Immunosuppressive Therapy of Biopsy-Proven, Virus-Negative, Autoimmune/Immune-Mediated Myocarditis—Focus on Azathioprine: A Review of Existing Evidence and Future Perspectives
Abstract
:Simple Summary
Abstract
1. Introduction
2. Pharmacological Properties of Azathioprine: A Focus on Clinical Implications
3. The Use of Azathioprine in Clinical Practice: A Pragmatic Approach
- multiorgan involvement in SIDs, such as SLE, rheumatoid arthritis, dermatomyositis, polymyositis, periarteritis nodosa, pemphigus vulgaris, pyoderma gangrenosum, autoimmune haemolytic anaemia, chronic refractory thrombocytopenic purpura, and autoimmune chronic hepatitis [36];
- moderate-to-severe chronic inflammatory bowel diseases (IBDs), such as Crohn’s disease or ulcerative colitis [37];
- prevention of graft rejection after kidney, heart, or liver transplantation [38].
4. Existing Evidence on Azathioprine Effectiveness and Safety in Myocarditis and Inflammatory Cardiomyopathy
5. Safety Check-List before Starting IT in Biopsy-Proven AI Myocarditis/Inflammatory Cardiomyopathy
6. AZA Therapy in Cardioimmunology: Existing Evidence and Future Perspectives
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Caforio, A.L.; Pankuweit, S.; Arbustini, E.; Basso, C.; Gimeno-Blanes, J.; Felix, S.B.; Fu, M.; Helio, T.; Heymans, S.; Jahns, R.; et al. Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: A position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur. Heart J. 2013, 34, 2636–2648. [Google Scholar] [CrossRef] [PubMed]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Bohm, M.; Burri, H.; Butler, J.; Celutkiene, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef]
- Tyminska, A.; Ozieranski, K.; Caforio, A.L.P.; Marcolongo, R.; Marchel, M.; Kaplon-Cieslicka, A.; Baritussio, A.; Filipiak, K.J.; Opolski, G.; Grabowski, M. Myocarditis and inflammatory cardiomyopathy in 2021: An update. Pol. Arch. Intern. Med. 2021, 131, 594–606. [Google Scholar] [CrossRef]
- Tyminska, A.; Ozieranski, K.; Skwarek, A.; Kaplon-Cieslicka, A.; Baritussio, A.; Grabowski, M.; Marcolongo, R.; Caforio, A.L. Personalized Management of Myocarditis and Inflammatory Cardiomyopathy in Clinical Practice. J. Pers. Med. 2022, 12, 183. [Google Scholar] [CrossRef]
- Ozieranski, K.; Tyminska, A.; Kruk, M.; Kon, B.; Skwarek, A.; Opolski, G.; Grabowski, M. Occurrence, Trends, Management and Outcomes of Patients Hospitalized with Clinically Suspected Myocarditis-Ten-Year Perspectives from the MYO-PL Nationwide Database. J. Clin. Med. 2021, 10, 4672. [Google Scholar] [CrossRef] [PubMed]
- Ozieranski, K.; Tyminska, A.; Skwarek, A.; Kruk, M.; Kon, B.; Bilinski, J.; Opolski, G.; Grabowski, M. Sex Differences in Incidence, Clinical Characteristics and Outcomes in Children and Young Adults Hospitalized for Clinically Suspected Myocarditis in the Last Ten Years-Data from the MYO-PL Nationwide Database. J. Clin. Med. 2021, 10, 5502. [Google Scholar] [CrossRef] [PubMed]
- Ozieranski, K.; Tyminska, A.; Chabior, A.; Kruk, M.; Kon, B.; Maciejewski, C.; Opolski, G.; Grabowski, M. Sex differences in incidence, management, and outcomes in adult patients aged over 20 years with clinically diagnosed myocarditis in the last 10 years: Data from the MYOPL nationwide database. Pol. Arch. Intern. Med. 2022, 132, 1–9. [Google Scholar] [CrossRef]
