Scholar] [CrossRef] [PubMed]
- Frontini, M.J.; Nong, Z.; Gros, R.; Drangova, M.; O’Neil, C.; Rahman, M.N.; Akawi, O.; Yin, H.; Ellis, C.G.; Pickering, J.G. Fibroblast growth factor 9 delivery during angiogenesis produces durable, vasoresponsive microvessels wrapped by smooth muscle cells. Nat. Biotechnol. 2011, 29, 421–427. [Google Scholar] [CrossRef]
- Annecke, K.; Schmitt, M.; Euler, U.; Zerm, M.; Paepke, D.; Paepke, S.; von Minckwitz, G.; Thomssen, C.; Harbeck, N. uPA and PAI-1 in Breast Cancer: Review of Their Clinical Utility and Current Validation in The ProspectivE NNBC-3 TRIAL. Adv. Clin. Chem. 2008, 45, 31–45. [Google Scholar] [CrossRef]
- Comella, K.; Bell, W. First-in-man intraglandular implantation of stromal vascular fraction and adipose-derived stem cells plus platelet-rich plasma in irradiation-induced gland damage: A case study. Int. Med. Case Rep. J. 2017, 10, 295–299. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.-Y.; Ra, J.C.; Shin, I.S.; Jang, Y.H.; An, H.-Y.; Choi, J.-S.; Kim, W.C.; Kim, Y.-M. Systemic Transplantation of Human Adipose Tissue-Derived Mesenchymal Stem Cells for the Regeneration of Irradiation-Induced Salivary Gland Damage. PLoS ONE 2013, 8, e71167. [Google Scholar] [CrossRef] [PubMed]
- Woodward, W.A.; Bristow, R.G.; Clarke, M.F.; Coppes, R.P.; Cristofanilli, M.; Duda, D.G.; Fike, J.R.; Hambardzumyan, D.; Hill, R.P.; Jordan, C.T.; et al. Radiation Therapy Oncology Group Translational Research Program Stem Cell Symposium: Incorporating Stem Cell Hypotheses into Clinical Trials. Int. J. Radiat. Oncol. 2009, 74, 1580–1591. [Google Scholar] [CrossRef]
- Kojima, T.; Kanemaru, S.-I.; Hirano, S.; Tateya, I.; Ohno, S.; Nakamura, T.; Ito, J. Regeneration of radiation damaged salivary glands with adipose-derived stromal cells. Laryngoscope 2011, 121, 1864–1869. [Google Scholar] [CrossRef] [PubMed]
- Xiong, X.; Shi, X.; Chen, F. Human adipose tissue-derived stem cells alleviate radiation-induced xerostomia. Int. J. Mol. Med. 2014, 34, 749–755. [Google Scholar] [CrossRef] [Green Version]
- Lombaert, I.M.A.; Brunsting, J.F.; Wierenga, P.K.; Faber, H.; Stokman, M.A.; Kok, T.; Visser, W.H.; Kampinga, H.; de Haan, G.; Coppes, R.P. Rescue of Salivary Gland Function after Stem Cell Transplantation in Irradiated Glands. PLoS ONE 2008, 3, e2063. [Google Scholar] [CrossRef]
- Jensen, S.B.; Vissink, A.; Limesand, K.H.; Reyland, M.E. Salivary Gland Hypofunction and Xerostomia in Head and Neck Radiation Patients. JNCI Monogr. 2019, 2019, lgz016. [Google Scholar] [CrossRef]
- Feng, J.; van der Zwaag, M.; Stokman, M.A.; van Os, R.; Coppes, R.P. Isolation and characterization of human salivary gland cells for stem cell transplantation to reduce radiation-induced hyposalivation. Radiother. Oncol. 2009, 92, 466–471. [Google Scholar] [CrossRef]
- Pringle, S.; Maimets, M.; van der Zwaag, M.; Stokman, M.A.; van Gosliga, D.; Zwart, E.; Witjes, M.J.; de Haan, G.; van Os, R.; Coppes, R.P. Human Salivary Gland Stem Cells Functionally Restore Radiation Damaged Salivary Glands. Stem Cells 2016, 34, 640–652. [Google Scholar] [CrossRef]
- Nanduri, L.S.; Maimets, M.; Pringle, S.A.; van der Zwaag, M.; van Os, R.P.; Coppes, R.P. Regeneration of irradiated salivary glands with stem cell marker expressing cells. Radiother. Oncol. 2011, 99, 367–372. [Google Scholar] [CrossRef]
- Nanduri, L.S.; Lombaert, I.M.; van der Zwaag, M.; Faber, H.; Brunsting, J.F.; van Os, R.P.; Coppes, R.P. Salisphere derived c-Kit+ cell transplantation restores tissue homeostasis in irradiated salivary gland. Radiother. Oncol. 2013, 108, 458–463. [Google Scholar] [CrossRef]
