Stimbiotics Supplementation Promotes Growth Performance by Improving Plasma Immunoglobulin and IGF-1 Levels and Regulating Gut Microbiota Composition in Weaned Piglets
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Sample Collection
2.3. Growth Performance and Diarrhoea Incidence Measurements
2.4. Assay of Plasma Antioxidant Indicators
2.5. Assay of Plasma Immune Markers and IGF-1
2.6. Faecal Microbial Composition Analysis
2.7. Statistical Analysis
3. Results
3.1. Growth Performance and Diarrhoea Incidence
3.2. Plasma Antioxidant Capacity
3.3. Plasma Immunoglobulin and IGF-1 Levels
3.4. Analysis of Faecal Microorganisms
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jaworski, N.W.; Lærke, H.N.; Bach Knudsen, K.E.; Stein, H.H. Carbohydrate composition and in vitro digestibility of dry matter and nonstarch polysaccharides in corn, sorghum, and wheat and coproducts from these grains. J. Anim. Sci. 2015, 93, 1103–1113. [Google Scholar] [CrossRef]
- Karr-Lilienthal, L.K.; Kadzere, C.T.; Grieshop, C.M.; Fahey, G.C. Chemical and nutritional properties of soybean carbohydrates as related to nonruminants: A review. Livest. Prod. Sci. 2005, 97, 1–12. [Google Scholar] [CrossRef]
- Bakker, G.C.; Dekker, R.A.; Jongbloed, R.; Jongbloed, A.W. Non-starch polysaccharides in pig feeding. Vet. Q. 1998, 20, S59–S64. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.W.; Knabe, D.A.; Hong, K.J.; Easter, R.A. Use of carbohydrases in corn-soybean meal-based nursery diets. J. Anim. Sci. 2003, 81, 2496–2504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Passos, A.A.; Park, I.; Ferket, P.; von Heimendahl, E.; Kim, S.W. Effect of dietary supplementation of xylanase on apparent ileal digestibility of nutrients, viscosity of digesta, and intestinal morphology of growing pigs fed corn and soybean meal based diet. Anim. Nutr. Zhongguo Xu Mu Shou Yi Xue Hui 2015, 1, 19–23. [Google Scholar] [CrossRef]
- Tiwari, U.P.; Chen, H.; Kim, S.W.; Jha, R. Supplemental effect of xylanase and mannanase on nutrient digestibility and gut health of nursery pigs studied using both in vivo and in vitro models. Anim. Feed. Sci. Tech. 2018, 245, 77–90. [Google Scholar] [CrossRef]
- Acosta, J.A.; Stein, H.H.; Patience, J.F. Impact of increasing the levels of insoluble fiber and on the method of diet formulation measures of energy and nutrient digestibility in growing pigs. J. Anim. Sci. 2020, 98, skaa130. [Google Scholar] [CrossRef] [Green Version]
- Weber, E.K.; Stalder, K.J.; Patience, J.F. Wean-to-finish feeder space availability effects on nursery and finishing pig performance and total tract digestibility in a commercial setting when feeding dried distillers grains with solubles. J. Anim. Sci. 2015, 93, 1905–1915. [Google Scholar] [CrossRef]
- Petry, A.L.; Huntley, N.F.; Bedford, M.R.; Patience, J.F. The influence of xylanase on the fermentability, digestibility, and physicochemical properties of insoluble corn-based fiber along the gastrointestinal tract of growing pigs. J. Anim. Sci. 2021, 99, skab159. [Google Scholar] [CrossRef]