- Elbadawi, A.; Elgendy, I.Y.; Ha, L.D.; Mentias, A.; Ogunbayo, G.O.; Tahir, M.W.; Biniwale, N.; Olorunfemi, O.; Barssoum, K.; Guglin, M. National Trends and Outcomes of Endomyocardial Biopsy for Patients With Myocarditis: From the National Inpatient Sample Database. J. Card. Fail. 2018, 24, 337–341. [Google Scholar] [CrossRef]
- Caforio, A.L.P.; Adler, Y.; Agostini, C.; Allanore, Y.; Anastasakis, A.; Arad, M.; Bohm, M.; Charron, P.; Elliott, P.M.; Eriksson, U.; et al. Diagnosis and management of myocardial involvement in systemic immune-mediated diseases: A position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Disease. Eur. Heart J. 2017, 38, 2649–2662. [Google Scholar] [CrossRef] [Green Version]
- Tschope, C.; Ammirati, E.; Bozkurt, B.; Caforio, A.L.P.; Cooper, L.T.; Felix, S.B.; Hare, J.M.; Heidecker, B.; Heymans, S.; Hubner, N.; et al. Myocarditis and inflammatory cardiomyopathy: Current evidence and future directions. Nat. Rev. Cardiol. 2021, 18, 169–193. [Google Scholar] [CrossRef]
- Cooper, L.T., Jr.; Berry, G.J.; Shabetai, R. Idiopathic giant-cell myocarditis—Natural history and treatment. Multicenter Giant Cell Myocarditis Study Group Investigators. N. Engl. J. Med. 1997, 336, 1860–1866. [Google Scholar] [CrossRef] [PubMed]
- Frustaci, A.; Russo, M.A.; Chimenti, C. Randomized study on the efficacy of immunosuppressive therapy in patients with virus-negative inflammatory cardiomyopathy: The TIMIC study. Eur. Heart J. 2009, 30, 1995–2002. [Google Scholar] [CrossRef] [PubMed]
- Wojnicz, R.; Nowalany-Kozielska, E.; Wojciechowska, C.; Glanowska, G.; Wilczewski, P.; Niklewski, T.; Zembala, M.; Polonski, L.; Rozek, M.M.; Wodniecki, J. Randomized, placebo-controlled study for immunosuppressive treatment of inflammatory dilated cardiomyopathy: Two-year follow-up results. Circulation 2001, 104, 39–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escher, F.; Kuhl, U.; Lassner, D.; Poller, W.; Westermann, D.; Pieske, B.; Tschope, C.; Schultheiss, H.P. Long-term outcome of patients with virus-negative chronic myocarditis or inflammatory cardiomyopathy after immunosuppressive therapy. Clin. Res. Cardiol. 2016, 105, 1011–1020. [Google Scholar] [CrossRef]
- Merken, J.; Hazebroek, M.; Van Paassen, P.; Verdonschot, J.; Van Empel, V.; Knackstedt, C.; Abdul Hamid, M.; Seiler, M.; Kolb, J.; Hoermann, P.; et al. Immunosuppressive Therapy Improves Both Short- and Long-Term Prognosis in Patients With Virus-Negative Nonfulminant Inflammatory Cardiomyopathy. Circ. Heart Fail. 2018, 11, e004228. [Google Scholar] [CrossRef]
- De Luca, G.; Campochiaro, C.; Sartorelli, S.; Peretto, G.; Sala, S.; Palmisano, A.; Esposito, A.; Candela, C.; Basso, C.; Rizzo, S.; et al. Efficacy and safety of mycophenolate mofetil in patients with virus-negative lymphocytic myocarditis: A prospective cohort study. J. Autoimmun. 2020, 106, 102330. [Google Scholar] [CrossRef] [PubMed]
- Summary of Product Characteristics. Azathioprine. Available online: http://leki.urpl.gov.pl/files/43_Azathioprine_VIS_tabl_50mg.pdf (accessed on 1 January 2023).