- Grønhøj, C.; Jensen, D.H.; Vester-Glowinski, P.; Jensen, S.B.; Bardow, A.; Oliveri, R.S.; Fog, L.M.; Specht, L.; Thomsen, C.; Darkner, S.; et al. Safety and Efficacy of Mesenchymal Stem Cells for Radiation-Induced Xerostomia: A Randomized, Placebo-Controlled Phase 1/2 Trial (MESRIX). Int. J. Radiat. Oncol. 2018, 101, 581–592. [Google Scholar] [CrossRef] [PubMed]
- Yi, T.; Lee, S.; Choi, N.; Shin, H.-S.; Kim, J.; Lim, J.-Y. Single Cell Clones Purified from Human Parotid Glands Display Features of Multipotent Epitheliomesenchymal Stem Cells. Sci. Rep. 2016, 6, 36303. [Google Scholar] [CrossRef]
- Jeong, J.; Baek, H.; Kim, Y.-J.; Choi, Y.; Lee, H.; Lee, E.; Kim, E.S.; Hah, J.H.; Kwon, T.-K.; Choi, I.J.; et al. Human salivary gland stem cells ameliorate hyposalivation of radiation-damaged rat salivary glands. Exp. Mol. Med. 2013, 45, e58. [Google Scholar] [CrossRef] [PubMed]
- Rajabzadeh, N.; Fathi, E.; Farahzadi, R. Stem cell-based regenerative medicine. Stem Cell Investig. 2019, 6, 19. [Google Scholar] [CrossRef]
- He, Y.; Han, Y.; Ye, Y. Therapeutic Potential of Menstrual Blood-Derived Stem Cell Transplantation for Intrauterine Adhesions. Front. Surg. 2022, 9, 847213. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Qu, J.; Mei, Q.; Chen, X.; Fang, Y.; Chen, L.; Xiang, C. Small extracellular vesicles from menstrual blood-derived mesenchymal stem cells (MenSCs) as a novel therapeutic impetus in regenerative medicine. Stem Cell Res. Ther. 2021, 12, 433. [Google Scholar] [CrossRef] [PubMed]
- Hur, J.; Yang, H.M.; Yoon, C.H.; Lee, C.S.; Park, K.W.; Kim, J.H.; Kim, H.S. Identification of a novel role of T cells in postnatal vasculogenesis: Characterization of endothelial progenitor cell colonies. Circulation 2007, 116, 1671–1682. [Google Scholar] [CrossRef]
- Zhang, J.; Lin, L.; Zong, W. Bone Marrow Mononuclear Cells Transfer for Patients after ST-Elevated Myocardial Infarction: A Meta-Analysis of Randomized Control Trials. Yonsei Med. J. 2018, 59, 611–623. [Google Scholar] [CrossRef]
- Wang, C.; Li, J.; Zhang, B.; Li, Y. Safety and efficacy of bone marrow-derived cells therapy on cardiomyopathy: A meta-analysis. Stem Cell Res. Ther. 2019, 10, 137. [Google Scholar] [CrossRef]
- Tran, S.D.; Pillemer, S.R.; Dutra, A.; Barrett, A.J.; Brownstein, M.J.; Key, S.; Pak, E.; Leakan, R.A.; Kingman, A.; Yamada, K.M.; et al. Differentiation of human bone marrow-derived cells into buccal epithelial cells in vivo: A molecular analytical study. Lancet 2003, 361, 1084–1088. [Google Scholar] [CrossRef]
- Urkasemsin, G.; Ferreira, J.N. Unveiling Stem Cell Heterogeneity Toward the Development of Salivary Gland Regenerative Strategies. Adv. Exp. Med. Biol. 2019, 1123, 151–164. [Google Scholar] [CrossRef]
- Agata, H.; Asahina, I.; Watanabe, N.; Ishii, Y.; Kubo, N.; Ohshima, S.; Yamazaki, M.; Tojo, A.; Kagami, H. Characteristic Change and Loss of In Vivo Osteogenic Abilities of Human Bone Marrow Stromal Cells During Passage. Tissue Eng. Part A 2010, 16, 663–673. [Google Scholar] [CrossRef]
- Xia, D.; Sumita, Y.; Liu, Y.; Tai, Y.; Wang, J.; Uehara, M.; Agata, H.; Kagami, H.; Fan, Z.; Asahina, I.; et al. GDFs promote tenogenic characteristics on human periodontal ligament-derived cells in culture at late passages. Growth Factors 2013, 31, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, T.; Sumita, Y.; Egashira, K.; Ohba, S.; Kagami, H.; Tran, S.D.; Asahina, I. Transient Exposure to Hypoxic and Anoxic Oxygen Concentrations Promotes Either Osteogenic or Ligamentogenic Characteristics of PDL Cells. BioResearch Open Access 2015, 4, 175–187. [Google Scholar] [CrossRef] [PubMed]