- Vangsøe, C.T.; Nørskov, N.P.; Devaux, M.F.; Bonnin, E.; Bach Knudsen, K.E. Carbohydrase complexes rich in xylanases and arabinofuranosidases affect the autofluorescence signal and liberate phenolic acids from the cell wall matrix in wheat, maize, and rice bran: An in vitro digestion study. J. Agric. Food. Chem. 2020, 68, 9878–9887. [Google Scholar] [CrossRef]
- De Maesschalck, C.; Eeckhaut, V.; Maertens, L.; De Lange, L.; Marchal, L.; Nezer, C.; De Baere, S.; Croubels, S.; Daube, G.; Dewulf, J.; et al. Effects of xylo-oligosaccharides on broiler chicken performance and microbiota. Appl. Environ. Microbiol. 2015, 81, 5880–5888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez-Ortiz, G.; Gomes, G.A.; dos Santos, T.T.; Bedford, M.R. The Value of Fibre-Engaging the Second Brain for Animal Nutrition; Wageningen Academic: Wageningen, The Netherlands, 2019; pp. 233–254. [Google Scholar]
- Craig, A.D.; Khattak, F.; Hastie, P.; Bedford, M.R.; Olukosi, O.A. Xylanase and xylo- oligosaccharide prebiotic improve the growth performance and concentration of potentially prebiotic oligosaccharides in the ileum of broiler chickens. Brit. Poult. Sci. 2020, 61, 70–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, X.R.; Agazzi, A.; Awati, A.; Vitari, F.; Bento, H.; Ferrari, A.; Alborali, G.L.; Crestani, M.; Domeneghini, C.; Bontempo, V. Influence of a blend of essential oils and an enzyme combination on growth performance, microbial counts, ileum microscopic anatomy and the expression of inflammatory mediators in weaned piglets following an Escherichia coli infection. Anim. Feed. Sci. Tech. 2015, 209, 219–229. [Google Scholar] [CrossRef]
- Jiang, X.R.; Awati, A.; Agazzi, A.; Vitari, F.; Ferrari, A.; Bento, H.; Crestani, M.; Domeneghini, C.; Bontempo, V. Effects of a blend of essential oils and an enzyme combination on nutrient digestibility, ileum histology and expression of inflammatory mediators in weaned piglets. Animal 2015, 9, 417–426. [Google Scholar] [CrossRef] [Green Version]
- González-Ortiz, G.; Dos Santos, T.T.; Bedford, M.R. Evaluation of xylanase and a fermentable xylo-oligosaccharide on performance and ileal digestibility of broiler chickens fed energy and amino acid deficient diets. Anim. Nutr. Zhongguo Xu Mu Shou Yi Xue Hui 2021, 7, 488–495. [Google Scholar] [CrossRef] [PubMed]
- Song, D.; Lee, J.; Kwak, W.; Song, M.; Oh, H.; Kim, Y.; An, J.; Chang, S.; Go, Y.; Cho, H.; et al. Stimbiotic supplementation alleviates poor performance and gut integrity in weaned piglets induced by challenge with E. coli. Animals 2022, 12, 1799. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.M.; González-Ortiz, G.; Melo-Durán, D.; Heo, J.M.; Cordero, G.; Bedford, M.R.; Kim, J.C. Stimbiotic supplementation improved performance and reduced inflammatory response via stimulating fiber fermenting microbiome in weaner pigs housed in a poor sanitary environment and fed an antibiotic-free low zinc oxide diet. PloS ONE 2020, 15, e0240264. [Google Scholar] [CrossRef] [PubMed]
- Thissen, J.P.; Ketelslegers, J.M.; Underwood, L.E. Nutritional regulation of the insulin-like growth factors. Endocr. Rev. 1994, 15, 80–101. [Google Scholar] [PubMed]
