Critical Role of Regrowth Conditions in Post-Cryopreservation of In Vitro Plant Germplasm
Abstract
:Simple Summary
Abstract
1. Introduction
2. Main Injuries in Plant Tissues during Cryopreservation and Five Strategies to Overcome Them at the Recovery Stage
2.1. Main Injuries in Plant Tissues during Cryopreseervation
2.2. Five Strategies at Recovery Stage to Overcome Cryopreservation-Induced Injuries
- Provide optimum conditions for recovery without posing extra stress to already damaged plant materials;
- Remove toxic chemicals (residues of CPA, toxic substances released from the damaged cells, phenolic compounds, etc.);
- Provide easy access to nutrients since the connection between cell clusters in the rewarmed samples may be broken or temporarily disrupted;
- Support/activate repair mechanism to cope with damage to cellular structures, particularly membranes, lipid peroxidation, ROS accumulation, etc.;
- Support energy function through appropriate carbohydrate sources;
- Support the desired morphogenic or embryogenic response, e.g., direct regrowth from meristem-containing propagules, embryo development, new root formation, etc.
3. Strategy 1. Osmotic Environment
3.1. Step-Wise Medium Change
3.2. Physical State of the Recovery Medium
4. Strategy 2. Chemical Environment: Modifications of Recovery Medium Composition
4.1. Iron-Free Recovery Medium
4.2. Ammonium-Free Recovery Medium
4.3. Carbohydrate Source and Gelling Agent in Recovery Medium
5. Strategy 3. Application of Exogenous Bioactive Compounds at the Recovery Stage
5.1. Cryopreservation and Oxidative Stresses
5.2. Application of Compounds with Antioxidant Activity at the Recovery Stage
5.3. Application of Polymeric Compounds, Nonoparticles, and Antimicrobial Agents at the Recovery Stage
6. Strategy 4. Plant Growth Regulators and Their Combinations at the Post-LN Stage: Modulation of the Physiological Response
6.1. Plant Growth Regulators for Shoot Tips and Axillary Buds
Species | Explant | Cryopreservation Method | Regrowth Medium | Plant Growth Regulators (mg L−1) | Survival (S) or Regrowth (R) Response | Reference |
---|---|---|---|---|---|---|
Shoot tips of agronomically important species (protocol implementation to multiple accessions) | ||||||
Allium spp. | Shoot tips | DV | B5 | 2-iP 0.5 + NAA 0.1 → no PGR | R: >40% for 12 accessions | [70] |
Allium spp. | Clove apices, bulbil primordia | DV | MS | IAA 0.3 + 2-iP 2.0 | R: 65.9% (mean of 1158 accessions) | [6] |
Musa spp. + 1 Ensete spp. | Shoot tips, meristematic clumps | DV | MS | BA 0.2 | R: 52.9% for shoot tips (average of 56 accessions) | [55,181] |
Solanum spp. | Shoot tips | DV | MS | GA3 0.1 + kinetin 0.4 + coconut water 20 mL L−1 | S: 68.8% R: 55.4% (mean of 1028 accessions) | [7] |
Solanum tuberosum | Shoot tips | DMSO-droplet freezing | MS | zeatin 0.5 + GA3 0.2 + IAA 0.5 | R: 54% (mean of 28 accessions) | [48] |
DV | R: 71% (mean of 28 accessions) | |||||
Manihot esculenta | Shoot tips | DV | MS | kinetin 0.5 + GA3 0.25 | R: 0–100% (97 accessions) | [51] |
Vitis spp. | Shoot tips | DV | 1/2MS (macro) | BA 0.2 | R: >43% for 13 genotypes | [49] |
Fragaria spp. | Shoot tips | Vitrif | MS | BA 0.1 + GA3 0.01 + IAA 1 + adenine sulfate 80 | R: 75–100% (194 genotypes) | [182] |
Woody species | ||||||
Betula lenta | Shoot tips | DV | DKW | BA 0.1 + GA3 0.35 | R: 52% | [183] |
Ulmus americana | Shoot tips | Vitrif Enc-Vitr | DKW | BA 0.5 + GA3 0.1 | R: 50–63% | [129] |
Pyrus spp. | Shoot tips | Vitrif | MS | BA 0.1 + NAA 0.01 + GA3 0.1 or BA 1 only | R: 33% (average of 22 accessions) | [17] |
Ulmus minor, U. laevis, U. glabra | Dormant buds | SF | MS | BA 0.1 | R: 42–76 | [126] |
Malus spp. (4 species, 9 genotypes) | Shoot tips | Enc-Deh | MS | BA 0.25 + IBA 0.01 | R: 57% (mean of 9 genotypes) | [184] |
Malus x domestica (4 genotypes) | Shoot tips | Enc-Deh Enc-Vitr | MS | BA 0.5 + IBA 0.05 | R: 65–88% | [176] |
Populus tremula x Populus tremuloides | In vivo buds | SF | WPM | BA 0.5 + IAA 0.5 | R: 72–96% | [185] |
6.2. Plant Growth Regulators for Cell Cultures
Species | Explant | Cryopreservation Method | Regrowth Medium | Plant Growth Regulators (mg L−1) | Survival (S) or Regrowth (R) Response | Reference |
---|---|---|---|---|---|---|
Somatic embryos | ||||||
Several Citrus genotypes | SE | Enc-Deh | MS | No PGR | S: 76–100% | [12] |
Theobroma cacao, 4 genotypes | SE | Enc-Deh | DKW | No PGR | R: 25–72% 33% plant conversion | [125] |
Olea europea | SE | Enc-Deh Enc-Vitr | MS | No PGR | R: up to 54% | [190] |
Coriandrum sativum | SE | Preculture-desic | MS | 2,4-D 1.0 | R: 98% | [127] |
Elaeis guineensis | SE | Preculture-desic | MS | 2,4-D 0.2 | R: 80% | [191] |
Castanea sativa | SE | Preculture-desic | MS | NAA 0.1 + BA 0.1 | R: 68% (resumption of embryogenesis) | [192] |
Embryogenic/morphogenic cell cultures | ||||||
Quercus suber | EC | Vitrif | SH | No PGR | 88–93% embryo recovery, 60% plant regeneration | [193] |
Asparagus officinalis | ES | Vitrif SF | LS | 2,4-D 1.1 | S: 82–86% Embryo production retained at the control level | [194] |
Arabidopsis thaliana | ES | SF | MS | 2,4-D 2 | Regrowth through callus followed by shoot regeneration | [81] |
Kalopanax septemlobus | EC | Vitrif DV | MS | 2,4-D 0.1 | R: 99% Embryo production retained at the control level | [195] |
Manihot esculenta | EC | Preculture-desic | MS | BA 0.05 + NAA 0.01 (24 h) → BA 0.1 | S: >90% Embryogenic competence: >90% | [59] |
Hevea brusiliensis | EC | SF | MH | BA 0.3 + 2,4-D 0.3 + ABA 0.17 | S: 40–70% depending on cell line Embryo production reported | [196] |
Pinus patula | EC | SF | MS | BA 1.0 + 2,4-D 2.0 | Good regrowth followed by embryo and plant development reported | [197] |
Pinus sylvestris, several cell lines | EC | SF | DCR | BA 0.5 + 2,4-D 2 or 3 | 78% of cell lines remained viable and proliferated | [198] |
Undifferentiated cell cultures | ||||||
Triticum aestivum cv. Norstar | Callus | SF | MS | No PGR | S: 82% R: 54.5% 18% calli formed plantlets | [199] |
Arabidopsis thaliana | Susp | Enc-Deh | MS | NAA 11 | S: 34% R: 100% | [78] |
Ginkgo biloba | Callus | Preculture-desic | MS | NAA 5 | R: 23% | [200] |
Panax ginseng | Susp | SF | MS | 2,4-D 1 | Growth resumed | [201] |
Nicotiana tabacum (transgenic lines) | Susp | Vitrif | MS | 2,4-D 2.21 | Regrowth through callus mentioned | [69] |
Bromus inermis | Susp | SF | EM | 2,4-D 0.05 | R: 85% | [202] |
Catharanthusroseus | Susp | SF | B5 | 2,4-D 1 | S: 61.6% | [66] |
Susp | SF | B5 | 2,4-D 1 + kinetin 0.1 | Growth resumed | [201] | |
Polyscias filicifolia | Susp | SF | MS | NAA 3 + kinetin 2 | S: 40% Large-scale bioreactor cultivation resumed | [82] |
Medicago sativa | Susp | SF | MS | 2,4-D 1 + kinetin 0.1 | S: 20% | [83] |
6.3. Plant Growth Regulators for Root Explants
Species | Explant | Cryopreservation Method | Regrowth Medium | Plant Growth Regulators (mg L−1) | Survival (S) or Regrowth (R) Response | Reference |
---|---|---|---|---|---|---|
Hairy roots | ||||||
Nicotiana rustica | Root tips | SF | B5 | No PGR | S: 83%; R: 23% | [213] |
Beta vulgaris | Root tips | SF Ultra-Rapid | B5 | No PGR | S: 42–46%; R: 6% S: 84%; R: 9.7% | [213] |
Maesa lanceolata Medicago truncatula | Root tips | Enc-Deh | SH MS | No PGR | R: 90% R: 53% | [214] |
Adventitious roots | ||||||
Hyoscyamus niger | Root tips | Vitrif | WPM | No PGR | R: 93% | [215] |
Panax ginseng | Root tips | DV Vitrif | MS | IBA 5 + IBA 0.05 | S: 90%; R: 32.5% R: 15% | [207,208] |
Tarenaya rosea | Root tips | Enc-Vitr | MS | NAA 0.25 | R: 91% | [209] |
Roots from in vitro grown plants | ||||||
Hypericum perforatum, 5 lines | Root segments | DV | MS | GA3 1.0 | R: 45–78% | [212] |
Vanilla planifolia | Root tips | DV | MS | BA or kinetin 1 | S: 60%; R: 43% | [211] |
Passiflora pohlii | Root tips | V-cryo-plate | Modified MS | IAA 1 | R: 79% | [216] |
Cleome rosea | Root segments | Vitrif | MS | NAA 0.25 for regrowth, BA 0.5 for shoot development | R: 100% | [210] |
6.4. Plant Growth Regulators for Other Plant Materials
Species | Explant | Cryopreservation Method | Regrowth Medium | Plant Growth Regulators (mg L−1) | Survival (S) or Regrowth (R) Response | Reference |
---|---|---|---|---|---|---|
Solanum tuberosum | Microtubers | Preculture-desic | MS | No PGR | S: 100% R: 40–75% (shoot regrowth) | [130] |
Cymbidium kanran | Rhizome sections | Preculture-desic | Hyponex | GA3 1.0 + BA 0.5 | R: 90% | [178] |
Asparagus officinalis | Rhizome buds | Enc-Deh | MS modified with Fe-EDDHA | NAA 0.5 + kinetin 0.7 | R: 84% | [88] |
Lilium Oriental hybrid ‘Siberia’ | Adventitious buds | DV | MS | NAA 1 + TDZ 0.2 | S: 85% R: 72% (shoot regeneration) | [218] |
Vaccinium corymbosum | Adventitious buds | DV | WPM | Zeatin 0.4 | R: 100% (shoot regrowth) | [217] |
Allium cepa var. aggregatum | Adventitious buds | DV | MS | NAA 0.1 + BA 0.5 | R: 72% (shoot regrowth) | [219] |
Cattleya loddigesii var. hassisoniana, C. walkeriana | Meristematic clusters (shoot primordia) | Preculture-desic | Hyponex | No PGR | R: 100% | [220] |
Dendrobium cv. Yukidaruma | Meristematic clusters (shoot primordia) | Preculture-desic | Hyponex | No PGR | R: 100% | [220] |
Vanda pumila | Meristematic clusters (shoot primordia) | Preculture-desic | B5 | BA 0.02 | S: 65% | [221] |
Dendrobium candidum (Dendrobium moniliforme) | Protocorms | Vitrif | 1/2MS | No PGR | R: 88% | [222] |
Grammatophyllum speciosum | Protocorms | DV Enc-Deh Enc-Vitr | 1/2MS | No PGR | R: 12–38% | [223] |
Oncidium hamana “elfin” | Protocorm-like bodies (PLBs) | Enc-Deh | 1/3MS | No PGR | R: 30% | [224] |
Caladenia latifolia | Protocorms and PLBs | DV | 1/2MS | Zeatin 0.2 + GA3 0.17 | R: 84–85% | [225] |
Cleisostoma areitinum | Protocorms | Enc-Dowaeh | ND | BA 2 + NAA 2 | R: 49% | [226] |
Phalaenopsis bellina | Protocorm-like bodies (PLBs) | Enc-Deh | 1/2MS | TDZ 3 | R: 30% | [227] |
6.5. Unusual Plant Growth Regulators
6.6. Step-Wise Change of Plant Growth Regulators during the Recovery Process
7. Strategy 5. Light/Dark Conditions and Light Quality
8. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reed, B.M. Plant Cryopreservation: A Practical Guide; Springer: New York, NY, USA, 2008. [Google Scholar]
- Pence, V.C.; Ballesteros, D.; Walters, C.; Reed, B.M.; Philpott, M.; Dixon, K.W.; Pritchard, H.W.; Culley, T.M.; Vanhove, A.C. Cryobiotechnologies: Tools for expanding long-term ex situ conservation to all plant species. Biol. Conserv. 2020, 250, 108736. [Google Scholar] [CrossRef]
- Pence, V.C.; Bruns, E.B. The tip of the iceberg: Cryopreservation needs for meeting the challenge of exceptional plant conservation. Plants 2022, 11, 1528. [Google Scholar] [CrossRef]
- Pathirana, R.; Carimi, F. Management and utilization of plant genetic resources for a sustainable agriculture. Plants 2022, 11, 2038. [Google Scholar] [CrossRef] [PubMed]
- Acker, J.P.; Adkins, S.; Alves, A.; Horna, D.; Toll, J. Feasibility Study for a Safety Back-Up Cryopreservation Facility, Independent Expert Report, July 2017; Biodiversity International: Rome, Italy, 2017; 100p, Available online: https://hdl.handle.net/10568/91009 (accessed on 30 November 2022).