- Vianello, F.; Cinetto, F.; Cavraro, M.; Battisti, A.; Castelli, M.; Imbergamo, S.; Marcolongo, R. Azathioprine in isolated recurrent pericarditis: A single centre experience. Int. J. Cardiol. 2011, 147, 477–478. [Google Scholar] [CrossRef]
- Imazio, M.; Lazaros, G.; Brucato, A.; Gaita, F. Recurrent pericarditis: New and emerging therapeutic options. Nat. Rev. Cardiol. 2016, 13, 99–105. [Google Scholar] [CrossRef]
- Chimenti, C.; Russo, M.A.; Frustaci, A. Immunosuppressive therapy in virus-negative inflammatory cardiomyopathy: 20-year follow-up of the TIMIC trial. Eur. Heart J. 2022, 43, 3463–3473. [Google Scholar] [CrossRef]
- Zochowska, D.; Zegarska, J.; Hryniewiecka, E.; Samborowska, E.; Jazwiec, R.; Tszyrsznic, W.; Borowiec, A.; Dadlez, M.; Paczek, L. Determination of Concentrations of Azathioprine Metabolites 6-Thioguanine and 6-Methylmercaptopurine in Whole Blood With the Use of Liquid Chromatography Combined With Mass Spectrometry. Transplant. Proc. 2016, 48, 1836–1839. [Google Scholar] [CrossRef]
- Thervet, E.; Anglicheau, D.; Toledano, N.; Houllier, A.M.; Noel, L.H.; Kreis, H.; Beaune, P.; Legendre, C. Long-term results of TPMT activity monitoring in azathioprine-treated renal allograft recipients. J. Am. Soc. Nephrol. 2001, 12, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Lennard, L.; Welch, J.; Lilleyman, J.S. Intracellular metabolites of mercaptopurine in children with lymphoblastic leukaemia: A possible indicator of non-compliance? Br. J. Cancer 1995, 72, 1004–1006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, P.; Gokhale, R.; Kirschner, B.S. 6-mercaptopurine metabolite levels in children with inflammatory bowel disease. J. Pediatr. Gastroenterol. Nutr. 2001, 33, 450–454. [Google Scholar] [CrossRef] [PubMed]
- Wright, S.; Sanders, D.S.; Lobo, A.J.; Lennard, L. Clinical significance of azathioprine active metabolite concentrations in inflammatory bowel disease. Gut 2004, 53, 1123–1128. [Google Scholar] [CrossRef] [PubMed]
- Prabha, R.; Mathew, S.K.; Joseph, A.J.; Mathew, B.S. Exposure to Azathioprine Metabolites and Clinical Outcome in Indian Patients with Crohn’s Disease. J. Pharmacol. Pharmacother. 2022, 13, 266–271. [Google Scholar] [CrossRef]
- Heckmann, J.M.; Lambson, E.M.; Little, F.; Owen, E.P. Thiopurine methyltransferase (TPMT) heterozygosity and enzyme activity as predictive tests for the development of azathioprine-related adverse events. J. Neurol. Sci. 2005, 231, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Sebbag, L.; Boucher, P.; Davelu, P.; Boissonnat, P.; Champsaur, G.; Ninet, J.; Dureau, G.; Obadia, J.F.; Vallon, J.J.; Delaye, J. Thiopurine S-methyltransferase gene polymorphism is predictive of azathioprine-induced myelosuppression in heart transplant recipients. Transplantation 2000, 69, 1524–1527. [Google Scholar] [CrossRef]
- TPMT testing before azathioprine therapy? Drug Ther. Bull. 2009, 47, 9–12. [CrossRef] [PubMed]
- Evans, W.E.; Horner, M.; Chu, Y.Q.; Kalwinsky, D.; Roberts, W.M. Altered mercaptopurine metabolism, toxic effects, and dosage requirement in a thiopurine methyltransferase-deficient child with acute lymphocytic leukemia. J. Pediatr. 1991, 119, 985–989. [Google Scholar] [CrossRef]
- Ford, L.; Prout, C.; Gaffney, D.; Berg, J. Whose TPMT activity is it anyway? Ann. Clin. Biochem. 2004, 41, 498–500. [Google Scholar] [CrossRef]
- Weinshilboum, R. Thiopurine pharmacogenetics: Clinical and molecular studies of thiopurine methyltransferase. Drug Metab. Dispos. 2001, 29, 601–605. [Google Scholar] [PubMed]