- Soliman, A.T.; Hassan, A.E.; Aref, M.K.; Hintz, R.L.; Rosenfeld, R.G.; Rogol, A.D. Serum insulin-like growth factors I and II concentrations and growth hormone and insulin responses to arginine infusion in children with protein-energy malnutrition before and after nutritional rehabilitation. Pediatr. Res. 1986, 20, 1122–1130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carroll, J.A.; Veum, T.L.; Matteri, R.L. Endocrine responses to weaning and changes in post-weaning diet in the young pig. Domest. Anim. Endocrinol. 1998, 15, 183–194. [Google Scholar] [CrossRef]
- Matteri, R.L.; Dyer, C.J.; Touchette, K.J.; Carroll, J.A.; Allee, G.L. Effects of weaning on somatotrophic gene expression and circulating levels of insulin-like growth factor-1 (IGF-1) and IGF-2 in pigs. Domest. Anim. Endocrinol. 2000, 19, 247–259. [Google Scholar] [CrossRef]
- Carlson, D.; Poulsen, H.D.; Vestergaard, M. Additional dietary zinc for weaning piglets is associated with elevated concentrations of serum IGF-I. J. Anim. Physiol. Anim. Nutr. 2004, 88, 332–339. [Google Scholar] [CrossRef]
- Cameron, N.D.; McCullough, E.; Troup, K.; Penman, J.C. Serum insulin-like growth factor-1 concentration in pigs divergently selected for daily food intake or lean growth rate. J. Anim. Breed. Genet. 2003, 120, 228–236. [Google Scholar] [CrossRef]
- De Groot, N.; Fariñas, F.; Cabrera-Gómez, C.G.; Pallares, F.J.; Ramis, G. Weaning causes a prolonged but transient change in immune gene expression in the intestine of piglets. J. Anim. Sci. 2021, 99, skab065. [Google Scholar] [CrossRef]
- Heo, J.M.; Opapeju, F.O.; Pluske, J.R.; Kim, J.C.; Hampson, D.J.; Nyachoti, C.M. Gastrointestinal health and function in weaned pigs: A review of feeding strategies to control post-weaning diarrhoea without using in-feed antimicrobial compounds. J. Anim. Physiol. Anim. Nutr. 2013, 97, 207–237. [Google Scholar] [CrossRef] [PubMed]
- Moeser, A.J.; Pohl, C.S.; Rajput, M. Weaning stress and gastrointestinal barrier development: Implications for lifelong gut health in pigs. Anim. Nutr. Zhongguo Xu Mu Shou Yi Xue Hui 2017, 3, 313–321. [Google Scholar] [CrossRef] [PubMed]
- De Sousa-Pereira, P.; Woof, J.M. IgA: Structure, Function, and Developability. Antibodies 2019, 8, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yanaka, S.; Yogo, R.; Kato, K. Biophysical characterization of dynamic structures of immunoglobulin G. Biophys. Rev. 2020, 12, 637–645. [Google Scholar] [CrossRef]
- Chiu, M.L.; Goulet, D.R.; Teplyakov, A.; Gilliland, G.L. Antibody structure and function: The basis for engineering therapeutics. Antibodies 2019, 8, 55. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.S.; Tang, C.H.; Zhao, Q.Y.; Zhan, T.F.; Zhang, K.; Han, Y.M.; Zhang, J.M. Effects of dietary supplementation with combinations of organic and medium chain fatty acids as replacements for chlortetracycline on growth performance, serum immunity, and fecal microbiota of weaned piglets. Livest. Sci. 2018, 216, 210–218. [Google Scholar] [CrossRef]