- Kim, H.H.; Popova, E.; Shin, D.J.; Yi, J.Y.; Kim, C.H.; Lee, J.S.; Yoon, M.K.; Engelmann, F. Cryobanking of Korean Allium germplasm collections: Results from a 10 year experience. CryoLetters 2012, 33, 45–57. [Google Scholar] [PubMed]
- Vollmer, R.; Villagaray, R.; Egusquiza, V.; Espirilla, J.; García, M.; Torres, A.; Rojas, E.; Panta, A.; Barkley, N.A.; Ellis, D. The potato cryobank at the International Potato Center (CIP): A model for long term conservation of clonal plant genetic resources collections of the future. CryoLetters 2016, 37, 318–329. [Google Scholar]
- Jenderek, M.M.; Reed, B.M. Cryopreserved storage of clonal germplasm in the USDA National Plant Germplasm System. Vitr. Cell. Dev. Biol.-Plant 2017, 53, 299–308. [Google Scholar] [CrossRef]
- Panis, B.; Nagel, M.; Van den Houwe, I. Challenges and prospects for the conservation of crop genetic resources in field genebanks, in in vitro collections and/or in liquid nitrogen. Plants 2020, 9, 1634. [Google Scholar] [CrossRef] [PubMed]
- Ruta, C.; Lambardi, M.; Ozudogru, E.A. Biobanking of vegetable genetic resources by in vitro conservation and cryopreservation. Biodiv. Conserv. 2020, 29, 3495–3532. [Google Scholar] [CrossRef]
- Benson, E.E. Cryopreservation of phytodiversity: A critical appraisal of theory & practice. Crit. Rev. Plant Sci. 2008, 27, 141–219. [Google Scholar] [CrossRef]
- González-Arnao, M.T.; Juárez, J.; Ortega, C.; Navarro, L.; Duran-Vila, N. Cryopreservation of ovules and somatic embryos of citrus using the encapsulation-dehydration technique. CryoLetters 2003, 24, 85–94. [Google Scholar] [PubMed]
- Benelli, C.; De Carlo, A.; Engelmann, F. Recent advances in the cryopreservation of shoot-derived germplasm of economically important fruit trees of Actinidia, Diospyros, Malus, Olea, Prunus, Pyrus and Vitis. Biotechnol. Adv. 2013, 31, 175–185. [Google Scholar] [CrossRef]
- Bettoni, J.C.; Bonnart, R.; Volk, G.M. Challenges in implementing plant shoot tip cryopreservation technologies. Plant Cell Tiss. Organ Cult. 2021, 144, 21–34. [Google Scholar] [CrossRef]
- Popova, E.; Shukla, M.; Kim, H.H.; Saxena, P.K. Plant cryopreservation for biotechnology and breeding. In Advances in Plant Breeding Strategies: Breeding, Biotechnology and Molecular Tools; Al-Khayri, J.M., Jain, S.M., Johnson, D.V., Eds.; Springer International Publishing: Berlin, Germany, 2015; pp. 63–93. [Google Scholar]
- Popova, E.; Shukla, M.; Kim, H.H.; Saxena, P.K. Root cryobanking: An important tool in plant cryopreservation. Plant Cell Tiss. Organ Cult. 2021, 144, 49–66. [Google Scholar] [CrossRef]
- Höfer, M.; Flachowsky, H. Cryopreservation of Malus and Pyrus wild species in the ‘Fruit Genebank’ in Dresden-Pillnitz, Germany. Biology 2023, 12, 200. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.-L.; Wang, M.-R.; Li, Z.; Panis, B.; Bettoni, J.C.; Vollmer, R.; Xu, L.; Wang, Q.-C. Overcoming challenges for shoot tip cryopreservation of root and tuber crops. Agronomy 2023, 13, 219. [Google Scholar] [CrossRef]
- Wang, M.R.; Lambardi, M.; Engelmann, F.; Pathirana, R.; Panis, B.; Volk, G.M.; Wang, Q.-C. Advances in cryopreservation of in vitro-derived propagules: Technologies and explant sources. Plant Cell Tiss. Organ Cult. 2021, 144, 7–20. [Google Scholar] [CrossRef]
- Han, E.; Popova, E.; Cho, G.; Park, S.; Lee, S.; Pritchard, H.W.; Kim, H.H. Post-harvest embryo development in ginseng seeds increases desiccation sensitivity and narrows the hydration window for cryopreservation. CryoLetters 2016, 37, 284–294. [Google Scholar] [PubMed]
- Popova, E.V.; Shukla, M.R.; McIntosh, T.; Saxena, P.K. In vitro and cryobiotechnology approaches to safeguard Lupinus rivularis Douglas ex Lindl., an endangered plant in Canada. Agronomy 2021, 11, 37. [Google Scholar] [CrossRef]
- Volk, G.M.; Bonnart, R.; Shepherd, A.; Yin, Z.; Lee, R.; Polek, M.L.; Krueger, R. Citrus cryopreservation: Viability of diverse taxa and histological observations. Plant Cell Tiss. Organ Cult. 2017, 128, 327–334. [Google Scholar] [CrossRef]
- Dinato, N.B.; Santos, I.R.I.; Vigna, B.B.Z.; de Paula, A.F.; Fávero, A.P. Pollen cryopreservation for plant breeding and genetic resources conservation. CryoLetters 2021, 41, 115–127. [Google Scholar]
- Normah, M.N.; Sulong, N.; Reed, B.M. Cryopreservation of shoot tips of recalcitrant and tropical species: Advances and strategies. Cryobiology 2019, 8, 1–14. [Google Scholar] [CrossRef]
- Nausch, H.; Buyel, J.F. Cryopreservation of plant cell cultures–diverse practices and protocols. New Biotechnol. 2021, 62, 86–95. [Google Scholar] [CrossRef]
- Schumacher, H.M.; Westphal, M.; Heine-Dobbernack, E. Cryopreservation of plant cell lines. In Cryopreservation and Freeze-Drying Protocols. Methods in Molecular Biology; Wolkers, W.F., Oldenhof, H., Eds.; Springer: New York, NY, USA, 2015; Volume 1257, pp. 423–429. [Google Scholar] [CrossRef]
- Bajaj, Y.P.S. Technology and prospects of cryopreservation of germplasm. Euphytica 1979, 28, 267–285. [Google Scholar] [CrossRef]
- Benson, E.E.; Harding, K.; Debouck, D.; Dumet, D.; Escobar, R.; Mafla, G.; Panis, B.; Panta, A.; Tay, D.; Van den Houwe, I.; et al. Refinement and Standardization of Storage Procedures for Clonal Crops—Global Public Goods Phase 2: Part I. Project Landscape and General Status of Clonal Crop In Vitro Conservation Technologies; System-Wide Genetic Resources Programme (SGRP): Rome, Italy, 2011; 86p. [Google Scholar]
- Raju, R.; Bryant, S.J.; Wilkinson, B.L.; Bryant, G. The need for novel cryoprotectants and cryopreservation protocols: Insights into the importance of biophysical investigation and cell permeability. Biochim. Et Biophys. Acta 2021, 1865, 129749. [Google Scholar] [CrossRef]
- Roque-Borda, C.A.; Kulus, D.; Vacaro de Souza, A.; Kaviani, B.; Vicente, E.F. Cryopreservation of agronomic plant germplasm using vitrification-based methods: An overview of selected case studies. Int. J. Mol. Sci. 2021, 22, 6157. [Google Scholar] [CrossRef]
- Kaczmarczyk, A.; Rokka, V.M.; Keller, E.R.J. Potato shoot tip cryopreservation. A review. Potato Res. 2011, 54, 45–79. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.H.; Popova, E. Unifying principles of cryopreservation protocols for new plant materials based on alternative cryoprotective agents (CPAs) and a systematic approach. CryoLetters 2023, 44, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Montero, M.E.; Harding, K. Cryobionomics: Evaluating the concept in plant cryopreservation. In PlantOmics: The Omics of Plant Science; Barh, D., Khan, M., Davies, E., Eds.; Springer: New Delhi, India, 2015; pp. 655–682. [Google Scholar] [CrossRef]
- Funnekotter, B.; Mancera, R.L.; Bunn, E. Advances in understanding the fundamental aspects required for successful cryopreservation of Australian flora. Vitr. Cell. Dev. Biol.-Plant 2017, 53, 289–298. [Google Scholar] [CrossRef]
- González-Arnao, M.T.; Panta, A.; Roca, W.M. Development and large scale application of cryopreservation techniques for shoot and somatic embryo cultures of tropical crops. Plant Cell Tiss. Organ Cult. 2008, 92, 1–13. [Google Scholar] [CrossRef]
- Wang, M.-R.; Bi, W.; Shukla, M.R.; Ren, L.; Hamborg, Z.; Blystad, D.-R.; Saxena, P.K.; Wang, Q.-C. Epigenetic and genetic integrity, metabolic stability, and field performance of cryopreserved plants. Plants 2021, 10, 1889. [Google Scholar] [CrossRef]
- Dussert, S.; Engelmann, F.; Noirot, M. Development of probabilistic tools to assist in the establishment and management of cryopreserved plant germplasm collections. CryoLetters 2003, 24, 149–160. [Google Scholar]
- Volk, G.M.; Henk, A.D.; Jenderek, M.M. Probabilistic viability calculations for cryopreserving vegetatively propagated collections in genebanks. Genet. Resour. Crop Evol. 2017, 64, 1613–1622. [Google Scholar] [CrossRef]
- Steponkus, P.; Langis, R.; Fujikawa, S. Cryopreservation of plant tissues by vitrification. In Advances in Low Temperature Biology; Steponkus, P., Ed.; JAI Press Ltd.: London, UK, 1992; Volume 1, pp. 1–161. [Google Scholar]
- Whelehan, L.M.; Funnekotter, B.; Bunn, E.; Mancera, R.L. Review: The case for studying mitochondrial function during plant cryopreservation. Plant Sci. 2022, 315, 111134. [Google Scholar] [CrossRef]
- Fujikawa, S.; Steponkus, P.L. Plasma membrane ultrastructural changes by vitrification procedures. J. Cryobiol. Cryotechnol. 1991, 37, 25–29. [Google Scholar]
- Kaczmarczyk, A.; Rutten, T.; Melzer, M.; Keller, E.R. Ultrastructural changes associated with cryopreservation of potato (Solanum tuberosum L.) shoot tips. CryoLetters 2002, 9, 145–156. [Google Scholar]
- Carpentier, S.C.; Coemans, B.; Podevin, N.; Laukens, K.; Witters, E.; Matsumura, H.; Terauchi, R.; Swennen, R.; Panis, B. Functional genomics in a non-model crop: Transcriptomics or proteomics? Physiol. Plant. 2008, 133, 117–130. [Google Scholar] [CrossRef] [PubMed]
- Carpentier, S.C.; Witters, E.; Laukens, K.; Van Onckelen, H.; Swennen, R.; Panis, B. Banana (Musa spp.) as a model to study the meristem proteome: Acclimation to osmotic stress. Proteomics 2007, 7, 92–105. [Google Scholar] [CrossRef]
- Gross, B.L.; Henk, A.D.; Bonnart, R.; Volk, G.M. Changes in transcript expression patterns as a result of cryoprotectant treatment and liquid nitrogen exposure in Arabidopsis shoot tips. Plant Cell Rep. 2017, 36, 459–470. [Google Scholar] [CrossRef]
- González-Arnao, M.T.; Durán-Sánchez, B.; Jiménez-Francisco, B.; Lázaro-Vallejo, C.E.; Valdés-Rodríguez, S.E.; Guerrero, A. Cryopreservation and proteomic analysis of vanilla (V. planifolia A.) apices treated with osmoprotectants. Acta Hortic. 2011, 908, 67–72. [Google Scholar] [CrossRef]