- Toyserkani, N.M.; Jørgensen, M.G.; Tabatabaeifar, S.; Jensen, C.H.; Sheikh, S.P.; Sørensen, J.A. Concise Review: A Safety Assessment of Adipose-Derived Cell Therapy in Clinical Trials: A Systematic Review of Reported Adverse Events. Stem Cells Transl. Med. 2017, 6, 1786–1794. [Google Scholar] [CrossRef] [PubMed]
- Vizoso, F.J.; Eiro, N.; Cid, S.; Schneider, J.; Perez-Fernandez, R. Mesenchymal Stem Cell Secretome: Toward Cell-Free Therapeutic Strategies in Regenerative Medicine. Int. J. Mol. Sci. 2017, 18, 1852. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Wu, Y.; Mori, M.; Yoshimura, K. Adipose-Derived Stem Cell Conditioned Medium and Wound Healing: A Systematic Review. Tissue Eng. Part B Rev. 2022, 28, 830–847. [Google Scholar] [CrossRef]
- Kusindarta, D.L.; Wihadmadyatami, H. Conditioned medium derived from bovine umbilical mesenchymal stem cells as an alternative source of cell-free therapy. Vet.-World 2021, 14, 2588. [Google Scholar] [CrossRef]
- Lombardi, F.; Palumbo, P.; Augello, F.R.; Cifone, M.G.; Cinque, B.; Giuliani, M. Secretome of Adipose Tissue-Derived Stem Cells (ASCs) as a Novel Trend in Chronic Non-Healing Wounds: An Overview of Experimental In Vitro and In Vivo Studies and Methodological Variables. Int. J. Mol. Sci. 2019, 20, 3721. [Google Scholar] [CrossRef]
- Kichenbrand, C.; Velot, E.; Menu, P.; Moby, V. Dental Pulp Stem Cell-Derived Conditioned Medium: An Attractive Alternative for Regenerative Therapy. Tissue Eng. Part B Rev. 2019, 25, 78–88. [Google Scholar] [CrossRef]
- Gnecchi, M.; Danieli, P.; Malpasso, G.; Ciuffreda, M.C. Paracrine Mechanisms of Mesenchymal Stem Cells in Tissue Repair. Methods Mol. Biol. 2016, 1416, 123–146. [Google Scholar] [CrossRef]
- Nakashima, Y.; Nahar, S.; Miyagi-Shiohira, C.; Kinjo, T.; Toyoda, Z.; Kobayashi, N.; Saitoh, I.; Watanabe, M.; Fujita, J.; Noguchi, H. A Liquid Chromatography with Tandem Mass Spectrometry-Based Proteomic Analysis of the Proteins Secreted by Human Adipose-Derived Mesenchymal Stem Cells. Cell Transplant. 2018, 27, 1469–1494. [Google Scholar] [CrossRef]
- Nagata, M.; Iwasaki, K.; Akazawa, K.; Komaki, M.; Yokoyama, N.; Izumi, Y.; Morita, I. Conditioned Medium from Periodontal Ligament Stem Cells Enhances Periodontal Regeneration. Tissue Eng. Part A 2017, 23, 367–377. [Google Scholar] [CrossRef]
- Kudinov, V.A.; Artyushev, R.I.; Zurina, I.M.; Zorina, E.S.; Lapshin, R.D.; Snopova, L.B.; Mukhina, I.V.; Saburina, I.N. Inhaled Placental Mesenchymal Stromal Cell Secretome from Two- and Three-Dimensional Cell Cultures Promotes Survival and Regeneration in Acute Lung Injury Model in Mice. Int. J. Mol. Sci. 2022, 23, 3417. [Google Scholar] [CrossRef]
- Maarof, M.; Lokanathan, Y.; Ruszymah, H.I.; Saim, A.; Chowdhury, S.R. Proteomic Analysis of Human Dermal Fibroblast Conditioned Medium (DFCM). Protein J. 2018, 37, 589–607. [Google Scholar] [CrossRef] [PubMed]
- De Gregorio, C.; Contador, D.; Díaz, D.; Cárcamo, C.; Santapau, D.; Lobos-Gonzalez, L.; Acosta, C.; Campero, M.; Carpio, D.; Gabriele, C.; et al. Human adipose-derived mesenchymal stem cell-conditioned medium ameliorates polyneuropathy and foot ulceration in diabetic BKS db/db mice. Stem Cell Res. Ther. 2020, 11, 168. [Google Scholar] [CrossRef] [PubMed]
- Giampà, C.; Alvino, A.; Magatti, M.; Silini, A.R.; Cardinale, A.; Paldino, E.; Fusco, F.R.; Parolini, O. Conditioned medium from amniotic cells protects striatal degeneration and ameliorates motor deficits in the R6/2 mouse model of Huntington’s disease. J. Cell Mol. Med. 2019, 23, 1581–1592. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.-S.; Wang, T.; Fang, X. Endothelial progenitor cell-conditioned medium promotes angiogenesis and is neuroprotective after spinal cord injury. Neural Regen. Res. 2018, 13, 887–895. [Google Scholar] [CrossRef]