- Zeppenfeld, K.; Tfelt-Hansen, J.; de Riva, M.; Winkel, B.G.; Behr, E.R.; Blom, N.A.; Charron, P.; Corrado, D.; Dagres, N.; de Chillou, C.; et al. 2022 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Eur. Heart J. 2022, 43, 3997–4126. [Google Scholar] [CrossRef] [PubMed]
- Rosenstein, E.D.; Zucker, M.J.; Kramer, N. Giant cell myocarditis: Most fatal of autoimmune diseases. Semin. Arthritis. Rheum. 2000, 30, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Bang, V.; Ganatra, S.; Shah, S.P.; Dani, S.S.; Neilan, T.G.; Thavendiranathan, P.; Resnic, F.S.; Piemonte, T.C.; Barac, A.; Patel, R.; et al. Management of Patients With Giant Cell Myocarditis: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2021, 77, 1122–1134. [Google Scholar] [CrossRef]
- Mathies, H. Azathioprine in rheumatology. Fortschr. Med. 1979, 97, 2215–2217. [Google Scholar]
- Bots, S.; Gecse, K.; Barclay, M.; D’Haens, G. Combination Immunosuppression in IBD. Inflamm. Bowel. Dis. 2018, 24, 539–545. [Google Scholar] [CrossRef]
- Foroncewicz, B.; Mucha, K.; Florczak, M.; Szymanska, A.; Ciszek, M.; Durlik, M.; Gorski, A.; Kieszek, R.; Kosieradzki, M.; Nazarewski, S.; et al. Long-term outcome of renal transplantation: A 10-year follow-up of 765 recipients. Pol. Arch. Intern. Med. 2019, 129, 476–483. [Google Scholar] [CrossRef]
- Peretto, G.; De Luca, G.; Campochiaro, C.; Sartorelli, S.; Sala, S.; Del Rosso, S.; Camici, P.G.; Della Bella, P.; Tresoldi, M.; Dagna, L. P4519 Subclinical toxicity of azathioprine in patients treated for autoimmune myocarditis: A single-centre experience. Eur. Heart J. 2018, 39, ehy563-P4519. [Google Scholar] [CrossRef]
- Mohammadi, O.; Kassim, T.A. Azathioprine. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Sheiko, M.A.; Sundaram, S.S.; Capocelli, K.E.; Pan, Z.; McCoy, A.M.; Mack, C.L. Outcomes in Pediatric Autoimmune Hepatitis and Significance of Azathioprine Metabolites. J. Pediatr. Gastroenterol. Nutr. 2017, 65, 80–85. [Google Scholar] [CrossRef]
- Kindermann, I.; Barth, C.; Mahfoud, F.; Ukena, C.; Lenski, M.; Yilmaz, A.; Klingel, K.; Kandolf, R.; Sechtem, U.; Cooper, L.T.; et al. Update on myocarditis. J. Am. Coll Cardiol. 2012, 59, 779–792. [Google Scholar] [CrossRef]
- Jones, S.R.; Herskowitz, A.; Hutchins, G.M.; Baughman, K.L. Effects of immunosuppressive therapy in biopsy-proved myocarditis and borderline myocarditis on left ventricular function. Am. J. Cardiol. 1991, 68, 370–376. [Google Scholar] [CrossRef]
- Poloczkova, H.; Krejci, J.; Hude, P.; Ozabalova, E.; Godava, J.; Honek, T.; Zampachova, V.; Svobodova, I.; Freiberger, T.; Spinarova, L. Effect of immunosuppressive therapy in inflammatory cardiomyopathy: Data from the Czech Inflammatory Cardiomyopathy Immunosuppressive Trial. Bratisl. Lek. Listy 2022, 123, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Salvi, A.; Di Lenarda, A.; Dreas, L.; Silvestri, F.; Camerini, F. Immunosuppressive treatment in myocarditis. Int. J. Cardiol. 1989, 22, 329–338. [Google Scholar] [CrossRef]
- Mason, J.W.; O’Connell, J.B.; Herskowitz, A.; Rose, N.R.; McManus, B.M.; Billingham, M.E.; Moon, T.E. A clinical trial of immunosuppressive therapy for myocarditis. The Myocarditis Treatment Trial Investigators. N. Engl. J. Med. 1995, 333, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Frustaci, A.; Chimenti, C.; Calabrese, F.; Pieroni, M.; Thiene, G.; Maseri, A. Immunosuppressive therapy for active lymphocytic myocarditis: Virological and immunologic profile of responders versus nonresponders. Circulation 2003, 107, 857–863. [Google Scholar] [CrossRef] [PubMed]
- Azathioprine: Drug Information. Available online: https://www.uptodate.com/contents/azathioprine-drug-information?topicRef=127933&source=see_link (accessed on 1 January 2023).