- Di, W.; Jiang, X.; Xu, J.; Jia, M.; Li, B.; Liu, Y. Stress and damage mechanisms in Dendrobium nobile Lindl. protocorm-like bodies during pre- and post-liquid nitrogen exposure in cryopreservation revealed by iTRAQ proteomic analysis. Vitr. Cell. Dev. Biol.-Plant 2018, 54, 253–272. [Google Scholar] [CrossRef]
- Köpnick, C.; Grübe, M.; Stock, J.; Senula, A.; Mock, H.P.; Nagel, M. Changes of soluble sugars and ATP content during DMSO droplet freezing and PVS3 droplet vitrification of potato shoot tips. Cryobiology 2018, 85, 79–86. [Google Scholar] [CrossRef]
- Bettoni, J.C.; Kretzschmar, A.A.; Bonnart, R.; Shepherd, A.; Volk, G.M. Cryopreservation of 12 Vitis species using apical shoot tips derived from plants grown in vitro. HortScience 2019, 54, 976–981. [Google Scholar] [CrossRef] [Green Version]
- Escobar, R.H.; Mafla, G.; Roca, W.M. Cassava cryopreservation – I. In Cryopreservation of Tropical Plant Germplasm: Current Research Progress and Application; Engelmann, F., Takagi, H., Eds.; JIRCAS Tsukuba/IPGRI: Rome, Italy, 2000; pp. 404–407. [Google Scholar]
- Escobar, R.H.; Muñoz, L.; Rios, A.; Núñez, A.; Tohme, J. Using a droplet-vitrification method to partially overcome the recalcitrance of cassava to cryostorage. Acta Hortic. 2014, 1039, 227–232. [Google Scholar] [CrossRef]
- Abdelnour-Esquivel, A.; Engelmann, F. Cryopreservation of chayote (Sechium edule Jacq. Sw.) zygotic embryos and shoot-tips from in vitro plantlets. CryoLetters 2002, 23, 299–308. [Google Scholar] [PubMed]
- Wang, M.-R.; Zhang, Z.; Haugslien, S.; Sivertsen, A.; Rasmussen, M.; Wang, Q.-C.; Blystad, D.-R. Cryopreservation of shallot (Allium cepa var. aggregatum) shoot tips by droplet-vitrification. Acta Hortic. 2019, 1234, 241–248. [Google Scholar] [CrossRef]
- Sánchez, D.F.; Panta, A.; Tay, D.; Roca, W. Cryopreservation of ulluco (Ullucus tuberosus Cal.) and oca (Oxalis tuberosa Mol.) shoot tips using the PVS2 droplet-vitrification method. Acta Hortic. 2011, 908, 339–346. [Google Scholar] [CrossRef]
- Panis, B.; Piette, B.; Swennen, R. Droplet vitrification of apical meristems: A cryopreservation protocol applicable to all Musaceae. Plant Sci. 2005, 168, 45–55. [Google Scholar] [CrossRef]
- Folgado, R.; Panis, B.; Sergeant, K.; Renaut, J.; Swennen, R.; Hausman, J.-F. Unravelling the effect of sucrose and cold pretreatment on cryopreservation of potato through sugar analysis and proteomics. Cryobiology 2015, 71, 432–441. [Google Scholar] [CrossRef] [PubMed]
- Folgado, R.; Sergeant, K.; Renaut, J.; Swennen, R.; Hausman, J.-F.; Panis, B. Changes in sugar content and proteome of potato in response to cold and dehydration stress and their implications for cryopreservation. J. Proteom. 2014, 98, 99–111. [Google Scholar] [CrossRef] [PubMed]
- Prudente, D.O.; Paiva, R.; Paiva, P.D.O.; Silva, L.C. Cryopreservation of shoot tips excised from zygotic embryos of Araucaria angustifolia (Bertol.) Kuntze. Acta Hortic. 2016, 1113, 257–264. [Google Scholar] [CrossRef]
- Danso, K.E.; Ford-Lloyd, B.V. Cryopreservation of embryogenic calli of cassava using sucrose cryoprotection and air desiccation. Plant Cell Rep. 2004, 22, 623–631. [Google Scholar] [CrossRef]
- Panta, A.; Panis, B.; Ynouye, C.; Swennen, R.; Roca, W.; Tay, D.; Ellis, D. Improved cryopreservation method for the long-term conservation of the world potato germplasm collection. Plant Cell. Tiss. Organ Cult. 2015, 120, 117–125. [Google Scholar] [CrossRef] [Green Version]
- Vollmer, R.; Villagaray, R.; Cárdenas, J.; Castro, M.; Chávez, O.; Anglin, N.L.; Ellis, D. A large-scale viability assessment of the potato cryobank at the International Potato Center (CIP). Vitr. Cell. Dev. Biol.-Plant 2017, 53, 309–317. [Google Scholar] [CrossRef] [Green Version]
- Vollmer, R.; Villagaray, R.; Castro, M.; Anglin, N.L.; Ellis, D. Cryopreserved potato shoot tips showed genotype-specific response to sucrose concentration in rewarming solution (RS). Plant Cell Tiss. Organ Cult. 2019, 136, 353–363. [Google Scholar] [CrossRef]
- Vollmer, R.; Villagaray, R.; Castro, M.; Cárdenas, J.; Pineda, S.; Espirilla, J.; Anglin, N.; Ellis, D.; Rennó Azevedo, V.C. The world’s largest potato cryobank at the International Potato Center (CIP) – Status quo, protocol improvement through large-scale experiments and long-term viability monitoring. Front. Plant Sci. 2022, 13, 1059817. [Google Scholar] [CrossRef]
- Sant, R.; Panis, B.; Taylor, M.; Tyagi, A. Cryopreservation of shoot-tips by droplet vitrification applicable to all taro (Colocasia esculenta var. esculenta) accessions. Plant Cell Tiss. Organ Cult. 2008, 92, 107–111. [Google Scholar] [CrossRef]
- Kim, J.B.; Kim, H.H.; Baek, H.J.; Cho, E.G.; Kim, Y.H.; Engelmann, F. Changes of sucrose and glycerol concentration in garlic shoot tips during freezing using PVS3 solution. CryoLetters 2005, 26, 103–112. [Google Scholar] [PubMed]
- Chen, T.H.; Kartha, K.K.; Leung, N.L.; Kurz, W.G.; Chatson, K.B.; Constabel, F. Cryopreservation of alkaloid-producing cell cultures of periwinkle (Catharanthus roseus). Plant Physiol. 1984, 75, 726–731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Find, J.I.; Kristensen, M.M.; Nørgaard, J.V.; Krogstrup, P. Effect of culture period and cell density on regrowth following cryopreservation of embryogenic suspension cultures of Norway Spruce and Sitka spruce. Plant Cell Tiss. Organ Cult. 1998, 53, 27–33. [Google Scholar] [CrossRef]
- Mikuła, A. Comparison of three techniques for cryopreservation and reestablishment of long-term Gentiana tibetica suspension culture. CryoLetters 2006, 27, 269–282. [Google Scholar]
- Van Eck, J.; Keen, P. Continued expression of plant-made vaccines following long-term cryopreservation of antigen-expressing tobacco cell cultures. In Vitro Cell. Dev. Biol.-Plant 2009, 45, 750–757. [Google Scholar] [CrossRef]
- Ellis, D.; Skogerboe, D.; Andre, C.; Hellier, B.; Volk, G. Implementation of garlic cryopreservation techniques in the national plant germplasm system. CryoLetters 2006, 27, 99–106. [Google Scholar] [PubMed]
- Yap, L.V.; Normah, M.N.; Clyde, M.M.; Chin, H.F. Cryopreservation of Garcinia cowa shoot tips by vitrification: The effects of sucrose preculture and loading treatment on ultrastructural changes in meristematic cells. CryoLetters 2011, 32, 188–196. [Google Scholar]
- Schäfer-Menuhr, A.; Schumacher, H.M.; Mix-Wagner, G. Langzeitlagerung alter Kartoffelsorten durch Kryokonservierung der Meristeme in flüssigem Stickstoff. Landbauforsch Völkenrode 1994, 44, 301–313. [Google Scholar]
- Schäfer-Menuhr, A.; Schumacher, H.M.; Mix-Wagner, G. Long-term storage of old potato varieties by cryopreservation of shoot-tips in liquid nitrogen. Plant Genet. Resour. Newsl. 1997, 111, 19–24. [Google Scholar]
- Kaczmarczyk, A.; Shvachko, N.; Lupysheva, Y.; Hajirezaei, M.R.; Keller, E.R.J. Influence of alternating temperature preculture on cryopreservation results for potato shoot tips. Plant Cell Rep. 2008, 27, 1551–1558. [Google Scholar] [CrossRef] [Green Version]
- Kryszczuk, A.; Keller, J.; Grübe, M.; Zimnoch-Guzowska, E. Cryopreservation of potato (Solanum tuberosum L.) shoot tips using vitrification and droplet method. J Food Agric. Environ. 2006, 4, 196–200. [Google Scholar]
- Diengdoh, R.V.; Kumaria, S.; Das, M.C. Antioxidants and improved regrowth procedure facilitated cryoconservation of Paphiopedilum insigne Wall. Ex. Lindl. — An endangered slipper orchid. Cryobiology 2019, 87, 60–67. [Google Scholar] [CrossRef]
- Butenko, R.G.; Popov, A.S.; Volkova, L.A.; Chernyak, N.D.; Nosov, A.M. Recovery of cell cultures and their biosynthetic capacity after storage of Dioscorea deltoidea and Panax ginseng cells in liquid nitrogen. Plant Sci. Lett. 1984, 33, 285–292. [Google Scholar] [CrossRef]
- Bachiri, Y.; Bajon, C.; Sauvanet, A.; Gazeau, C.; Morisset, C. Effect of osmotic stress on tolerance of air-drying and cryopreservation of Arabidopsis thaliana suspension cells. Protoplasma 2000, 214, 227–243. [Google Scholar] [CrossRef]
- Joshi, A.; Teng, W.L. Cryopreservation of Panax ginseng cells. Plant Cell Rep. 2000, 19, 971–977. [Google Scholar] [CrossRef] [PubMed]
- Baskakova, O.Y.; Voinkova, N.M.; Nikishina, T.V.; Osipova, E.A.; Popov, A.S.; Zhivukhina, E.A. Freezing resistance and cryopreservation of cell strains of Rhaponticum carthamoides and Thalictrum minus. Russ. J. Plant Physiol. 2003, 50, 666–671. [Google Scholar] [CrossRef]
- Ribeiro, R.C.S.; Jekkel, Z.; Mulligan, B.J.; Cocking, E.C.; Power, J.B.; Davey, M.R.; Lynch, P.T. Regeneration of fertile plants from cryopreserved cell suspensions of Arabidopsis thaliana (L.) Heynh. Plant Sci. 1996, 115, 115–121. [Google Scholar] [CrossRef]
- Titova, M.V.; Popova, E.V.; Shumilo, N.A.; Kulichenko, I.E.; Chernyak, N.D.; Ivanov, I.M.; Klushin, A.G.; Nosov, A.M. Stability of cryopreserved Polyscias filicifolia suspension cell culture during cultivation in laboratory and industrial bioreactors. Plant Cell Tiss. Organ Cult. 2021, 145, 591–600. [Google Scholar] [CrossRef]
- Volkova, L.A.; Urmantseva, V.V.; Popova, E.V.; Nosov, A.M. Physiological, cytological and biochemical stability of Medicago sativa L. cell culture after 27 years of cryogenic storage. CryoLetters 2015, 36, 252–263. [Google Scholar] [PubMed]
- Benson, E.E.; Lynch, P.T.; Jones, J. The use of the iron chelating agent desferrioxamine in rice cell cryopreservation: A novel approach for improving recovery. Plant Sci. 1995, 110, 249–258. [Google Scholar] [CrossRef]
- Uchendu, E.E.; Leonard, S.W.; Traber, M.G.; Reed, B.M. Vitamins C and E improve regrowth and reduce lipid peroxidation of blackberry shoot tips following cryopreservation. Plant Cell Rep. 2010, 29, 25–35. [Google Scholar] [CrossRef]