- Sun, C.; Hao, J.; Qin, H.; Zhu, Y.; Li, X.; Zhang, B.; Qin, Y.; Li, G.; Wang, H.; Wang, H. Endometrial Regenerative Cell-Derived Conditioned Medium Alleviates Experimental Colitis. Stem Cells Int. 2022, 2022, 7842296. [Google Scholar] [CrossRef]
- Ma, Y.; Jiao, Z.; Liu, X.; Zhang, Q.; Piao, C.; Xu, J.; Wang, H. Protective effect of adipose-derived stromal cell-secretome attenuate autophagy induced by liver ischemia–reperfusion and partial hepatectomy. Stem Cell Res. Ther. 2022, 13, 427. [Google Scholar] [CrossRef]
- Dai, T.-Q.; Zhang, L.-L.; An, Y.; Xu, F.-F.; An, R.; Xu, H.-Y.; Liu, Y.-P.; Liu, B. In vitro transdifferentiation of adipose tissue-derived stem cells into salivary gland acinar-like cells. Am. J. Transl. Res. 2019, 11, 2908–2924. [Google Scholar] [PubMed]
- Peláez, P.; Damiá, E.; Torres-Torrillas, M.; Chicharro, D.; Cuervo, B.; Miguel, L.; del Romero, A.; Carrillo, J.M.; Sopena, J.J.; Rubio, M. Cell and Cell Free Therapies in Osteoarthritis. Biomedicines 2021, 9, 1726. [Google Scholar] [CrossRef] [PubMed]
- Okamoto-Okubo, C.E.; Cassu, R.N.; Joaquim, J.G.F.; Mesquita, L.D.R.; Rahal, S.C.; Oliveira, H.S.S.; Takahira, R.; Arruda, I.; Maia, L.; Landim, F.D.C.; et al. Chronic pain and gait analysis in dogs with degenerative hip joint disease treated with repeated intra-articular injections of platelet-rich plasma or allogeneic adipose-derived stem cells. J. Vet.-Med. Sci. 2021, 83, 881–888. [Google Scholar] [CrossRef] [PubMed]
- Collins, T.; Alexander, D.; Barkatali, B. Platelet-rich plasma: A narrative review. EFORT Open Rev. 2021, 6, 225–235. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, K.; Peng, Y.; Kanda, R.; Umeda, M.; Ishikawa, I. Stem Cell Transplantation and Cell-Free Treatment for Periodontal Regeneration. Int. J. Mol. Sci. 2022, 23, 1011. [Google Scholar] [CrossRef]
- Fernandes, G.; Yang, S. Application of platelet-rich plasma with stem cells in bone and periodontal tissue engineering. Bone Res. 2016, 4, 16036. [Google Scholar] [CrossRef]
- You, J.; Hodge, C.; Hoque, M.; Petsoglou, C.; Sutton, G. Human Platelets and Derived Products in Treating Ocular Surface Diseases—A Systematic Review. Clin. Ophthalmol. 2020, 14, 3195–3210. [Google Scholar] [CrossRef]
- Forogh, B.; Mianehsaz, E.; Shoaee, S.; Ahadi, T.; Raissi, G.R.; Sajadi, S. Effect of single injection of Platelet-Rich Plasma in comparison with corticosteroid on knee osteoarthritis: A double-blind randomized clinical trial. J. Sports Med. Phys. Fit. 2016, 56, 901–908. [Google Scholar]
- Fotouhi, A.; Maleki, A.; Dolati, S.; Aghebati-Maleki, A.; Aghebati-Maleki, L. Platelet rich plasma, stromal vascular fraction and autologous conditioned serum in treatment of knee osteoarthritis. Biomed. Pharmacother. 2018, 104, 652–660. [Google Scholar] [CrossRef]
- Yun, S.; Ku, S.-K.; Kwon, Y.-S. Adipose-derived mesenchymal stem cells and platelet-rich plasma synergistically ameliorate the surgical-induced osteoarthritis in Beagle dogs. J. Orthop. Surg. Res. 2016, 11, 9. [Google Scholar] [CrossRef]
- Zhao, J.; Huang, H.; Liang, G.; Zeng, L.-F.; Yang, W.; Liu, J. Effects and safety of the combination of platelet-rich plasma (PRP) and hyaluronic acid (HA) in the treatment of knee osteoarthritis: A systematic review and meta-analysis. BMC Musculoskelet. Disord. 2020, 21, 224. [Google Scholar] [CrossRef]