- Ozieranski, K.; Tyminska, A.; Caforio, A.L.P. Immunosuppressive therapy of myocarditis and inflammatory cardiomyopathy in the light of new data. Eur. Heart J. 2022, 43, 4758–4759. [Google Scholar] [CrossRef]
- Maisch, B.; Koelsch, S.; Hufnagel, G.; Funck, R.C.; Ruppert, V.; Pankuweit, S. Abstract 15036: Resolution of Inflammation Determines Short- and Longterm Prognosis in Myocarditis—Data from Esetcid. Circulation 2011, 124, A15036. [Google Scholar] [CrossRef]
- Marcolongo, R.; Baritussio, A.; Gianstefani, S.; Cheng, C.Y.; Iliceto, S.; Caforio, A.L.P. Clinical management and follow-up of myocarditis patients on immunosuppressive therapy. In Myocarditis; Caforio, A., Ed.; Springer: Berlin/Heidelberg, Germany; pp. 285–296.
- Baritussio, A.; Giordani, A.S.; Rizzo, S.; Masiero, G.; Iliceto, S.; Marcolongo, R.; Caforio, A.L. Management of myocarditis in clinical practice. Minerva. Cardiol. Angiol. 2022, 70, 273–284. [Google Scholar] [CrossRef]
- Hahn, E.A.; Hartz, V.L.; Moon, T.E.; O’Connell, J.B.; Herskowitz, A.; McManus, B.M.; Mason, J.W. The Myocarditis Treatment Trial: Design, methods and patients enrollment. Eur. Heart J. 1995, 16 (Suppl. O), 162–167. [Google Scholar] [CrossRef]
- Cheng, C.Y.; Cheng, G.Y.; Shan, Z.G.; Baritussio, A.; Lorenzoni, G.; Tyminska, A.; Ozieranski, K.; Iliceto, S.; Marcolongo, R.; Gregori, D.; et al. Efficacy of immunosuppressive therapy in myocarditis: A 30-year systematic review and meta analysis. Autoimmun. Rev. 2021, 20, 102710. [Google Scholar] [CrossRef]
- Timmermans, P.; Barradas-Pires, A.; Ali, O.; Henkens, M.; Heymans, S.; Negishi, K. Prednisone and azathioprine in patients with inflammatory cardiomyopathy: Systematic review and meta-analysis. ESC Heart Fail. 2020, 7, 2278–2296. [Google Scholar] [CrossRef]
- Tyminska, A.; Ozieranski, K.; Balsam, P.; Maciejewski, C.; Wancerz, A.; Brociek, E.; Marchel, M.; Crespo-Leiro, M.G.; Maggioni, A.P.; Drozdz, J.; et al. Ischemic Cardiomyopathy versus Non-Ischemic Dilated Cardiomyopathy in Patients with Reduced Ejection Fraction- Clinical Characteristics and Prognosis Depending on Heart Failure Etiology (Data from European Society of Cardiology Heart Failure Registries). Biology 2022, 11, 341. [Google Scholar] [CrossRef] [PubMed]
- Ozieranski, K.; Tyminska, A.; Marchel, M.; Januszkiewicz, L.; Maciejewski, C.; Glowczynska, R.; Marcolongo, R.; Caforio, A.L.; Wojnicz, R.; Mizia-Stec, K.; et al. A multicenter, randomized, double-blind, placebo-controlled study to evaluate the efficacy of immunosuppression in biopsy-proven virus-negative myocarditis or inflammatory cardiomyopathy (IMPROVE-MC). Cardiol. J. 2022, 29, 329–341. [Google Scholar] [CrossRef] [PubMed]
- Matusik, P.S.; Matusik, P.T.; Stein, P.K. Heart rate variability in patients with systemic lupus erythematosus: A systematic review and methodological considerations. Lupus 2018, 27, 1225–1239. [Google Scholar] [CrossRef]
- Caforio, A.L.P. Myocarditis: Endomyocardial biopsy and circulating anti-heart autoantibodies are key to diagnosis and personalized etiology-directed treatment. Eur. Heart J. 2021, 42, 1618–1620. [Google Scholar] [CrossRef] [PubMed]
- Wilson, L.; Tuson, S.; Yang, L.; Loomes, D. Real-World Use of Azathioprine Metabolites Changes Clinical Management of Inflammatory Bowel Disease. J. Can. Assoc. Gastroenterol. 2021, 4, 101–109. [Google Scholar] [CrossRef] [Green Version]
Study | Type of Study and Number of Patients | Histological Type and PCR for Virus | Indications for Therapy | AZA Dosage and Duration of Treatment | Control Group | Additional Treatment | Major Outcomes and Mortality |
---|---|---|---|---|---|---|---|