- Chua, S.P.; Normah, M.N. Effect of preculture, PVS2 and vitamin C on survival of recalcitrant Nephelium ramboutan-ake shoot tips after cryopreservation by vitrification. CryoLetters 2011, 32, 506–515. [Google Scholar]
- Soonthornkalump, S.; Yamamoto, S.i.; Meesawat, U. Adding ascorbic acid to reduce oxidative stress during cryopreservation of somatic embryos of Paphiopedilum niveum (Rchb.f.) Stein, an endangered orchid species. Hortic. J. 2020, 89, 466–472. [Google Scholar] [CrossRef] [Green Version]
- Carmona-Martín, E.; Regalado, J.J.; Perán-Quesada, R.; Encina, C.L. Cryopreservation of rhizome buds of Asparagus officinalis L. (cv. Morado de Huétor) and evaluation of their genetic stability. Plant Cell Tiss. Organ Cult. 2018, 133, 395–403. [Google Scholar] [CrossRef]
- Al-Mayahi, A.M.W. In vitro plant regeneration system for date palm (Phoenix dactylifera L.): Effect of chelated iron sources. J. Gen. Eng. Biotechnol. 2021, 19, 83. [Google Scholar] [CrossRef] [PubMed]
- Antonopoulou, C.; Dimassi, K.; Therios, I.; Chatzissavvidis, C.; Papadakis, I. The effect of Fe-EDDHA and of ascorbic acid on in vitro rooting of the peach rootstock GF-677 explants. Acta Physiol. Plant 2007, 29, 559–561. [Google Scholar] [CrossRef]
- Ryynänen, L.A.; Häggman, H. Recovery of cryopreserved silver birch shoot tips is affected by the pre-freezing age of the cultures and ammonium substitution. Plant Cell Rep. 2001, 20, 354–360. [Google Scholar] [CrossRef]
- Kuriyama, A.; Watanabe, K.; Ueno, S.; Mitsuda, H. Inhibitory effect of ammonium ion on recovery of cryopreserved rice cells. Plant Sci. 1989, 64, 231–235. [Google Scholar] [CrossRef]
- Decruse, S.W.; Seeni, S. Ammonium nitrate in the culture medium influences regeneration potential of cryopreserved shoot tips of Holostemma annulare. CryoLetters 2002, 23, 55–60. [Google Scholar] [PubMed]
- Yi, J.Y.; Balaraju, K.; Baek, H.J.; Yoon, M.S.; Kim, H.H.; Lee, Y.Y. Cryopreservation of Citrus limon (L.) Burm. F shoot tips using a droplet-vitrification method. Korean J. Plant Res. 2018, 31, 684–694. [Google Scholar]
- Yi, J.Y.; Balaraju, K.; Baek, H.J.; Yoon, M.S.; Kim, H.H.; Lee, Y.Y. A successful regeneration from shoot tips of Chrysanthemum morifolium (Ramat.) following cryopreservation by droplet-vitrification. Korean J. Plant Res. 2018, 31, 675–683. [Google Scholar]
- Pennycooke, J.C.; Towill, L.E. Medium alterations improve regrowth of sweet potato (Ipomea batatas L. Lam.) shoot cryopreserved by vitrification and encapsulation-dehydration. CryoLetters 2001, 22, 381–389. [Google Scholar]
- Park, S.U.; Kim, H.H. Cryopreservation of sweet potato shoot tips using a droplet-vitrification procedure. CryoLetters 2015, 36, 344–352. [Google Scholar]
- Choi, C.H.; Popova, E.; Lee, H.; Park, S.U.; Ku, J.; Kang, J.H.; Kim, H.H. Cryopreservation of endangered wild species, Aster altaicus var. uchiyamae Kitam, using droplet-vitrification procedure. CryoLetters 2019, 40, 113–122. [Google Scholar]
- Jitsopakul, N.; Thammasiri, K.; Ishikawa, K. Cryopreservation of Vanda coerulea protocorms by encapsulation-dehydration. CryoLetters 2008, 29, 253–260. [Google Scholar] [PubMed]
- Mukherjee, P.; Mandal, B.B.; Bhat, K.V.; Biswas, A.K. Cryopreservation of Asian Dioscorea bulbifera L. and D. alata L. by vitrification: Importance of plant growth regulators. CryoLetters 2009, 30, 100–111. [Google Scholar]
- Kuriyama, A.; Watanabe, K.; Kawata, K.; Kawai, F.; Kanamori, M. Sensitivity of cryopreserved Lavandula vera cells to ammonium ion. J. Plant Physiol. 1996, 148, 693–695. [Google Scholar] [CrossRef]
- Ueki, T.; Mizorogi, Y.; Kuriyama, A. Viability of cryopreserved rice cells during the initial stage of post-thaw culture. Cryobiol. Cryobiotechnol. 2004, 50, 85–88. [Google Scholar]
- Ryynänen, L.; Häggman, H. Substitution of ammonium ions during cold hardening and post-thaw cultivation enhances recovery of cryopreserved shoot tips of Betula pendula. J. Plant Physiol. 1999, 154, 735–742. [Google Scholar] [CrossRef]
- Decruse, S.W.; Seeni, S.; Nair, G. Preparative procedures and culture medium affect the success of cryostorage of Holostemma annulare shoot tips. Plant Cell Tiss. Organ Cult. 2004, 76, 179–182. [Google Scholar] [CrossRef]
- Jitsopakul, N.; Thammasiri, K.; Ishikawa, K. Cryopreservation of Bletilla striata mature seeds, 3-day germinating seeds and protocorms by droplet-vitrification. CryoLetters 2008, 29, 517–526. [Google Scholar]
- Makowski, D.; Tomiczak, K.; Rybczyński, J.J.; Mikuła, A. Integration of tissue culture and cryopreservation methods for propagation and conservation of the fern Osmunda regalis L. Acta Physiol. Plant. 2016, 38, 19. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.-E.; Popova, E.; Park, H.-N.; Park, S.-U.; Kim, H.-H. Optimization of a cryopreservation method for the endangered Korean species Pogostemon yatabeanus using a systematic approach: The key role of ammonium and growth regulators. Plants 2021, 10, 2018. [Google Scholar] [CrossRef]
- Lee, Y.-Y.; Balaraju, K.; Song, J.-Y.; Yi, J.-Y.; Lee, S.-Y.; Lee, J.-R.; Yoon, M.; Kim, H.H. Cryopreservation of in vitro grown shoot tips of strawberry (Fragaria × ananassa Duch.) genetic resources by droplet-vitrification. Korean J. Plant Res. 2019, 32, 689–697. [Google Scholar] [CrossRef]
- Niino, T.; Sakai, A. Cryopreservation of in vitro-grown shoot tips of apple and pear by vitrification. Plant Cell Tiss. Organ Cult. 1992, 28, 261–266. [Google Scholar] [CrossRef]
- Li, B.; Li, G.; Kronzucker, H.J.; Baluška, F.; Shi, W. Ammonium stress in Arabidopsis: Signaling, genetic loci, and physiological targets. Trends Plant Sci. 2014, 19, 107–114. [Google Scholar] [CrossRef]
- Marino, D.; Moran, J.F. Can ammonium stress be positive for plant performance? Front. Plant Sci. 2019, 10, 1103. [Google Scholar] [CrossRef] [Green Version]
- Esteban, R.; Ariz, I.; Cruz, C.; Moran, J.F. Review: Mechanisms of ammonium toxicity and the quest for tolerance. Plant Sci. 2016, 248, 92–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vysotskaya, O.N.; Popov, A.S.; Butenko, R.G. The advantage of glucose over sucrose in cryopreservation of strawberry meristems. Russ. J. Plant Physiol. 1999, 46, 255–257. [Google Scholar]
- Jain, A.; Poling, M.D.; Smith, A.P.; Nagarajan, V.K.; Lahner, B.; Meagher, R.B.; Raghothama, K.G. Variations in the composition of gelling agents affect morphophysiological and molecular responses to deficiencies of phosphate and other nutrients. Plant Physiol. 2009, 150, 1033–1049. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, G.M.; Amer, A.M.; Osman, N.H.; Sedikc, M.Z.; Hussein, M.H. Effects of different gelling agents on the different stages of rice regeneration in two rice cultivars. Saudi J. Biol. Sci. 2021, 28, 5738–5744. [Google Scholar] [CrossRef] [PubMed]
- Arregui, L.M.; Veramendi, J.; Mingo-Castel, A.M. Effect of gelling agents on in vitro tuberization of six potato cultivars. Am. J. Potato Res. 2003, 80, 141–144. [Google Scholar] [CrossRef]
- Das, N.; Tripathi, N.; Basu, S.; Bose, C.; Maitra, S.; Khurana, S. Progress in the development of gelling agents for improved culturability of microorganisms. Front. Microbiol. 2015, 6, 698. [Google Scholar] [CrossRef]
- Buah, J.N.; Kawamitsu, Y.; Sato, S.; Murayama, S. Effects of different types and concentrations of gelling agents on the physical and chemical properties of media and the growth of banana (Musa spp.) in vitro. Plant Prod. Sci. 1999, 2, 138–145. [Google Scholar] [CrossRef]
- Huang, L.C.; Chi, D.L. Pivotal roles of picloram and gelrite in banana callus culture. Environ. Exp. Bot. 1988, 28, 249–258. [Google Scholar] [CrossRef]
- Veramendi, J.; Villafranca, M.J.; Sota, V.; Mingo-Castel, A.M. Gelrite as an alternative to agar for micropropagation and microtuberization of Solanum tuberosum L. cv. Baraka. In Vitro Cell. Dev. Biol.-Plant 1997, 33, 195–199. [Google Scholar] [CrossRef]
- Fira, A.; Clapa, D. The influence of the gelling agent upon multiplication rate in Sequoia sempervirens. Bulletin UASVM 2008, 65, 435–463. [Google Scholar]
- Benjelloun, J.; Taoufyq, A.; El Abidine Triqui, Z.; Alami, Q.L.; Layachi, R.; Smouni, A.; Bouzroud, S.; Guedira, A. Improvement of in vitro germination of Cycas revoluta zygotic embryos using gelrite as gelling agent. Adv. Hort. Sci. 2020, 34, 349–354. [Google Scholar] [CrossRef]
- Palanyandy, S.R.; Gantait, S.; Sinniah, U.R. Effects of some gelling agents and their concentrations on conversion of oil palm polyembryoids into plantlets. J. Genet. Eng. Biotechnol. 2020, 18, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scholten, H.J.; Pierik, R.L.M. Agar as a gelling agent: Chemical and physiological analysis. Plant Cell Rep. 1998, 17, 230–235. [Google Scholar] [CrossRef]
- Fang, J.Y.; Wetten, A.; Hadley, P. Cryopreservation of cocoa (Theobroma cacao L.) somatic embryos for long-term germplasm storage. Plant Sci. 2004, 166, 669–675. [Google Scholar] [CrossRef]
- Harvengt, L.; Meier-Dinkel, A.; Dumas, E.; Collin, E. Establishment of a cryopreserved gene bank of European elms. Can. J. For. Res. 2004, 34, 43–55. [Google Scholar] [CrossRef]
- Popova, E.; Kim, H.H.; Paek, K.Y. Cryopreservation of coriander (Coriandrum sativum L.) somatic embryos using sucrose preculture and air desiccation. Sci. Hort. 2010, 124, 522–528. [Google Scholar] [CrossRef]
- Kim, H.H.; Popova, E.V.; Shin, D.J.; Bae, C.H.; Baek, H.J.; Park, S.U.; Engelmann, F. Development of a droplet-vitrification protocol for cryopreservation of Rubia akane (Nakai) hairy roots using a systematic approach. CryoLetters 2012, 33, 506–517. [Google Scholar]