- Mohamed, N.; Shawkat, S.; Moussa, M.; Ahmed, N. Regeneration potential of bone marrow derived mesenchymal stem cells and platelet rich plasma (PRP) on irradiation-induced damage of submandibular salivary gland in albino rats. Tissue Cell 2022, 76, 101780. [Google Scholar] [CrossRef] [PubMed]
- Tan, M.I.; Alfarafisa, N.M.; Septiani, P.; Barlian, A.; Firmansyah, M.; Faizal, A.; Melani, L.; Nugrahapraja, H. Potential Cell-Based and Cell-Free Therapy for Patients with COVID-19. Cells 2022, 11, 2319. [Google Scholar] [CrossRef] [PubMed]
- Théry, C.; Witwer, K.W.; Aikawa, E.; Alcaraz, M.J.; Anderson, J.D.; Andriantsitohaina, R.; Antoniou, A.; Arab, T.; Archer, F.; Atkin-Smith, G.K.; et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 2018, 7, 1535750. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Ding, Y.; Zhang, Y.; Tse, H.F.; Lian, Q. Paracrine Mechanisms of Mesenchymal Stem Cell-Based Therapy: Current Status and Perspectives. Cell Transplant. 2014, 23, 1045–1059. [Google Scholar] [CrossRef] [Green Version]
- Zhao, B.; Chen, Q.; Zhao, L.; Mao, J.; Huang, W.; Han, X.; Liu, Y. Periodontal Ligament Stem Cell-Derived Small Extracellular Vesicles Embedded in Matrigel Enhance Bone Repair Through the Adenosine Receptor Signaling Pathway. Int. J. Nanomed. 2022, 17, 519–536. [Google Scholar] [CrossRef] [PubMed]
- Lei, X.; He, N.; Zhu, L.; Zhou, M.; Zhang, K.; Wang, C.; Huang, H.; Chen, S.; Li, Y.; Liu, Q.; et al. Mesenchymal Stem Cell-Derived Extracellular Vesicles Attenuate Radiation-Induced Lung Injury via miRNA-214-3p. Antioxid. Redox Signal. 2021, 35, 849–862. [Google Scholar] [CrossRef]
- Gorabi, A.M.; Kiaie, N.; Barreto, G.E.; Read, M.I.; Tafti, H.A.; Sahebkar, A. The Therapeutic Potential of Mesenchymal Stem Cell–Derived Exosomes in Treatment of Neurodegenerative Diseases. Mol. Neurobiol. 2019, 56, 8157–8167. [Google Scholar] [CrossRef]
- Borrelli, D.A.; Yankson, K.; Shukla, N.; Vilanilam, G.; Ticer, T.; Wolfram, J. Extracellular vesicle therapeutics for liver disease. J. Control. Release 2018, 273, 86–98. [Google Scholar] [CrossRef]
- Yaghoubi, Y.; Movassaghpour, A.; Zamani, M.; Talebi, M.; Mehdizadeh, A.; Yousefi, M. Human umbilical cord mesenchymal stem cells derived-exosomes in diseases treatment. Life Sci. 2019, 233, 116733. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Wang, Y.; Kong, J.; Dong, M.; Duan, H.; Chen, S. Therapeutic efficacy of neural stem cells originating from umbilical cord-derived mesenchymal stem cells in diabetic retinopathy. Sci. Rep. 2017, 7, 12324. [Google Scholar] [CrossRef]
- Wang, J.; Jia, H.; Zhang, B.; Yin, L.; Mao, F.; Yu, J.; Ji, C.; Xu, X.; Yan, Y.; Xu, W.; et al. HucMSC exosome-transported 14-3-3zeta prevents the injury of cisplatin to HK-2 cells by inducing autophagy in vitro. Cytotherapy 2018, 20, 29–44. [Google Scholar] [CrossRef] [PubMed]
- Alam, P.; Maliken, B.D.; Jones, S.M.; Ivey, M.J.; Wu, Z.; Wang, Y.; Kanisicak, O. Cardiac Remodeling and Repair: Recent Approaches, Advancements, and Future Perspective. Int. J. Mol. Sci. 2021, 22, 13104. [Google Scholar] [CrossRef]
- Shao, L.; Zhang, Y.; Lan, B.; Wang, J.; Zhang, Z.; Zhang, L.; Xiao, P.; Meng, Q.; Geng, Y.J.; Yu, X.Y.; et al. MiRNA-Sequence Indicates That Mesenchymal Stem Cells and Exosomes Have Similar Mechanism to Enhance Cardiac Repair. BioMed Res. Int. 2017, 2017, 4150705. [Google Scholar] [CrossRef] [PubMed]
- Yari, H.; Mikhailova, M.V.; Mardasi, M.; Jafarzadehgharehziaaddin, M.; Shahrokh, S.; Thangavelu, L.; Ahmadi, H.; Shomali, N.; Yaghoubi, Y.; Zamani, M.; et al. Emerging role of mesenchymal stromal cells (MSCs)-derived exosome in neurodegeneration-associated conditions: A groundbreaking cell-free approach. Stem Cell Res. Ther. 2022, 13, 423. [Google Scholar] [CrossRef]