- Sun, P.; Wang, J.Q.; Zhang, H.T. Effects of Bacillus subtilis natto on performance and immune function of preweaning calves. J. Dairy Sci. 2010, 93, 5851–5855. [Google Scholar] [CrossRef] [Green Version]
- Poulsen, H.D. Zinc oxide for weanling piglets. Acta Agric. Scand. Sect. A Anim. Sci. 1995, 45, 159–167. [Google Scholar] [CrossRef]
- Lallès, J.-P.; Bosi, P.; Smidt, H.; Stokes, C.R. Nutritional management of gut health in pigs around weaning. Proc. Nutr. Soc. 2007, 66, 260–268. [Google Scholar] [CrossRef] [PubMed]
- Donaldson, G.P.; Lee, S.M.; Mazmanian, S.K. Gut biogeography of the bacterial microbiota. Nat. Rev. Microbiol. 2016, 14, 20–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lagkouvardos, I.; Lesker, T.R.; Hitch, T.C.A.; Gálvez, E.J.C.; Smit, N.; Neuhaus, K.; Wang, J.; Baines, J.F.; Abt, B.; Stecher, B.; et al. Sequence and cultivation study of Muribaculaceae reveals novel species, host preference, and functional potential of this yet undescribed family. Microbiome 2019, 7, 28. [Google Scholar] [CrossRef] [Green Version]
- Shao, X.; Sun, C.; Tang, X.; Zhang, X.; Han, D.; Liang, S.; Qu, R.; Hui, X.; Shan, Y.; Hu, L.; et al. Anti-inflammatory and intestinal microbiota modulation properties of Jinxiang garlic (Allium sativum L.) polysaccharides toward dextran sodium sulfate-induced colitis. J. Agric. Food. Chem. 2020, 68, 12295–12309. [Google Scholar] [CrossRef]
- Seshadri, R.; Leahy, S.C.; Attwood, G.T.; Teh, K.H.; Lambie, S.C.; Cookson, A.L.; Eloe-Fadrosh, E.A.; Pavlopoulos, G.A.; Hadjithomas, M.; Varghese, N.J.; et al. Cultivation and sequencing of rumen microbiome members from the Hungate1000 Collection. Nat. Biotechnol. 2018, 36, 359–367. [Google Scholar] [CrossRef]
- Qiu, Q.; Zhu, Y.; Qiu, X.; Gao, C.; Wang, J.; Wang, H.; He, Y.; Rahman, M.A.U.; Cao, B.; Su, H. Dynamic variations in fecal bacterial community and fermentation profile of holstein steers in response to three stepwise density diets. Animals 2019, 9, 560. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Yang, J.; Zhang, B.; Zhang, L.; Wu, K.; Yang, A.; Li, C.; Wang, Y.; Zhang, J.; Qi, D. Potential link between gut microbiota and deoxynivalenol-induced feed refusal in weaned piglets. J. Agric. Food. Chem. 2019, 67, 4976–4986. [Google Scholar] [CrossRef]
- Cao, Q.; Zhang, W.; Lian, T.; Wang, S.; Yin, F.; Zhou, T.; Zhang, H.; Zhu, J.; Dong, H. Roles of micro-aeration on enhancing volatile fatty acids and lactic acid production from agricultural wastes. Bioresour. Technol. 2022, 347, 126656. [Google Scholar] [CrossRef]
- Huang, J.; Pan, Y.; Liu, L.; Liang, J.; Wu, L.; Zhu, H.; Zhang, P. High salinity slowed organic acid production from acidogenic fermentation of kitchen wastewater by shaping functional bacterial community. J. Environ. Manag. 2022, 310, 114765. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Tang, L.; Liu, S.; Hu, S.; Wu, L.; Liu, Y.; Yang, M.; Huang, S.; Tang, X.; Tang, T.; et al. Parabacteroides produces acetate to alleviate heparanase-exacerbated acute pancreatitis through reducing neutrophil infiltration. Microbiome 2021, 9, 115. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Cai, X.; Guo, Q.; Chen, X.; Zhu, S.; Xu, J. Effect of N-acetyl cysteine on enterocyte apoptosis and intracellular signalling pathways’ response to oxidative stress in weaned piglets. Brit. J. Nutr. 2013, 110, 1938–1947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, L.H.; Zhao, K.L.; Chen, X.L.; Xu, J.X. Impact of weaning and an antioxidant blend on intestinal barrier function and antioxidant status in pigs. J. Anim. Sci. 2012, 90, 2581–2589. [Google Scholar] [CrossRef]
- Duarte, M.E.; Zhou, F.X.; Dutra, W.M., Jr.; Kim, S.W. Dietary supplementation of xylanase and protease on growth performance, digesta viscosity, nutrient digestibility, immune and oxidative stress status, and gut health of newly weaned pigs. Anim. Nutr. Zhongguo Xu Mu Shou Yi Xue Hui 2019, 5, 351–358. [Google Scholar] [CrossRef]
- Petry, A.L.; Huntley, N.F.; Bedford, M.R.; Patience, J.F. Xylanase increased the energetic contribution of fiber and improved the oxidative status, gut barrier integrity, and growth performance of growing pigs fed insoluble corn-based fiber. J. Anim. Sci. 2020, 98, skaa233. [Google Scholar] [CrossRef]
- Chen, Y.; Xie, Y.; Zhong, R.; Han, H.; Liu, L.; Chen, L.; Zhang, H.; Beckers, Y.; Everaert, N. Effects of graded levels of xylo-oligosaccharides on growth performance, serum parameters, intestinal morphology, and intestinal barrier function in weaned piglets. J. Anim. Sci. 2021, 99, skab183. [Google Scholar] [CrossRef]
Items | Pre-Starter (0–14 Days) | Starter (14–42 Days) | ||
---|---|---|---|---|
CT | VP | CT | VP | |
Ingredients | ||||
Corn | 16.45 | 16.45 | 21.17 | 21.17 |
Extruded corn | 32.00 | 32.00 | 40.00 | 40.00 |
Soybean meal | 14.00 | 14.00 | 17.50 | 17.50 |
Extruded soybean | 11.50 | 11.50 | 6.00 | 6.00 |
Fish meal | 5.60 | 5.60 | 3.00 | 3.00 |
Whey | 15.00 | 15.00 | 5.00 | 5.00 |
Soybean oil | 1.00 | 1.00 | 1.20 | 1.20 |
Bran | - | - | 1.50 | 1.50 |
Dicalcium phosphate | 0.40 | 0.40 | 0.60 | 0.60 |
Limestone (CaCO3) | 0.75 | 0.75 | 0.90 | 0.90 |
Salt | 0.30 | 0.30 | 0.30 | 0.30 |
Choline chloride (60%) | 0.05 | 0.05 | 0.05 | 0.05 |
L-Lysine HCl | 1.20 | 1.20 | 1.08 | 1.08 |
DL-Methionine | 0.09 | 0.09 | 0.08 | 0.08 |
Threonine | 0.27 | 0.27 | 0.24 | 0.24 |
Tryptophan | 0.02 | 0.02 | 0.01 | 0.01 |
Phytase | 0.02 | 0.02 | 0.02 | 0.02 |
Acidifier | 0.35 | 0.35 | 0.35 | 0.35 |
Vitamin and mineral premix 1 | 1.00 | 1.00 | 1.00 | 1.00 |
Total | 100.00 | 100.00 | 100.00 | 100.00 |
Analysed nutrient content, % | ||||
Crude protein | 18.63 | 18.34 | 16.90 | 17.06 |
Calcium | 1.02 | 0.91 | 1.13 | 0.98 |
Phosphorus | 0.62 | 0.64 | 0.55 | 0.58 |
Ether extract | 5.63 | 5.82 | 6.14 | 5.77 |
Calculated nutrient content, % | ||||
ME, MJ/kg | 14.23 | 14.23 | 14.02 | 14.02 |
Lysine | 1.30 | 1.30 | 1.15 | 1.15 |
Methionine | 0.38 | 0.38 | 0.34 | 0.34 |
Threonine | 0.76 | 0.76 | 0.68 | 0.68 |
Tryptophan | 0.21 | 0.21 | 0.19 | 0.19 |
Items | Treatment | SEM | p-Value | |
---|---|---|---|---|
CT | VP | |||
BW, kg | ||||
Day 0 | 8.84 | 8.84 | 0.38 | 1.000 |