- Uchendu, E.E.; Shukla, M.R.; Reed, B.M.; Saxena, P.K. Melatonin enhances the recovery of cryopreserved shoot tips of American elm (Ulmus americana L.). J. Pineal Res. 2013, 55, 435–442. [Google Scholar] [CrossRef] [PubMed]
- Uchendu, E.E.; Shukla, M.; Saxena, P.K.; Keller, J.E.R. Cryopreservation of potato microtubers: The critical roles of sucrose and desiccation. Plant Cell Tiss. Organ Cult. 2016, 124, 649–656. [Google Scholar] [CrossRef]
- Reinhoud, P.J.; Uragami, A.; Sakai, A.; van Iren, F. Vitrification of plant cell suspensions. In Cryopreservation and Freeze Drying Protocols; Day, J.G., Penningon, M.W., Eds.; Humana Press: Totowa, NJ, USA, 1995; pp. 113–120. [Google Scholar]
- Toaima, N.; Bosila, H.; El-Ateeq, A.E. In vitro growth regulators, gelling agents and sucrose levels affect micropropagation of Gypsophila paniculate L. Mid. E. J. Agri. 2016, 5, 313. [Google Scholar]
- Kaczmarczyk, A.; Funnekotter, B.; Menon, A.; Phang, P.Y.; Al-Hanbali, A.; Bunn, E.; Mancera, R.L. Current issues in plant cryopreservation. In Current Frontiers in Cryobiology; Katkov, I.I., Ed.; InTech: Rijeka, Croatia, 2012; pp. 417–438. [Google Scholar]
- Mittler, R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002, 7, 405–410. [Google Scholar] [CrossRef]
- Benson, E.E. Free Radical Damage in Stored Plant Qermplasm; IBPGR: Rome, Italy, 1990. [Google Scholar]
- Benson, E.E.; Bremner, D. Oxidative stress in the frozen plant: A free radical point of view. In Life in the Frozen State; Fuller, B.J., Lane, N., Benson, E.E., Eds.; CRC Press: Boca Raton, USA, 2004; pp. 206–241. [Google Scholar]
- Benson, E.E.; Lynch, P.T.; Jones, J. Variation in free-radical damage in rice cell suspensions with different embryogenic potentials. Planta 1992, 188, 296–305. [Google Scholar] [CrossRef]
- Johnston, J.W.; Harding, K.; Benson, E.E. Antioxidant status and genotypic tolerance of Ribes in vitro cultures to cryopreservation. Plant Sci. 2007, 172, 524–534. [Google Scholar] [CrossRef]
- Lynch, P.T.; Siddika, A.; Johnston, J.W.; Trigwell, S.M.; Mehra, A.; Benelli, C.; Lambardi, M.; Benson, E.E. Effects of osmotic pretreatments on oxidative stress, antioxidant profiles and cryopreservation of olive somatic embryos. Plant Sci. 2011, 181, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Volk, G.M. Application of functional genomics and proteomics to plant cryopreservation. Curr. Genom. 2010, 11, 24–29. [Google Scholar] [CrossRef] [Green Version]
- Ren, L.; Zhang, D.; Chen, G.; Reed, B.M.; Shen, X.; Chen, H. Transcriptomic profiling revealed the regulatory mechanism of Arabidopsis seedlings response to oxidative stress from cryopreservation. Plant Cell Rep. 2015, 34, 2161–2178. [Google Scholar] [CrossRef]
- Huang, B.; Zhang, J.M.; Chen, X.L.; Xin, X.; Yin, G.K.; He, J.J.; Lu, X.X.; Zhou, Y.C. Oxidative damage and antioxidative indicators in 48 h germinated rice embryos during the vitrification-cryopreservation procedure. Plant Cell Rep. 2018, 37, 1325–1342. [Google Scholar] [CrossRef]
- Chen, G.; Ren, L.; Zhang, J.; Reed, B.M.; Zhang, D.; Shen, X.H. Cryopreservation affects ROS-induced oxidative stress and antioxidant response in Arabidopsis seedlings. Cryobiology 2015, 70, 38–47. [Google Scholar] [CrossRef]
- Risenga, I.; Watt, P.; Mycock, D. Programmed cell death and necrosis during cryopreservative drying of in vitro Eucalyptus grandis axillary buds. CryoLetters 2013, 34, 583–597. [Google Scholar]
- Zhang, D.; Ren, L.; Chen, G.; Zhang, J.; Reed, B.M.; Shen, X.H. ROS induced oxidative stress and apoptosis-like event directly affect the cell viability of cryopreserved embryogenic callus in Agapanthus praecox. Plant Cell Rep. 2015, 34, 1499–1513. [Google Scholar] [CrossRef] [PubMed]
- Ren, L.; Wang, M.R.; Wang, Q.C. ROS-induced oxidative stress in plant cryopreservation: Occurrence and alleviation. Planta 2021, 254, 124. [Google Scholar] [CrossRef]
- Jia, M.; Di, W.; Liu, Y.; Shi, Y.; Xie, Y. ROS-induced oxidative stress in nobile-type Dendrobium protocorm-like bodies (PLBs) during vitrification. CryoLetters 2016, 37, 253–263. [Google Scholar] [PubMed]
- Ren, L.; Deng, S.; Chu, Y.; Zhang, Y.; Zhao, H.; Chen, H.; Zhang, D. Single-wall carbon nanotubes improve cell survival rate and reduce oxidative injury in cryopreservation of Agapanthus praecox embryogenic callus. Plant Methods 2020, 16, 130. [Google Scholar] [CrossRef]
- Chen, G.Q.; Ren, L.; Zhang, D.; Shen, X.H. Glutathione improves survival of cryopreserved embryogenic calli of Agapanthus praecox subsp. orientalis. Acta Physiol. Plant. 2016, 38, 250. [Google Scholar] [CrossRef]
- Chen, G.; Li, R.; Shen, X. ApSerpin-ZX from Agapanthus praecox, is a potential cryoprotective agent to plant cryopreservation. Cryobiology 2021, 98, 103–111. [Google Scholar] [CrossRef]
- Zhao, Y.; Qi, L.W.; Wang, W.M.; Saxena, P.K.; Liu, C.Z. Melatonin improves the survival of cryopreserved callus of Rhodiola crenulata. J. Pineal. Res. 2011, 50, 83–88. [Google Scholar] [CrossRef]
- Prudente, D.O.; Paiva, R.; Domiciano, D.; Souza, L.B.; Carpentier, S.; Swennen, R.; Silva, L.C.; Nery, F.C.; Máximo, W.P.F.; Panis, B. The cryoprotectant PVS2 plays a crucial role in germinating Passiflora ligularis embryos after cryopreservation by influencing the mobilization of lipids and the antioxidant metabolism. J. Plant Physiol. 2019, 239, 71–82. [Google Scholar] [CrossRef]
- Funnekotter, B.; Colville, L.; Kaczmarczyk, A.; Turner, S.R.; Bunn, E.; Mancera, R.L. Monitoring of oxidative status in three native Australian species during cold acclimation and cryopreservation. Plant Cell Rep. 2017, 36, 1903–1916. [Google Scholar] [CrossRef] [PubMed]
- Ren, L.; Zhang, D.; Shen, X.H.; Reed, R.M. Antioxidants and antistress compounds improve the survival of cryopreserved Arabidopsis seedlings. Acta Hortic. 2014, 1039, 57–62. [Google Scholar] [CrossRef]
- Mathew, L.; Burritt, D.J.; McLachlan, A.; Pathirana, R. Combined pre-treatments enhance antioxidant metabolism and improve survival of cryopreserved kiwifruit shoot tips. Plant Cell Tiss. Organ Cult. 2019, 138, 193–205. [Google Scholar] [CrossRef]
- Poobathy, R.; Sinniah, U.R.; Mahmood, M.; Subramaniam, S. Refinement of a vitrification protocol for protocorm-like bodies of Dendrobium sonia-28. Turk. J. Bot. 2013, 37, 940–949. [Google Scholar] [CrossRef]
- Uchendu, E.E.; Muminova, M.; Gupta, S.; Reed, M.M. Antioxidant and anti-stress compounds improve regrowth of cryopreserved Rubus shoot tips. In Vitro Cell. Dev. Biol.-Plant 2010, 46, 386–393. [Google Scholar] [CrossRef]
- Wang, Z.C.; Deng, X.X. Cryopreservation of shoot-tips of citrus using vitrification: Effect of reduced form of glutathione. CryoLetters 2004, 25, 43–50. [Google Scholar]
- Uchendu, E.E.; Keller, E.R.J. Melatonin-loaded alginate beads improved cryopreservation of yam (Dioscorea alata and D. cayenensis). CryoLetters 2016, 37, 77–87. [Google Scholar]
- Uchendu, E.E.; Shukla, M.R.; Reed, B.M.; Saxena, P.K. An efficient method for cryopreservation of St John’s Wort and tobacco: Role of melatonin. Acta Hortic. 2014, 1039, 233–243. [Google Scholar] [CrossRef]
- Zhao, M.A.; Xhu, Y.Z.; Dhital, S.P.; Khu, D.M.; Song, Y.S.; Wang, M.Y.; Lim, H.T. An efficient cryopreservation procedure for potato (Solanum tuberosum L.) utilizing the new ice blocking agent, Supercool X1000. Plant Cell Rep. 2005, 24, 477–481. [Google Scholar] [CrossRef] [PubMed]
- Anthony, P.; Lowe, K.C.; Power, J.B.; Davey, M.R. Synergistic enhancement of the post-thaw growth of cryopreserved rice cells by oxygenated perfluorocarbon and Pluronic F-68. Cryobiology 1997, 35, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Kulus, D.; Tymoszuk, A. Gold nanoparticles affect the cryopreservation efficiency of in vitro-derived shoot tips of bleeding heart. Plant Cell Tiss. Organ Cult. 2021, 146, 297–311. [Google Scholar] [CrossRef]
- Gagliardi, R.F.; Pacheco, G.P.; Carneiro, L.A.; Valls, J.F.; Vieira, M.L.; Mansur, E. Cryopreservation of Arachis species by vitrification of in vitro-grown shoot apices and genetic stability of recovered plants. CryoLetters 2003, 24, 103–110. [Google Scholar]
- Jia, M.X.; Jiang, R.J.; Xu, J.; Di, W.; Shi, Y.; Liu, Y. CAT and MDH improve the germination and alleviate the oxidative stress of cryopreserved Paeonia and Magnolia pollen. Acta Physiol. Plant. 2018, 40, 37. [Google Scholar] [CrossRef]
- Xu, J.; Liu, Y.; Li, B.; Wang, Z.; Liu, Q.; Shi, Y. Effects of catalase and malate dehydrogenase on cryopreservation of Euonymus forunei (Turcz.) Hand.-Maz. shoot tips by vitrification. Propag. Ornam. Plant 2017, 17, 20–28. [Google Scholar]
- Galdiano, R.F., Jr.; de Macedo Lemos, E.G.; Vendrame, W.A. Cryopreservation, early seedling development, and genetic stability of Oncidium flexuosum Sims. Plant Cell Tiss. Organ Cult. 2013, 114, 139–148. [Google Scholar] [CrossRef]
- Erland, L.A.E.; Shukla, M.R.; Singh, A.S.; Murch, S.J.; Saxena, P.K. Melatonin and serotonin: Mediators in the symphony of plant morphogenesis. J. Pineal Res. 2018, 64, e12452. [Google Scholar] [CrossRef]
- Galano, A.; Tan, D.X.; Reiter, R.J. On the free radical scavenging activities of melatonin’s metabolites, AFMK and AMK. J. Pineal Res. 2013, 54, 245–257. [Google Scholar] [CrossRef]
- Tan, D.-X.; Hardeland, R.; Manchester, L.C.; Galano, A.; Reiter, R.J. Cyclic-3-hydroxymelatonin (C3HOM), a potent antioxidant, scavenges free radicals and suppresses oxidative reactions. Curr. Med. Chem. 2014, 21, 1557–1565. [Google Scholar] [CrossRef]
- Anthony, P.; Davey, M.R.; Power, J.B.; Washingon, C.; Lowe, K.C. Synergistic enhancement of protoplast growth by oxygenated perfluorocarbon and Pluronic F-68. Plant Cell Rep. 1994, 13, 251–255. [Google Scholar] [CrossRef]