- Rao, Z.; Lin, Z.; Song, P.; Quan, D.; Bai, Y. Biomaterial-Based Schwann Cell Transplantation and Schwann Cell-Derived Biomaterials for Nerve Regeneration. Front. Cell. Neurosci. 2022, 16, 926222. [Google Scholar] [CrossRef]
- Xu, S.; Liu, C.; Ji, H.-L. Concise Review: Therapeutic Potential of the Mesenchymal Stem Cell Derived Secretome and Extracellular Vesicles for Radiation-Induced Lung Injury: Progress and Hypotheses. Stem Cells Transl. Med. 2019, 8, 344–354. [Google Scholar] [CrossRef]
- Wang, B.; Jia, H.; Zhang, B.; Wang, J.; Ji, C.; Zhu, X.; Yan, Y.; Yin, L.; Yu, J.; Qian, H.; et al. Pre-incubation with hucMSC-exosomes prevents cisplatin-induced nephrotoxicity by activating autophagy. Stem Cell Res. Ther. 2017, 8, 75. [Google Scholar] [CrossRef]
- Khan, K.; Caron, C.; Mahmoud, I.; Derish, I.; Schwertani, A.; Cecere, R. Extracellular Vesicles as a Cell-free Therapy for Cardiac Repair: A Systematic Review and Meta-analysis of Randomized Controlled Preclinical Trials in Animal Myocardial Infarction Models. Stem Cell Rev. Rep. 2022, 18, 1143–1167. [Google Scholar] [CrossRef]
- Wu, P.; Zhang, B.; Shi, H.; Qian, H.; Xu, W. MSC-exosome: A novel cell-free therapy for cutaneous regeneration. Cytotherapy 2018, 20, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Chansaenroj, A.; Yodmuang, S.; Ferreira, J.N. Trends in Salivary Gland Tissue Engineering: From Stem Cells to Secretome and Organoid Bioprinting. Tissue Eng. Part B Rev. 2021, 27, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Chansaenroj, A.; Adine, C.; Charoenlappanit, S.; Roytrakul, S.; Sariya, L.; Osathanon, T.; Rungarunlert, S.; Urkasemsin, G.; Chaisuparat, R.; Yodmuang, S.; et al. Magnetic bioassembly platforms towards the generation of extracellular vesicles from human salivary gland functional organoids for epithelial repair. Bioact. Mater. 2022, 18, 151–163. [Google Scholar] [CrossRef] [PubMed]
- Ana, I.D.; Barlian, A.; Hidajah, A.C.; Wijaya, C.H.; Notobroto, H.B.; Wungu, T.D.K. Challenges and strategy in treatment with exosomes for cell-free-based tissue engineering in dentistry. Futur. Sci. OA 2021, 7, FSO751. [Google Scholar] [CrossRef] [PubMed]
- Vakhshiteh, F.; Atyabi, F.; Ostad, S.N. Mesenchymal stem cell exosomes: A two-edged sword in cancer therapy. Int. J. Nanomed. 2019, 14, 2847–2859. [Google Scholar] [CrossRef]
- Wu, S.; Ju, G.-Q.; Du, T.; Zhu, Y.-J.; Liu, G.-H. Microvesicles Derived from Human Umbilical Cord Wharton’s Jelly Mesenchymal Stem Cells Attenuate Bladder Tumor Cell Growth In Vitro and In Vivo. PLoS ONE 2013, 8, e61366. [Google Scholar] [CrossRef]
- Takahara, K.; Ii, M.; Inamoto, T.; Nakagawa, T.; Ibuki, N.; Yoshikawa, Y.; Tsujino, T.; Uchimoto, T.; Saito, K.; Takai, T.; et al. microRNA-145 Mediates the Inhibitory Effect of Adipose Tissue-Derived Stromal Cells on Prostate Cancer. Stem Cells Dev. 2016, 25, 1290–1298. [Google Scholar] [CrossRef]
- Bruno, S.; Collino, F.; Deregibus, M.C.; Grange, C.; Tetta, C.; Camussi, G. Microvesicles Derived from Human Bone Marrow Mesenchymal Stem Cells Inhibit Tumor Growth. Stem Cells Dev. 2013, 22, 758–771. [Google Scholar] [CrossRef]
- Qi, J.; Zhou, Y.; Jiao, Z.; Wang, X.; Zhao, Y.; Li, Y.; Chen, H.; Yangbin, L.; Zhu, H.; Li, Y. Exosomes Derived from Human Bone Marrow Mesenchymal Stem Cells Promote Tumor Growth Through Hedgehog Signaling Pathway. Cell Physiol. Biochem. 2017, 42, 2242–2254. [Google Scholar] [CrossRef]
- Yang, Y.; Bucan, V.; Baehre, H.; Von Der Ohe, J.; Otte, A.; Hass, R. Acquisition of new tumor cell properties by MSC-derived exosomes. Int. J. Oncol. 2015, 47, 244–252. [Google Scholar] [CrossRef] [Green Version]