Salvi 1989 [45] | Observational, uncontrolled, and longitudinal; 20 pts. | Unknown and unknown. | Myocarditis. | 75 mg/m2/day for at least 6 months | - | PRED: 50 mg/m2/day for 2 weeks, then tapered until withdrawal of the drug after at least 6 months of treatment; + digoxin, diuretics, vasodilators, and amiodarone were continued (if started earlier), metoprolol when tachycardia or hypertension. | Histologic status improved in all pts, complete disappearance of signs of active disease in 15 pts. An overall improvement of LVEF (from 0.37 +/− 0.14 to 0.46 +/− 0.17). Direct relationship between the histological changes and the changes in LVEF in some pts. 2 deaths during observation (both pts with low and deteriorating LVEF from 0.26 to 0.16), 1 death after the end of treatment due to cerebral haemorrhage during anticoagulant treatment. |
Frustaci 2009 [12] | Randomized, double-blind, and placebo-controlled; 85 pts (43 vs. 42 placebo). | Lymphocytic andvirus-negative. | Virus-negative myocarditis and chronic (>6 months) HF unresponsive to conventional therapy. | 2 mg/kg/day for 6 months | Placebo + optimal conventional treatment for HF with ACEI, β-blockers, and diuretics. | PRED: 1 mg/kg/day for 4 weeks, followed by 0.33 mg/kg/day for 5 months; + optimal conventional treatment for HF with ACEI, β-blockers, and diuretics. | IT group: a significant improvement of LVEF and a significant decrease in LV dimensions and volumes compared with baseline; recovery of LV function in 88% of pts with no case of death or HTx during treatment; in the following 6 months, improvement in patients with extreme LV dilatation and dysfunction accompanied at histological examination by the disappearance of inflammatory infiltrates with progression of the disease from an active towards a healed myocarditis. Placebo group: initial improvement in some pts, further impairment of cardiac function in 83% of pts; 2 pts received transplants and 2 pts died in the 6 months after the end of trial. |
Escher 2016 [14] | Observational, retrospective, uncontrolled, and longitudinal; 114 pts. | Lymphocytic andvirus-negative. | EMB-proven, virus-negative chronic myocarditis or ICM. All pts had symptoms of HF of unknown cause for at least 6 months, despite more than 2 months of stable clinical status and stable optimal conventional HF therapy (including ACEI, β-blockers, and diuretic). | 2 mg/kg/day for 6 months | - | PRED: 1 mg/kg/day for 4 weeks, followed by 0.33 mg/kg/day for 5 months; + stable optimal conventional therapy for chronic HF (no relevant changes in medication for chronic HF were allowed that either would have been expected to be given to further improve the patient’s clinical symptoms at the time of enrolment, or that would have become necessary due to a marked deterioration of chronic HF within 8 weeks before enrolment). | Significant improvement of LVEF compared to baseline; these effects lasted for the extended long-term follow-up period. At follow-up EMB, a significant decrease in CD3+ lymphocytes/m2 as well as an abundance of the HLA-1 could be observed; in all of the patients, perforin+ cells and CD2+ cells decreased significantly in a similar manner, in comparison to baseline EMB. |
Wojnicz 2001 [13] | Randomized and placebo-controlled; 84 pts (41 vs. 43 placebo); final assessment: 58 (28 vs. 30 placebo). | Unknown and unknown. | Chronic myocarditis. | 1 mg/kg/day for 100 days | Placebo. | PRED: 1 mg/kg/day, for 12 days, then tapered every 5 days by 5 mg/day until reaching the maintenance dose of 0.2 mg/kg/day for a total of 90 days; + furosemide, spironolactone, captopril, metoprolol tartrate, nitrates, and amiodarone hydrochloride. | Significant LVEF increase, improvement of LV volume, LV diastolic dimension, and NYHA class in the IT group compared with the placebo group after 3 months of follow up. 5 out of 84 pts (5.9%) died, 6 pts (7.1%) underwent HTx, and 5 (5.9%) were readmitted to hospital during the 2-year period. |