- Nikishina, T.V.; Popova, E.V.; Vakhrameeva, M.G.; Varlygina, T.I.; Kolomeitseva, G.L.; Burov, A.V.; Popovich, E.A.; Shirokov, A.I.; Shumilov, V.Y.; Popov , A.S. Cryopreservation of seeds and protocorms of rare temperate orchids. Russ. J. Plant Physiol. 2007, 54, 121–127. [Google Scholar] [CrossRef]
- Dussert, S.; Mauro, M.C.; Engelmann, F. Cryopreservation of grape embryogenic cell suspensions 2: Influence of post-thaw culture conditions and application of different strains. CryoLetters 1992, 13, 15–22. [Google Scholar]
- Chen, S.M.; Ren, L.; Zhang, D.; Zhang, Y.F.; Shen, X.H. Carbon nanomaterials enhance survival rates of Agapanthus praecox callus after vitrification cryopreservation. CryoLetters 2017, 38, 125–136. [Google Scholar] [PubMed]
- Edesi, J.; Maria Pirttilä, A.; Häggman, H. Modified light spectral conditions prior to cryopreservation alter growth characteristics and cryopreservation success of potato (Solanum tuberosum L.) shoot tips in vitro. Plant Cell Tiss. Organ Cult. 2017, 128, 409–421. [Google Scholar] [CrossRef]
- Paul, H.; Daigny, G.; Sangwan-Norreel, B.S. Cryopreservation of apple (Malus x domestica Borkh.) shoot tips following encapsulation-dehydration or encapsulation-vitrification. Plant Cell Rep. 2000, 19, 768–774. [Google Scholar] [CrossRef] [PubMed]
- Bachiri, Y.; Song, G.Q.; Plessis, P.; Shoar-Ghaffari, A.; Rekab, T.; Morisset, C. Routine cryopreservation of kiwifruit (Actinidia spp.) germplasm by encapsulation-dehydration: Importance of plant growth regulators. CryoLetters 2001, 22, 61–74. [Google Scholar]
- Popova, E.; Kim, H.H. Cryobiotechnology of Korean orchid biodiversity: A case study using Cymbidium kanran. In Orchid Biology: Recent Trends & Challenges; Khasim, S.M., Hegde, S., González-Arnao, M., Thammasiri, K., Eds.; Springer Nature: Singapore, 2020; pp. 119–135. [Google Scholar] [CrossRef]
- Turner, S.R.; Touchell, D.H.; Senaratna, T.; Bunn, E.; Tan, B.; Dixon, K.W. Effects of plant growth regulators on survival and recovery growth following cryopreservation. CryoLetters 2001, 22, 163–174. [Google Scholar]
- Touchell, D.; Turner, S.R.; Senaratna, T.; Bunn, E.; Dixon, K.W. Cryopreservation of Australian species—The role of plant growth regulators. In Cryopreservation of Plant Germplasm II. Biotechnology in Agriculture and Forestry; Towill, L.E., Bajaj, Y.P.S., Eds.; Springer: Berlin/Heidelberg, Germany, 2002; Volume 50, pp. 373–390. [Google Scholar]
- Panis, B. Cryopreservation of Musa germplasm: 2nd edition. In Technical Guidelines No. 9; Engelmann, F., Benson, E., Eds.; Bioversity International: Montpellier, France, 2009. [Google Scholar]
- Höfer, M.; Hanke, M.V. Cryopreservation of fruit germplasm. In Vitro Cell. Dev. Biol.-Plant 2017, 53, 372–381. [Google Scholar] [CrossRef]
- Rathwell, R.; Popova, E.; Shukla, M.R.; Saxena, P.K. Development of cryopreservation methods for cherry birch (Betula lenta L.), an endangered tree species in Canada. Can. J. For. Res. 2016, 46, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Li, B.Q.; Feng, C.H.; Hu, L.Y.; Wang, M.R.; Chen, L.; Wang, Q.C. Shoot regeneration and cryopreservation of shoot tips of apple (Malus) by encapsulation–dehydration. In Vitro Cell. Dev. Biol.-Plant 2014, 50, 357–368. [Google Scholar] [CrossRef]
- Jokipii, S.; Ryynänen, L.; Kallio, P.T.; Aronen, T.; Häggman, H. A cryopreservation method maintaining the genetic fidelity of a model forest tree, Populus tremula L. x Populus tremuloides Michx. Plant Sci. 2004, 166, 799–806. [Google Scholar] [CrossRef]
- Chang, Y.J.; Reed, B.M. Extended cold acclimation and recovery medium alteration improve regrowth of Rubus shoot tips following cryopreservation. CryoLetters 1999, 20, 371–376. [Google Scholar]
- Towill, L.E. Improved survival after cryogenic exposure of shoot tips derived from in vitro plantlet cultures of potato. Cryobiology 1983, 20, 567–573. [Google Scholar] [CrossRef]
- Barandalla, L.; Sánchez, I.; Ritter, E.; Ruiz de Galarreta, J.I. Conservation of potato (Solanum tuberosum L.) cultivars by cryopreservation. Span. J. Agric. Res. 2003, 1, 9–13. [Google Scholar] [CrossRef] [Green Version]
- Lynch, P.T.; Siddika, A.; Mehra, A.; Benelli, C.; Lambardi, M. The challenge of successful cryopreservation of olive (Olea europaea L.) shoot tip. Adv. Hort. Sci. 2007, 21, 211–214. [Google Scholar]
- Shibli, R.A.; Al-Juboory, K.H. Cryopreservation of “Nabali” olive (Olea europea L.) somatic embryos by encapsulation-dehydration and encapsulation-vitrification. CryoLetters 2000, 21, 357–366. [Google Scholar] [PubMed]
- Dumet, D.; Engelmann, F.; Chabrillangel, N.; Duval, Y.; Dereuddre, J. Importance of sucrose for the acquisition of tolerance to desiccation and cryopreservation of oil palm somatic embryos. CryoLetters 1993, 14, 243–250. [Google Scholar]
- Corredoira, E.; San-José, M.C.; Ballester, A.; Vieitez, A.M. Cryopreservation of zygotic embryo axes and somatic embryos of European chestnut. CryoLetters 2004, 25, 33–42. [Google Scholar]
- Valladares, S.; Toribio, M.; Celestino, C.; Vietiez, A. Cryopreservation of embryogenic cultures from mature Quercus suber trees using vitrification. CryoLetters 2004, 25, 177–186. [Google Scholar]
- Nishizawa, S.; Sakai, A.; Amano, Y.; Matsuzawa, T. Cryopreservation of asparagus (Asparagus officinalis L.) embryogenic suspension cells and subsequent plant regeneration by vitrification. Plant Sci. 1993, 91, 67–73. [Google Scholar] [CrossRef]
- Shin, D.J.; Kong, H.; Popova, E.V.; Moon, H.K.; Park, S.Y.; Park, S.U.; Lee, S.C.; Kim, H.H. Cryopreservation of Kalopanax septemlobus embryogenic callus using vitrification and droplet-vitrification. CryoLetters 2012, 33, 402–410. [Google Scholar]
- Engelmann, F.; Lartaud, M.; Chabrillange, N.; Carron, M.P.; Etienne, H. Cryopreservation of embryogenic calluses of two commercial clones of Hevea brasiliensis. CryoLetters 1997, 18, 107–116. [Google Scholar]
- Ford, C.S.; Jones, N.B.; van Staden, J. Cryopreservation and plant regeneration from somatic embryos of Pinus patula. Plant Cell Rep. 2000, 19, 610–615. [Google Scholar] [CrossRef] [PubMed]
- Häggman, H.M. Ryynänen, L.A.; Aronen, T.S.; Krajnakova, J. Cryopreservation of embryogenic cultures of Scots pine. Plant Cell Tiss. Organ Cult. 1998, 54, 45–53. [Google Scholar] [CrossRef]
- Chen, T.H.H.; Kartha, K.K.; Gusta, L.V. Cryopreservation of wheat suspension culture and regenerable callus. Plant Cell Tiss. Organ Cult. 1985, 4, 101–109. [Google Scholar] [CrossRef]
- Popova, E.V.; Lee, E.J.; Wu, C.H.; Hahn, E.J.; Paek, K.Y. A simple method for cryopreservation of Ginkgo biloba callus. Plant Cell Tiss. Organ Cult. 2009, 97, 337–343. [Google Scholar] [CrossRef]
- Mannonen, L.; Toivonen, L.; Kauppinen, V. Effects of long-term preservation on growth and productivity of Panax ginseng and Catharanthus roseus cell cultures. Plant Cell Rep. 1990, 9, 173–177. [Google Scholar] [CrossRef]
- Ishikawa, M.; Tandon, P.; Suzuki, M.; Yamaguishi-Ciampi, A. Cryopreservation of bromegrass (Bromus inermis Leyss) suspension cultured cells using slow prefreezing and vitrification procedures. Plant Sci. 1996, 120, 81–88. [Google Scholar] [CrossRef]
- Georgiev, M.I.; Agostini, E.; Ludwig-Müller, J.; Xu, J. Genetically transformed roots: From plant disease to biotechnological resource. Trends Biotechnol. 2012, 30, 528–537. [Google Scholar] [CrossRef]
- Murthy, N.H.; Paek, K.Y.; Dandin, V. Tools for biotechnological production of useful phytochemicals from adventitious root cultures. Phytochem. Rev. 2016, 15, 129–145. [Google Scholar] [CrossRef]
- Srivastava, S.; Srivastava, A.K. Hairy root culture for mass-production of high value secondary metabolites. Critical Rev. Biotechnol. 2007, 27, 29–43. [Google Scholar] [CrossRef]
- Baque, M.A.; Moh, S.H.; Lee, E.J.; Zhong, J.J.; Paek, K.Y. Production of biomass and useful compounds from adventitious roots of high-value added medicinal plants using bioreactor. Biotechnol. Adv. 2012, 30, 1255–1267. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.Y.; Wu, C.H.; Popova, E.; Hahn, E.J.; Paek, K.Y. Cryopreservation of Panax ginseng adventitious roots. J. Plant Biol. 2009, 52, 348–354. [Google Scholar] [CrossRef]
- Le, K.C.; Kim, H.H.; Park, S.Y. Modification of the droplet-vitrification method of cryopreservation to enhance survival rates of adventitious roots of Panax ginseng. Hort. Environ. Biotechnol. 2019, 60, 501–510. [Google Scholar] [CrossRef]
- da Silva Cordeiro, L.; Collin, M.; Callado, C.H.; Simões-Gurgel, C.; Albarello, N.; Engelmann, F. Long-term conservation of Tarenaya rosea (Cleomaceae) root cultures: Histological and histochemical analyses during cryopreservation using the encapsulation-vitrification technique. Protoplasma 2020, 257, 1021–1033. [Google Scholar] [CrossRef]
- da Silva Cordeiro, L.; Simões-Gurgel, C.; Albarello, N. Cryopreservation of adventitious roots of Cleome rosea Vahl (Cleomaceae) using a vitrification technique and assessment of genetic stability. CryoLetters 2016, 37, 231–242. [Google Scholar]
- Dolce, N.R.; Hernández-Ramírez, F.; González-Arnao, M.T. Cryopreservation of vanilla (Vanilla planifolia) root-tips: A new alternative for in vitro long-term storage of its germplasm. Acta Hortic. 2019, 1234, 203–210. [Google Scholar] [CrossRef]
- Yang, X.; Popova, E.; Shukla, M.R.; Saxena, P. Root cryopreservation to biobank medicinal plants: A case study for Hypericum perforatum L. Vitro Cell. Dev. Biol.-Plant 2019, 55, 392–402. [Google Scholar] [CrossRef]