Condition | Results/Effects | Author/Year | Ref. |
---|---|---|---|
Adipose Stem Cell Extracts | |||
Wound healing | Better wound-healing through cell therapy than CE | Lim, 2010 | [60] |
Wound healing | Dermal fibroblast proliferation, migration and ECM formation observed (Collagen type 1, MMP1) | Na, 2017 | [46] |
Nerve crush injury | Reduced fibrosis, increased smooth muscle content, and improved erectile function | Albersen et al., 2010 | [61] |
Nerve crush injury | Improved erectile function in both autologous and allogenic CE transplantation | Mangir et al., 2014 | [53] |
Inflammation | Anti-inflammatory effects seen on macrophage cells in vitro, reduction of Nitric Oxide and COX-2 proteins | He et al., 2021 | [62] |
Aging | Promotes weight loss, improves glucose tolerance in high fat diet, accelerates osteopenia and lipopenia | Hsu et al., 2018 | [63] |
Obesity | Reduces body weight and hyperlipidemia, reduces TNF alpha and IL1, stimulates adiponectin increasing fat burn | Lee et al., 2017 | [54] |
Alzheimer’s disease | Inhibits learning and memory impairment | Choi et al., 2022 | [52] |
Ischemic injury | Decreases cell death and pro-inflammatory cytokines | Ryu et al., 2022 | [48] |
Acute colitis | Anti-inflammatory, anti-apoptotic, protect tight junctions | Nishikawa et al., 2021 | [50] |
Bone Marrow Stem Cell Extract | |||
Myocardial infarction | Reduces infarct size, increases vascularity, reduces apoptosis, enhances cardiac function | Yeghiazarians et al., 2009 | [64] |
Acetaminophen induced liver failure | Reduces necrosis, increases mitotically active cells | Khubutiya et al., 2015 | [55] |
Osteoradionecrosis | Intravenous injections improve bone recovery | Michel et al., 2017 | [51] |
NOD mice | Increases salivary gland function proteins, decreases pro-inflammatory markers | Misuno et al., 2014; Ghada et al. 2019 | [56,65] |
Radiation injury | Increases salivary gland functional proteins, increases angiogenesis, and reparative proteins | Tran et al., 2013; Fang et al., 2015; Su et al., 2018 | [42,43,66,67] |
Splenic nerve injury | Partially restores serum proteomic homeostasis, reduces pain | Zhou et al., 2022 | [68] |
Embryonic Stem Cell Extracts | |||
Cellular reprogramming | Transient colony formation and multi-differential potential seen in rabbit corneal cells | Zhan et al., 2010 | [69] |
Cellular reprogramming | Transient colony formation and multi-differential potential seen in human granulosa cells | Talaei-Khozani., 2012 | [70] |
Bone regeneration | Umbilical cord CE cytokines enhance bone regeneration | Byeon et al., 2010 | [71] |
Other Adult Stem Cell Extracts | |||
Radiation injury | Increased salivary flow (50–60%) after treatment in vivo | Su et al., 2020 | [35] |
Mononuclear cells extract for MI | Improves cardiac function, decreases infarct size | Angeli et al., 2012 | [47] |
Cancer model using axolotl oocyte extract | Causes cell cycle arrest, reduces metabolism and oncogenic signaling, reduces angiogenesis in vitro and in vivo | Saad et al., 2018 | [72] |
Leukemia using axolotl extract | Cell cycle arrest in human acute myeloid leukemia HL-60 cell line | Suleiman et al., 2020 | [49] |
Ultraviolet radiation protection with Crocodile WBC | Promotes cell proliferation, reduces UV-induced morphological changes, reduces pigmentation | Joompang et al., 2022 | [73] |
Cancer model with Crocodile WBC | Decreases the mitochondrial membrane potential of HeLa cells, induces apoptotic death | Patathananone et. al., 2016 | [74] |