Day 14 | 10.85 | 11.22 | 0.39 | 0.178 |
Day 28 | 15.41 | 16.70 | 0.57 | 0.013 |
Day 42 | 20.52 | 22.25 | 0.78 | 0.031 |
ADG, g | ||||
Days 0–14 | 144 | 171 | 14 | 0.171 |
Days 14–28 | 325 | 391 | 22 | 0.022 |
Days 28–42 | 365 | 396 | 24 | 0.399 |
Days 0–42 | 278 | 319 | 14 | 0.041 |
ADFI, g | ||||
Days 0–14 | 266 | 291 | 15 | 0.331 |
Days 14–28 | 629 | 711 | 29 | 0.025 |
Days 28–42 | 728 | 807 | 41 | 0.200 |
Days 0–42 | 541 | 603 | 20 | 0.038 |
FCR | ||||
Days 0–14 | 1.89 | 1.80 | 0.12 | 0.450 |
Days 14–28 | 1.98 | 1.83 | 0.07 | 0.193 |
Days 28–42 | 2.03 | 2.05 | 0.10 | 0.893 |
Days 0–42 | 1.97 | 1.89 | 0.05 | 0.384 |
Diarrhoea incidence, % | ||||
Days 0–14 | 1.96 | 2.55 | - | 0.514 |
Items | Treatment | SEM | p-Value | |
---|---|---|---|---|
CT | VP | |||
Day 14 | ||||
CAT/(U/mL) | 1.59 | 2.36 | 0.26 | 0.053 |
SOD/(U/mL) | 23.81 | 25.09 | 1.49 | 0.575 |
GSH-PX/(U/mL) | 253 | 263 | 14 | 0.648 |
MDA/(nmol/mL) | 3.49 | 3.40 | 0.15 | 0.730 |
Day 42 | ||||
CAT/(U/mL) | 2.14 | 2.48 | 0.32 | 0.474 |
SOD/(U/mL) | 23.47 | 23.81 | 1.09 | 0.824 |
GSH-PX/(U/mL) | 334 | 347 | 16 | 0.566 |
MDA/(nmol/mL) | 2.60 | 2.65 | 0.15 | 0.856 |
Items | Treatment | SEM | p-Value | |
---|---|---|---|---|
CT | VP | |||
Day 14 | ||||
IgA, mg/mL | 2.43 | 2.97 | 0.17 | 0.041 |
IgG, mg/mL | 32.47 | 35.88 | 1.02 | 0.033 |
Day 42 | ||||
IgA, mg/mL | 2.32 | 2.83 | 0.15 | 0.037 |
IgG, mg/mL | 38.71 | 43.76 | 1.58 | 0.041 |
Items | Treatment | SEM | p-Value | |
---|---|---|---|---|
CT | VP | |||
Ace index | 497 | 486 | 21 | 0.958 |
Chao index | 497 | 486 | 20 | 0.958 |
Sobs index | 497 | 485 | 20 | 0.958 |
Shannon index | 3.64 | 4.03 | 0.17 | 0.958 |
Simpson index | 0.10 | 0.06 | 0.02 | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.; Yin, C.; Li, J.; Sun, W.; Li, Y.; Wang, C.; Pi, Y.; Cordero, G.; Li, X.; Jiang, X. Stimbiotics Supplementation Promotes Growth Performance by Improving Plasma Immunoglobulin and IGF-1 Levels and Regulating Gut Microbiota Composition in Weaned Piglets. Biology 2023, 12, 441. https://doi.org/10.3390/biology12030441
Chen W, Yin C, Li J, Sun W, Li Y, Wang C, Pi Y, Cordero G, Li X, Jiang X. Stimbiotics Supplementation Promotes Growth Performance by Improving Plasma Immunoglobulin and IGF-1 Levels and Regulating Gut Microbiota Composition in Weaned Piglets. Biology. 2023; 12(3):441. https://doi.org/10.3390/biology12030441
Chicago/Turabian StyleChen, Wenning, Chenggang Yin, Jing Li, Wenjuan Sun, Yanpin Li, Chengwei Wang, Yu Pi, Gustavo Cordero, Xilong Li, and Xianren Jiang. 2023. "Stimbiotics Supplementation Promotes Growth Performance by Improving Plasma Immunoglobulin and IGF-1 Levels and Regulating Gut Microbiota Composition in Weaned Piglets" Biology 12, no. 3: 441. https://doi.org/10.3390/biology12030441
APA StyleChen, W., Yin, C., Li, J., Sun, W., Li, Y., Wang, C., Pi, Y., Cordero, G., Li, X., & Jiang, X. (2023). Stimbiotics Supplementation Promotes Growth Performance by Improving Plasma Immunoglobulin and IGF-1 Levels and Regulating Gut Microbiota Composition in Weaned Piglets. Biology, 12(3), 441. https://doi.org/10.3390/biology12030441