- Benson, E.E.; Hamill, J.D. Cryopreservation and post freeze molecular and biosynthetic stability in transformed roots of Beta vulgaris and Nicotiana rustica. Plant Cell Tiss. Organ Cult. 1991, 24, 163–172. [Google Scholar] [CrossRef]
- Lambert, E.; Goossens, A.; Panis, B.; Van Labeke, M.C.; Geelen, D. Cryopreservation of hairy root cultures of Maesa lanceolata and Medicago truncatula. Plant Cell Tiss. Organ Cult. 2009, 96, 289–296. [Google Scholar] [CrossRef]
- Jung, D.W.; Sung, C.K.; Touno, K.; Yoshimatsu, K.; Shimomura, K. Cryopreservation of Hyoscyamus niger adventitious roots by vitrification. J. Plant Physiol. 2001, 158, 801–805. [Google Scholar] [CrossRef]
- Simão, M.J.; Collin, M.; Garcia, R.O.; Mansur, E.; Pacheco, G.; Engelmann, F. Histological characterization of Passiflora pohlii Mast. root tips cryopreserved using the V-Cryo-plate technique. Protoplasma 2018, 255, 741–750. [Google Scholar] [CrossRef]
- Chen, H.-Y.; Liu, J.; Pan, C.; Yu, J.-W.; Wang, Q.-C. In vitro regeneration of adventitious buds from leaf explants and their subsequent cryopreservation in highbush blueberry. Plant Cell Tiss. Organ Cult. 2018, 134, 193–204. [Google Scholar] [CrossRef]
- Pan, C.; Liu, J.; Bi, W.-L.; Chen, H.-Y.; Engelmann, F.; Wang, Q.-C. Cryopreservation of small leaf squares-bearing adventitious buds of Lilium Oriental hybrid ‘Siberia’ by vitrification. Plant Cell Tiss. Organ Cult. 2018, 133, 159–164. [Google Scholar] [CrossRef]
- Wang, M.-R.; Zhang, Z.; Zámečník, J.; Bilavčík, A.; Blystad, D.-R.; Haugslien, S.; Wang, Q.-C. Droplet-vitrification for shoot tip cryopreservation of shallot (Allium cepa var. aggregatum): Effects of PVS3 and PVS2 on shoot regrowth. Plant Cell Tiss. Organ Cult. 2020, 140, 185–195. [Google Scholar] [CrossRef]
- Kondo, K.; Tatarenko, I.V.; Varghese, S.B.; Iwai, Y.; Matsumoto, K. Orchid cryopreservation using induced shoot primordia and protocorm-like bodies. In Orchids: Science and Commerce; Pathak, P., Sehgal, R.N., Shekhar, N., Sharma, M., Sood, A., Eds.; Bishen Singh Mahendra Pal Singh: Dehra Dun, India, 2001; pp. 397–412. [Google Scholar]
- Na, H.Y.; Kondo, K. Cryopreservation of tissue-cultured shoot primordia from shoot apices of cultured protocorms in Vanda pumila following ABA preculture and desiccation. Plant Sci. 1996, 118, 195–201. [Google Scholar] [CrossRef]
- Wang, J.H.; Ge, J.G.; Liu, F.; Bian, H.W.; Huang, C.N. Cryopreservation of seeds and protocorms of Dendrobium candidum. CryoLetters 1998, 19, 123–128. [Google Scholar]
- Sopalun, K.; Thammasiri, K.; Ishikawa, K. Vitrification-based cryopreservation of Grammatophyllum speciosum protocorms. CryoLetters 2010, 31, 347–357. [Google Scholar]
- Miao, N.H.; Kaneko, Y.; Sugawara, Y. Ultrastructural implications of pretreatment for successful cryopreservation of Oncidium protocorm-like body. CryoLetters 2005, 26, 333–340. [Google Scholar]
- Bustam, B.M.; Dixon, K.; Bunn, E. A cryopreservation protocol for ex situ conservation of terrestrial orchids using asymbiotic primary and secondary (adventitious) protocorms. In Vitro Cell. Dev. Biol.-Plant 2016, 52, 185–195. [Google Scholar] [CrossRef]
- Maneerattanarungroj, P.; Bunnag, S.; Monthatong, M. In vitro conservation of Cleisostoma areitinum (Rchb.f.) Garay, rare Thai orchid species by an encapsulation-dehydration method. Asian J. Plant Sci. 2007, 6, 1235–1240. [Google Scholar] [CrossRef] [Green Version]
- Khoddamzadeh, A.A.; Sinniah, U.R.; Lynch, P.; Kadir, M.A.; Kadzimin, S.B.; Mahmood, M. Cryopreservation of protocorm-like bodies (PLBs) of Phalaenopsis bellina (Rchb.f.) Christenson by encapsulation–dehydration. Plant Cell Tiss. Organ Cult. 2011, 107, 471–481. [Google Scholar] [CrossRef]
- Thammasiri, K. Cryopreservation of some Thai orchid species. Acta Horticult. 2008, 788, 53–62. [Google Scholar] [CrossRef]
- Popova, E.; Kim, H.H.; Saxena, P.K.; Engelmann, F.; Pritchard, H.W. Frozen beauty: The cryobiotechnology of orchid diversity. Biotechnol. Adv. 2016, 34, 380–403. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Mawassi, S.; Sahar, N.; Li, P.; Colova-Tsolova, V.; Gafny, R.; Sela, I.; Tanne, E.; Perl, A. Cryopreservation of grapevine (Vitis spp.) embryogenic cell suspensions by encapsulation–vitrification. Plant Cell Tiss. Organ Cult. 2004, 77, 267–275. [Google Scholar] [CrossRef]
- Sgueglia, A.; Gentile, A.; Frattarelli, A.; Germanà, M.A.; Caboni, E. Cryopreservation of Italian cultivars of hazelnut. Acta Hortic. 2021, 1307, 159–162. [Google Scholar] [CrossRef]
- Ahmad, N.; Srnad, M. (Eds.) Meta-topolin: A Growth Regulator for Plant Biotechnology and Agriculture; Springer Nature: Singapore, 2021; 339p. [Google Scholar] [CrossRef]
- Werbrouck, S.P.O.; Strnad, M.; Van Onckelen, H.A.; Debergh, P.C. Meta-topolin, an alternative to benzyladenine in tissue culture? Physiol. Plant. 1996, 98, 291–297. [Google Scholar] [CrossRef]
- Nowakowska, K.; Pacholczak, A. Comparison of the effect of meta-Topolin and benzyladenine during Daphne mezereum L. micropropagation. Agronomy 2020, 10, 1994. [Google Scholar] [CrossRef]
- Bernard, F.; Shaker-Bazarnov, H.; Kaviani, B. Effects of salicylic acid on cold preservation and cryopreservation of encapsulated embryonic axes of Persian lilac (Melia azedarach L.). Euphytica 2002, 123, 85–88. [Google Scholar] [CrossRef]
- Pathirana, R.; McLachlan, A.; Hedderley, D.; Panis, B.; Carimi, F. Pre-treatment with salicylic acid improves plant regeneration after cryopreservation of grapevine (Vitis spp.) by droplet vitrification. Acta Physiol. Plant. 2015, 38, 12. [Google Scholar] [CrossRef]
- Ruiz-Sáenz, D.R.; Ayala-Hernández, D.D.; Niino, T.; Cruz-Gutiérrez, E.J.; Aquino-Martínez, J.G.; López-Delgado, H.A. Salicylic acid-cryotherapy treatment for elimination of potato virus from Solanum tuberosum. Am. J. Potato Res. 2019, 96, 225–234. [Google Scholar] [CrossRef]
- Preetha, T.S.; Hemanthakumar, A.S.; Krishnan, P.N. Shoot tip cryopreservation by vitrification in Kaempferia galanga L. an endangered, overexploited medicinal plant in Tropical Asia. IOSR J. Pharm. Biol. Sci. 2013, 8, 19–23. [Google Scholar] [CrossRef]
- Hirai, D.; Sakai, A. Simplified cryopreservation of sweet potato [Ipomoea batatas (L.) Lam.] by optimizing conditions for osmoprotection. Plant Cell Rep. 2003, 21, 961–966. [Google Scholar] [CrossRef]
- Yoon, J.-W.; Kim, H.-H.; Ko, H.-C.; Hwang, H.-S.; Hong, E.-S.; Cho, E.-G.; Engelmann, F. Cryopreservation of cultivated and wild potato varieties by droplet vitrification: Effect of subculture of mother-plants and of preculture of shoot tips. CryoLetters 2006, 27, 211–222. [Google Scholar] [PubMed]
- Sarkar, D.; Naik, P.S. Cryopreservation of shoot tips of tetraploid potato (Solanum tuberosum L.) clones by vitrification. Ann. Bot. 1998, 82, 455–461. [Google Scholar] [CrossRef] [Green Version]
- Batista, D.S.; Felipe, S.H.S.; Silva, T.D. Light quality in plant tissue culture: Does it matter? In Vitro Cell. Dev. Biol.-Plant 2018, 54, 195–215. [Google Scholar] [CrossRef]
- Rafique, T.; Yamamoto, S.; Fukui, K.; Mahmood, Z.; Niino, T. Cryopreservation of sugarcane using the V cryo-plate technique. CryoLetters 2015, 3, 51–59. [Google Scholar]
- Hu, W.-H.; Liu, S.-F.; Liaw, S.-I. Long-term preconditioning of plantlets: A practical method for enhancing survival of pineapple (Ananas comosus (L.) Merr.) shoot tips cryopreserved using vitrification. CryoLetters 2015, 36, 226–236. [Google Scholar]
- Popova, E.; Kim, H.H. Development of cryopreservation protocols for endangered wild orchids in Korea. Acta Hortic. 2019, 1262, 43–52. [Google Scholar] [CrossRef]
- Escobar, R.H.; Mafla, G.; Roca, W.M. A methodology for recovering cassava plants from shoot tips maintained in liquid nitrogen. Plant Cell Rep. 1997, 16, 474–478. [Google Scholar] [CrossRef]
- Benson, E.E.; Wilkinson, M.; Todd, A.; Ekuere, U.; Lyon, J. Developmental competence and ploidy stability in plants regenerated from cryopreserved potato shoot-tips. CryoLetters 1996, 17, 119–128. [Google Scholar]
- Yamamoto, S.I.; Rafique, T.; Arizaga, M.V.; Fukui, K.; Gutierrez, E.J.C.; Martinez, C.R.C.; Watanabe, K.; Niino, T. The aluminium cryo-plate increases efficiency of cryopreservation protocols for potato shoot tips. Am. J. Potato Res. 2015, 92, 250–257. [Google Scholar] [CrossRef]
- Wang, B.; Li, J.W.; Zhang, Z.B.; Wang, R.R.; Ma, Y.L.; Blystad, d.R.; Keller, E.R.J.; Wang, Q.C. Three vitrification-based cryopreservation procedures cause different cryo-injuries to potato shoot tips while all maintain genetic integrity in regenerants. J. Biotechnol. 2014, 184, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, S.; Normah, M.N. The survival of in vitro shoot tips of Garcinia mangostana L. after cryopreservation by vitrification. Plant Growth Regul. 2013, 70, 237–246. [Google Scholar] [CrossRef]
- Bespalova, E.S.; Ukhatova, Y.V.; Volkova, N.N.; Oves, E.V.; Gaitova, N.A.; Gavrilenko, T.A. Investigation of the post-cryogenic regeneration ability of potato varieties under different cultivation conditions. Vavilovskii Zhurnal Genet. I Sel. = Vavilov J. Genet. Breed. 2019, 23, 281–286. (In Russian) [Google Scholar] [CrossRef]
- Downey, C.D.; Golenia, G.; Boudko, E.A.; Jones, A.M.P. Cryopreservation of 13 commercial Cannabis sativa genotypes using in vitro nodal explants. Plants 2021, 10, 1794. [Google Scholar] [CrossRef]
- Edesi, J.; Kotkas, K.; Pirttilä, A.M.; Häggman, H. Does light spectral quality affect survival and regeneration of potato (Solanum tuberosum L.) shoot tips after cryopreservation? Plant Cell Tiss. Organ Cult. 2014, 119, 599–607. [Google Scholar] [CrossRef]
- Shukla, M.R.; Popova, E.V.; (University of Guelph, Guelph, ON, Canada). Personal communication, 2023.