Tissue Extracts | |||
Wound healing using ADSC tissue extract | Promotes keratinocyte proliferation and stimulates fibroblast and adipose stem cells migration in vitro | Lopez et al., 2018 | [75] |
Wound healing using ADSC tissue extract | Increases vessel density and formation of neo adipocytes in vivo, promotes the tube formation of human HUVECs | He et al., 2019 | [76] |
Wound healing using ADSC tissue extract | Increases the proliferation and migration of dermal fibroblasts, increases the thickness of the dermis | Xu et al., 2020 | [77] |
Condition | Stem Cell Type | Dosage/Frequency | Outcome | Ref. |
---|---|---|---|---|
Wound healing in murine model | ADSC | 200 mg/200 mL extract from 4 × 107 cells, every two days after injury | Smaller wound area, increased fibroblast migration | [46] |
Wound healing in murine model | ADSC | 60 mL extract obtained from 1 × 106 cells, injected intradermally around the wound at four sites and 40 mL onto the wound bed, once | ADSC extract treatment showed less re-epithelization and healing than cell only group | [60] |
Obesity in murine high fat diet model | ADSC | 50 mL, lysate from 71,428 cells/kg body weight, daily from 4-week age for 10 weeks | Reduced body weight and lipidemia in treated groups | [54] |
Ageing in mice | ADSC | 3 times a week, every second month, starting at 12 months of age until natural death (3-year life-long experiment) | Shortened average life span, greater bone loss and increased lean mass | [63] |
Radiation injury in mice models | BMMSC | 100 μL of extract derived from 107 cells/100 μL, treatment started: 1,3- and 7-weeks post radiation; frequency: 1, 2, 3 and 5 weekly injections | Treatment within 3 weeks and 5 weekly injections showed most favorable results | [83] |
Acute colitis | ADSC | 0.2 mL extract per mice, derived from 1 × 106 cells/200 μL, day 2, 3, and 4 after colitis initiation | Reduced disease activity index score with multiple injections versus single. | [50] |
Advantages | Disadvantages |
---|---|
1. Intraglandular | |
|
|
2. Ductal cannula instillation | |
|
|
3. Intraperitoneal | |
|
|
4. Intra-venous | |
|
|
Method Category | Cell Sources | Advantages | Disadvantages | References |
---|---|---|---|---|
Ultrasonication method | ADSC, WBC |
|
| [54,74] |
Chemical lysis + ultrasonication method | ESC, 3T3 cell line |
|
| [69,70] |
Osmotic+ ultrasonication method | ADSC |
|
| [52,62] |
Temperature treatment | ADSC, UCB, BMC, BMMSC, MC, GC, RBC, LSC |
|
| [60,65,66,68,71,67,83,34,35] |
Osmotic + temperature treatment | ADSC |
| - | [61,63] |
Cell Extract (CE) | Advantages | Limitations |
---|---|---|
CE vs. Cell-Based Therapies |
|
|
CE vs. Other Cell-Free Therapies |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, X.; Upadhyay, A.; Tran, S.D.; Lin, Z. Cell-Free Therapies: The Use of Cell Extracts to Mitigate Irradiation-Injured Salivary Glands. Biology 2023, 12, 305. https://doi.org/10.3390/biology12020305
Su X, Upadhyay A, Tran SD, Lin Z. Cell-Free Therapies: The Use of Cell Extracts to Mitigate Irradiation-Injured Salivary Glands. Biology. 2023; 12(2):305. https://doi.org/10.3390/biology12020305
Chicago/Turabian StyleSu, Xinyun, Akshaya Upadhyay, Simon D. Tran, and Zhengmei Lin. 2023. "Cell-Free Therapies: The Use of Cell Extracts to Mitigate Irradiation-Injured Salivary Glands" Biology 12, no. 2: 305. https://doi.org/10.3390/biology12020305
APA StyleSu, X., Upadhyay, A., Tran, S. D., & Lin, Z. (2023). Cell-Free Therapies: The Use of Cell Extracts to Mitigate Irradiation-Injured Salivary Glands. Biology, 12(2), 305. https://doi.org/10.3390/biology12020305