Mason 1995 [46] | Nonrandomized and controlled; 111 pts. | Unknown and not assessed. | Myocarditis and LVEF <45%. | 2 mg/kg/day for 24 weeks | 1st group: placebo + conventional therapy for HF; 2nd group: CsA + PRED + conventional therapy for HF; CsA: 5 mg/kg twice daily, adjusted to achieve a blood level of 200–300 ng/mL at the end of week 1, then tapered to achieve a blood level of 100–200 ng/mL during weeks 2–4. From the end of week 4 to the end of week 24, the blood level was maintained at 60–150 ng/mL; PRED: 1.25 mg/kg/day for 1 week, then rapidly tapered to 0.15 mg/kg/day by the end of week 3 and maintained through week 23, then halved for a week and discontinued at the end of week 24. | PRED: 1.25 mg/kg/day for 1 week, then decreased by ~0.08 mg/kg/week until the dose was 0.33 mg/kg/day at the end of week 12. This reduced dose was maintained through the end of week 20, after which it was reduced by 0.08 mg/kg/week until the end of week 24, when the drug was discontinued; + conventional therapy for HF. | Ventricular function improved regardless of treatment (mean LVEF 0.25 ± 0.01 at baseline vs. 0.34 ± 0.02 at 28 weeks). No beneficial effect of IT on the primary endpoint (a change in the LVEF at 28 weeks) was observed. IT had a statistically significant (though clinically mild) negative influence on the LV internal diameter at end diastole. The two groups did not differ significantly in survival. The mortality rate was 20% at 1 year and 56% at 4.3 years for the whole group. |
Merken 2018 [15] | Retrospective and nonrandomized, 1:1 propensity score-matching; 209 pts (110 vs. 99 placebo). | Unknown and virus-negative. | Virus-negative, nonfulminant ICM. | 2 mg/kg/day for at least 6 months (median 6.3 months; mean 7.2 months). | Optimal conventional HF medication, including ACEI and β-blockers. | PRED: 1 mg/kg/day with a progressive step-down regimen after 1 month. CsA: 150 mg daily added in 11 cases for at least 6 months based on the immune profile in blood and EMB, such as highly elevated soluble interleukin 2 or neopterin. | After a median follow-up of 31 (15–47) months, IT resulted in an improved long-term outcome (e.g., HTx–free survival) as compared with standard HF therapy alone, and a significantly larger increase in LVEF after a mean of 12 months of follow-up, as compared with pts receiving standard HF treatment. 3 pts died: 1 within 1 month (no IT), 1 within 4 months (IT regimen), and 1 within 11 months (IT regimen, due to pulmonary cancer). |
Jones 1991 [43] | Observational, uncontrolled, and longitudinal; 20 pts. | Unknown and unknown. | 9 patients with EMB-proven myocarditis and 11 patients with borderline myocarditis. | 1.5 mg/kg/day for 6–8 weeks (AZA discontinued 2 weeks after discontinuation of PRED). | PRED: 1 mg/kg/day tapered over the following 6 to 8 weeks. | - | Significant LV function improvement in the group with borderline myocarditis and no significant changes in the myocarditis group. No deaths or irreversible complications due to IT. |
Poloczkova 2022 [44] | Prospective, randomized, and multicentre; 20 pts (9 vs. 11 with HF treatment only). The final analysis compared a group of patients treated with combined IT (regardless of the scheme) in addition to the conventional HF therapy and that of patients on conventional HF therapy only. | Unknown and virus-negative. | EMB-proven ICM and negative viral genome findings (except PVB19 low viral load presence < 500 copies/μg genomic DNA). | 1st arm: 1 mg/kg/day for 100 days2nd arm: 2 mg/kg/day for 6 months. | Conventional HF treatment: ACEI or ARB, β-blockers, and spironolactone. | 1st arm: PRED + conventional therapy for HFPRED (90 days): 1 mg/kg/day for 12 days, then tapered every 5 days by 5 mg/day down to 0.2 mg/kg/day 2nd arm: PRED + conventional therapy for HF PRED (6 months): 1 mg/kg/day for 4 weeks, followed by a dose of 0.33 mg/kg/day for the remaining 5 months. | No positive effect of combined IT on the LV function over 12 months. The baseline values of LVEF in the group of IT (LVEF 22.3 ± 4.7%) were similar to those in the group treated with conventional HF therapy (LVEF 21.7 ± 4.7%; p = 0.757). After 12 months there was no statistically significant difference in LVEF between the two studied groups (LVEF 33.7 ± 9.5% for the IT group and 41.3 ± 13.0% for the conventional therapy group; p = 0.175). 1 death from a non-CV cause in the IT-treated group (generalized cancer of unknown origin). |