- Bukhov, N.G.; Popova, E.V.; Popov, A.S. Photochemical activities of two photosystems in Bratonia orchid protocorms cryopreserved by vitrification method. Russ. J. Plant Physiol. 2006, 53, 793–799. [Google Scholar] [CrossRef]
- Li, H.; Tang, C.; Xu, Z. The effects of different light qualities on rapeseed (Brassica napus L.) plantlet growth and morphogenesis in vitro. Sci. Hortic. 2013, 150, 117–124. [Google Scholar] [CrossRef]
- Kwon, A.R.; Cui, H.Y.; Lee, H.; Shin, H.; Kang, K.S.; Park, S.Y. Light quality affects shoot regeneration, cell division, and wood formation in elite clones of Populus euramericana. Acta Physiol. Plant. 2015, 37, 65–74. [Google Scholar] [CrossRef]
- Muneer, S.; Park, Y.G.; Jeong, B.R. Red and blue light emitting diodes (LEDs) participate in mitigation of hyperhydricity in in vitro-grown carnation genotypes (Dianthus caryophyllus). J. Plant Growth Regul. 2017, 37, 370–379. [Google Scholar] [CrossRef]
- Wu, H.C.; Lin, C.C. Red light-emitting diode light irradiation improves root and leaf formation in difficult-to-propagate Protea cynaroides L. plantlets in vitro. HortScience 2012, 47, 1490–1494. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.D.; Sahoo, T.K. Light emitting diode (LED)-induced alteration of oxidative events during in vitro shoot organogenesis of Curculigo orchioides Gaertn. Acta Physiol. Plant. 2015, 37, 233. [Google Scholar] [CrossRef]
Species (Material) | Method * | Pre-LN Conditions ** | Regrowth Conditions | Regrowth (R), Regeneration (RG) (Change from Ammonium-Containing Medium) *** | References |
---|---|---|---|---|---|
Comparison of ammonium-containing and ammonium-free medium | |||||
Oryza sativa (cells) | SF | S-2% (24 h) → S-10% (24 h); D-glucose 20% + DMSO 10% (added gradually during 30 min + 30 min for equilibration, ice); 1°C/min to −30°C | +NH4NO3, 10−5M 2,4-D, 7 d | TTC: 6.5% | [92] |
−NH4NO3, 10−5M 2,4-D, 7 d | TTC: 27.5% (+21%) | ||||
Lavandula vera (cells) | SF | D-glucose 20% + DMSO 10% (added gradually during 30 min + 30 min for equilibration, ice); 1°C/min to −40°C | +NH4NO3, 10−5 M 2,4-D, 7 d | TTC: 0.1 (absorbance) | [101] |
−NH4NO3, 10−5 M 2,4-D, 7 d | TTC: 0.38 (+3.8x) (absorbance) | ||||
Oryza sativa (cells) | SF | S-13.4%; glycerol 10% + DMSO 10%; 1°C/min to −40°C | +NH4NO3, 3d | TTC reduction: 0.8 (absorbance) | [102] |
−NH4NO3, 8 h → +NH4NO3, 3 d | TTC reduction: 2.4 (+3x) (absorbance) | ||||
Betula pendula (shoot tips) | SF | ABA 100μM + DMSO 0.5% (3 d, 5°C); D-glucose 20% + DMSO 10% (added gradually during 30 min + 30 min for equilibration, ice); 10°C/h to −38°C | +NH4NO3, + Ca(NO3)2, 3 d | R: 0% | [103] |
−NH4NO3/ +KNO3 + Ca(NO3)2 at cold hardening, cryoprotection, unloading, recovery, 3 d | R: 53.0% (+53.0%) | ||||
−NH4NO3, −Ca(NO3)2 /+KNO3 at cold hardening, cryoprotection, unloading and recovery, 3 d | R: 58.3% (+58.3%) | ||||
Betula pendula (shoot tips from young 20-month cultures) | SF | ABA 100μM + DMSO 5% (3 d, 5°C); polyethylene glycol 10% + D-glucose 10% + DMSO 10% (30 min, 0°C); 0.17°C/min to −38°C | +NH4NO3 5 mM, +Ca(NO3)2 2mM, 3 d | R: 37.5% | [91] |
−NH4NO3, −Ca(NO3)2/+KNO3 10mM at cold hardening, cryoprotection, unloading, recovery, 3 d | R: 53.7% (+16.2%) | ||||
Ipomoea batatas (shoot tips) | VT | S-2% (24 h) → S-10% (24 h); glycerol 18.4% + S-20.5% (60 min); PVS2 (16 min, RT) | +NH4NO3, 2.2 μM BA + 0.49 μM IBA, 5d → MS, ~8 w | RG: 32% | [96] |
−NH4NO3, 2.2 μM BA + 0.49 μM IBA, 5d → MS, ~8 w | RG: 93% (+61%) | ||||
Holostemma annulare (shoot tips) | ED | S-17.1% (24 h) → S-25.6% (24 h); S-25.6% + DMSO 3% (3 d, 4°C); Air drying to 0.17–0.2 g water/g DW | +NH4NO3, 45 d | R: 7.7~22.7% | [93] |
−NH4NO3, 45 d | R: 34.2~58.6% (+26.5~35.9%) | ||||
Holostemma annulare (shoot tips) | ED | S-17.1% (24 h) → S-25.6% (24 h); S-25.6% + DMSO 3% (3 d, 4°C); Air drying to 0.17–0.2 g water/g DW | +NH4NO3 20.6 mM all through the process including recovery (45 d) | R: 12% | [104] |
Reduced NH4NO3 (2.6mM) during preparative culture and preconditioning; −NH4NO3 at preculture and recovery (45 d) | R: 55% (+43%) | ||||
Bletilla striata (protocorms) | DV | S-17.5% (3 h); glycerol 18.2% + S-13.4% (15 min); PVS2 (40 min, 25°C) | +NH4NO3 480 mg L−1, 2 months | R: 44~66% | [105] |
−NH4NO3, 2 months Too long on medium without ammonium? | R: 11~32% (−33–34%) | ||||
Dioscorea alata (shoot tips) | VT | S-17.5% (3 h); glycerol 18.2% + S-13.4% (15 min); PVS2 (40 min, 25°C) | +NH4NO3 1650 mg L−1, 40 d | RG: 32.2% | [100] |
+NH4NO3 330 mg L−1, 40 d | RG: 35.6~38.9% (+3.4~6.7%) | ||||
Ipomoea batatas (shoot tips) | DV | S-10% (31 h) → S-17.5% (17 h); C4-35% (50 min); PVS3 (60 min, RT) | −NH4NO3, 1 mg L−1 GA3 + 0.5 mg L−1 BA, 1w → +NH4NO3, 0.5 mg L−1 BA, 4w (total 5 w) | RG: 21.0% | [97] |
−NH4NO3, 1 mg L−1 GA3 + 0.5 mg L−1, 1w → +NH4NO3, 0.5 mg L−1 GA3, 4w →+NH4NO3, 0.5 mg L−1 GA3, 3w (total 2 months) | RG: 56.0% (+35.0%) | ||||
−NH4NO3, 1 mg L−1 GA3 + 0.5 mg L−1, 1w → +NH4NO3, 0.5 mg L−1 GA, 3w → MS, 4 w) (total 3 months) | RG: 67.5% (+46.5%) | ||||
Osmunda regalis, 2 varieties (gametophyte) | EV | S-8.6% (2 weeks); glycerol 18.2% + S-13.4% (20 min); PVS3 (3 h, RT) | +NH4NO3 in 1/2, 1/4 or 1/8 MS medium, 6w (comparison in fresh control only) | Proliferation of fresh control: 71~78% | [106] |
−NH4NO3 and vitamin-free in MS medium, 6w (comparison in fresh control only) | Proliferation of fresh control: 83~89% (+11~12%) | ||||
Chrysanthemum morifolium, 2 varieties (shoot tips) | DV | S-10% (30 h) → S-17.5% (16 h); C6-40% (30 min); B5-80% (60 min, RT) | +NH4NO3, 2w→ MS, 2w | RG: 38.8~42.1% | [95] |
−NH4NO3, 2w→MS, 2w | RG: 75.5~80.7% (+36.7~38.6%) | ||||
Citrus limon, 2 varieties (shoot tips) | DV | S-10% (48 h) → S-17.5% (16 h); C4-35% (40 min); PVS2 (60 min, 0°C) | +NH4NO3, 1d → MS, 1w → grafting | RG: 50.3~53.5% | [94] |
−NH4NO3, 1d or 1/4 NH4NO3, 1d →MS, 1w → grafting | RG: 67.3~70.3% (+16.8~17.0%) | ||||
Aster altaicus var. uchiyamae (shoot tips) | DV | S-10% (55 h) → S-17.5% (17 h); C4-35% (60 min, ice); A3-80% (60 min, ice) | +NH4NO3, hormone-free, 4w → MS | RG: 31.0% | [98] |
−NH4NO3, 1 mg L−1 GA3 + 0.5 mg L−1 BA, 5d→ +NH4NO3, 0.5 mg L−1 GA3, 3w2d → MS | RG: 64.0% (+33.0%) | ||||
Pogostemon yatabeanus (shoot tips) | DV | S-10% (31 h); C4-35% (40 min); A3-80% (60 min, ice) | +NH4NO3, 1 mg L−1 GA3 + 0.5 mg L−1 BA, 5d → +NH4NO3, 1 mg L−1 GA3 + 0.5 mg L−1 BA, 3w2d→ MS | RG: 63.3% | [107] |
−NH4NO3, 1 mg L−1 GA3 + 0.5 mg L−1 BA, 5d → +NH4NO3, 1 mg L−1 GA3 + 0.5 mg L−1, 3w2d → MS | RG: 95.7% (+ 32.4%) | ||||
Use of ammonium-free medium without comparison | |||||
Fragaria x ananassa var. “Massey”, “MDUS3816” (shoot tips) | DV | S-10% (30 h) → S-17.5% (16h); C4-35% (40 min); PVS3 (60 min, RT) | −NH4NO3, 1 mg L−1 GA3 + 0.5 mg L−1 BA, 5w → +NH4NO3, 0.5 mg L−1 GA3, 9w | R: 65.5% (var. “Massey”) R: 50.0% (var. “MDUS3816”) | [108] |
Fragaria x ananassa var. “Wonkyo3114”, “Gurumi40” | DV | S-10% (40 h); C4-35% (40 min); B5-80% (40 min, RT) | −NH4NO3, 1 mg L−1 GA3 + 0.5 mg L−1 BA, 5w → +NH4NO3, 0.5 mg L−1 GA3, 9w | R: 55.6% (var. “Wonkyo3114”) R: 50.5% (var. “Gurumi40”) | |
Malus domestica 5 varieties (shoot tips) | VT | S-25% 5°C, 1 d; PVS2 (80 min, RT) | −NH4NO3 | R: 45.0~77.5% | [109] |
Pyrus spp., 8 varieties (shoot tips) | VT | S-25% 5°C, 1 d; PVS2 (80 min, RT) | −NH4NO3 | R: 40.0~70.0% | [109] |
12 Vitis species | DV | S-10% + 0.1 mM salicylic acid + 1 mM ascorbic acid +1 mM glutathione (reduced form) (3 d); glycerol 18.2% + S-13.4% (20 min); ½ PVS2 (20 min) → PVS2 (60–105 min, 0°C) | −NH4NO3, S-20.5%, overnight → −NH4NO3, 0.2 mg L−1 BA, 2 w → +NH4NO3, 0.2 mg L−1 BA | R: 37–53% | [49] |
Exogenous Compound | Proposed Action | Effective Concentration | Species Tested | Material Cryopreserved | Effectiveness | Reference |
---|---|---|---|---|---|---|
Ascorbic acid | Antioxidant | 0.14–0.58 mM | Rubus, 2 varieties | Shoot tips | Up to 35% improvement | [85] |
10–50 µM | Paphiopedilum insigne | Protocorms | Little or no improvement * | [76] | ||
0.6 mM | Dendrobium so nia-28 | Protocorm-like bodies | ∼8–11% improvement after 6 weeks; stable improvement by ∼15% when combined with 2 g L−1 activated charcoal | [156] | ||
Vitamin E ** | Antioxidant | 11 and 15 mM | Rubus, 2 varieties | Shoot tips | Up to 25% improvement | [85] |
Tocopherol | Antioxidant | 10–50 µM | Paphiopedilum insigne | Protocorms | Little or no improvement * | [76] |
Lipoic acid | Antioxidant | 2–10 mM (optimum 2–6 mM) | Rubus spp. | Shoot tips | ∼10% improvement | [157] |
Glutathione, reduced form (GSH) | Antioxidant | 0.08–0.33 mM | Rubus spp. | Shoot tips | 10–25% improvement | [157] |
10–50 µM (optimum 20–30 μM) | Paphiopedilum insigne | Protocorms | Regrowth improved by ∼10–25% * | [76] | ||
32.5 μM | Citrus spp. | Shoot tips | ~7% Survival improvement | [158] | ||
Glycine betaine | Antioxidant | 5–20 mM (optimum 10 mM) | Rubus spp. | Shoot tips | ∼26% improvement | [157] |
Melatonin | Antioxidant, signaling, regulation of metabolic pathways | 0.1 or 0.5 µM | Ulmus americ ana | Shoot tips | ∼25% improvement | [129] |
0.1 µM | Dioscorea alata and D. cayenensis | Shoot tips | Up to 20% regeneration improvement | [159] | ||
0.1–0.5 µM | Nicotiana tabacum Hypericum perforatum | Shoot tips | 30–40% regrowth improvement | [160] | ||
Desferrioxamine | Iron sequestration, prevention of harmful Fenton and free radical cascade reactions | 0.5 and 10 mg L−1 | Oryza sativa cv. Taipei 309 | Embryogenic cell culture | Improved cell viability measured by TTC. Higher weight gain (by 20–30%) | [84] |
Phloroglucinol | Antioxidant | 10–50 µM (optimum 30 μM) | Paphiopedilum insigne | Protocorms | ∼23% regrowth improvement * | [76] |
Polyvinylpyrrolidon | Antioxidant | 1–10 mM | Rubus spp. | Shoot tips | Negative effect | [157] |
Pluronic F-68 | Nonionic surfactant, protection against fluid-mechanical damage, promote cell division | 0.005% | Solanum tuberosum | Shoot tips | 16–33% plant regeneration improvement | [161] |
0.01% | Oryza sativa cv. Taipei 309 | Embryogenic cell culture | 36% cell viability improvement | [162] | ||
Pluronic F-68 + oxygenated perfluorocarbon (OP) | Improve oxygen transfer, promote cell division | 0.01% | Oryza sativa cv. Taipei 309 | Embryogenic cell culture | 20–24% cell viability improvement | [162] |
Oxygenated perfluorocarbon (OP) | Improve cell proliferation, increase oxygen transfer rates | Semi-solid medium overlaying 20.0-mL aliquots of OP | Oryza sativa cv. Taipei 309 | Embryogenic cell culture | 57% cell viability improvement | [162] |
Gold nanoparticles (AuNPs) | Shift in antioxidant enzyme activities observed | 10–30 ppm | Lamprocapnos spectabilis | Shoot tips | Reduced survival (but improved when applied at pre-LN step) | [163] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popova, E.; Kulichenko, I.; Kim, H.-H. Critical Role of Regrowth Conditions in Post-Cryopreservation of In Vitro Plant Germplasm. Biology 2023, 12, 542. https://doi.org/10.3390/biology12040542
Popova E, Kulichenko I, Kim H-H. Critical Role of Regrowth Conditions in Post-Cryopreservation of In Vitro Plant Germplasm. Biology. 2023; 12(4):542. https://doi.org/10.3390/biology12040542
Chicago/Turabian StylePopova, Elena, Irina Kulichenko, and Haeng-Hoon Kim. 2023. "Critical Role of Regrowth Conditions in Post-Cryopreservation of In Vitro Plant Germplasm" Biology 12, no. 4: 542. https://doi.org/10.3390/biology12040542
APA StylePopova, E., Kulichenko, I., & Kim, H. -H. (2023). Critical Role of Regrowth Conditions in Post-Cryopreservation of In Vitro Plant Germplasm. Biology, 12(4), 542. https://doi.org/10.3390/biology12040542