Chimenti 2022 [20] | Retrospective and nonrandomized, with 1:2 propensity score-matching; 85 (Group A—TIMIC trial pts [12]) vs. 170 (Group B—1:2 propensity score-matched control cohort of pts untreated with the TIMIC protocol). | Unknown and virus-negative. | EMB-proven diagnosis of virus-negative chronic ICM. | 2 mg/kg/day for 6 months | optimal conventional HF therapy. | PRED 1 mg/kg/day for 4 weeks followed by 0.33 mg/kg/day for 5 months; +optimal conventional HF therapy. | At long-term follow-up, the risk of CV death (HR 6.77; 95% CI 2.36–19.45) and HTx (HR 7.92; 95% CI 1.80–34.88) was significantly higher in Group B. Group A showed a persistent improvement in the LVEF compared with Group B (HR 7.24; 95% CI 3.05–17.18). A higher number of Group B pts underwent ICD implantation. The incidence of recurrent myocarditis was similar between groups, and patients with evidence of a recurrent cardiac inflammatory process promptly responded to a TIMIC protocol application. CV deaths: 4 in Group A; 48 in Group B. |
Laboratory Testing |
Complete blood cell count |
Erythrocyte sedimentation rate, C reactive protein |
Renal and liver function |
Fasting glucose levels |
Serum immunoglobulin levels |
NT-pro-BNP/BNP, Troponin I/T |
Serum pancreatic amylase (if azathioprine is planned) |
Serological screening for latent infections (HBV, HCV, HIV, CMV, EBV, tuberculosis (QuantiFERON), Borreliosis, etc.) |
Thiopurine methyltransferase (TMPT) mutation (if azathioprine is planned) |
Pregnancy test (if appropriate) |
Serum Prostatic Specific Antigen (PSA) (if appropriate) |
Imaging testing |
Chest X-ray |
Abdominal ultrasound scan (if appropriate) |
Gynaecological inspection/cervical smear examination |
Screening mammography (if appropriate) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grzechocińska, J.; Tymińska, A.; Giordani, A.S.; Wysińska, J.; Ostrowska, E.; Baritussio, A.; Caforio, A.L.P.; Grabowski, M.; Marcolongo, R.; Ozierański, K. Immunosuppressive Therapy of Biopsy-Proven, Virus-Negative, Autoimmune/Immune-Mediated Myocarditis—Focus on Azathioprine: A Review of Existing Evidence and Future Perspectives. Biology 2023, 12, 356. https://doi.org/10.3390/biology12030356
Grzechocińska J, Tymińska A, Giordani AS, Wysińska J, Ostrowska E, Baritussio A, Caforio ALP, Grabowski M, Marcolongo R, Ozierański K. Immunosuppressive Therapy of Biopsy-Proven, Virus-Negative, Autoimmune/Immune-Mediated Myocarditis—Focus on Azathioprine: A Review of Existing Evidence and Future Perspectives. Biology. 2023; 12(3):356. https://doi.org/10.3390/biology12030356
Chicago/Turabian StyleGrzechocińska, Justyna, Agata Tymińska, Andrea Silvio Giordani, Julia Wysińska, Ewa Ostrowska, Anna Baritussio, Alida Linda Patrizia Caforio, Marcin Grabowski, Renzo Marcolongo, and Krzysztof Ozierański. 2023. "Immunosuppressive Therapy of Biopsy-Proven, Virus-Negative, Autoimmune/Immune-Mediated Myocarditis—Focus on Azathioprine: A Review of Existing Evidence and Future Perspectives" Biology 12, no. 3: 356. https://doi.org/10.3390/biology12030356
APA StyleGrzechocińska, J., Tymińska, A., Giordani, A. S., Wysińska, J., Ostrowska, E., Baritussio, A., Caforio, A. L. P., Grabowski, M., Marcolongo, R., & Ozierański, K. (2023). Immunosuppressive Therapy of Biopsy-Proven, Virus-Negative, Autoimmune/Immune-Mediated Myocarditis—Focus on Azathioprine: A Review of Existing Evidence and Future Perspectives. Biology, 12(3), 356. https://doi.org/10.3390/biology12030356