Reproducing during Heat Waves: Influence of Juvenile and Adult Environment on Fecundity of a Pest Mite and Its Predator
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Mite Origin and Rearing
2.2. Mimicking Mild and Extreme Heat Waves
2.3. Female Rearing Units, Starvation Cages, and Experimental and Sex-Determination Units
2.4. Reproduction of Predator and Prey under Heat Waves
2.5. Reproduction of the Prey under Predation Risk and Heat Waves
2.6. Statistical Analyses
2.6.1. Survival and Escape Analyses
2.6.2. Effects of Heat Waves and Female Age on Oviposition, Predation, and Egg Volume
2.6.3. Effect of Heat Waves on the Feeding of T. urticae
2.6.4. Effect of Heat Waves on the Sex Ratio of Eggs
2.6.5. Effects of Heat Waves and Predation Risk on Feeding and Oviposition of T. urticae
3. Results
3.1. Heat Wave Effects on Survival and Escape Rates
3.1.1. Species Comparisons
3.1.2. Phytoseiulus persimilis
3.1.3. Tetranychus urticae
3.2. Heat Wave Effects on Feeding Rates
3.2.1. Phytoseiulus persimilis
3.2.2. Tetranychus urticae
3.3. Heat Wave Effects on Oviposition Rates
3.3.1. Species Comparisons
3.3.2. Species-Specific Heat Wave Effects on Oviposition Rates
Phytoseiulus persimilis
T. urticae
3.4. Effects of Heat Waves and Maternal Age on Offspring Egg Size
3.4.1. Phytoseiulus persimilis
3.4.2. Tetranychus urticae
3.5. Heat Wave Effects on Sex Ratios
3.5.1. Phytoseiulus persimilis
3.5.2. Tetranychus urticae
3.6. Reproductive Performance of Prey under Heat Waves and Predation Risk
3.6.1. Feeding Rates
3.6.2. Oviposition Rates
4. Discussion
4.1. Escape Behavior and Survival under Heat Waves
4.2. Reproduction under Heat Waves
4.3. Reproductive Performance of Prey under Predation Risk and Heat Waves
4.4. Possible Consequences for Biological Control
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andrew, N.R.; Terblanche, J.S. The response of insects to climate change. In Climate of Change: Living in a Warmer World; Salinger, J., Ed.; David Bateman Ltd.: Auckland, New Zealand, 2013; pp. 38–50. [Google Scholar]
- Schulte, P.M.; Healy, T.M.; Fangue, N.A. Thermal performance curves, phenotypic plasticity, and the time scales of temperature exposure. Integr. Comp. Biol. 2011, 51, 691–702. [Google Scholar] [CrossRef] [Green Version]
- Horowitz, M. Heat acclimation: Phenotypic plasticity and cues to the underlying molecular mechanisms. J. Therm. Biol. 2001, 26, 357–363. [Google Scholar] [CrossRef]
- Petchey, O.L.; McPhearson, P.T.; Casey, T.M.; Morin, P.J. Environmental warming alters food-web structure and ecosystem function. Nature 1999, 402, 69–72. [Google Scholar] [CrossRef]
- Voigt, W.; Perner, J.; Davis, A.J.; Eggers, T.; Schumacher, J.; Bährmann, R.; Fabian, B.; Heinrich, W.; Köhler, G.; Lichter, D.; et al. Trophic levels are differentially sensitive to climate. Ecology 2003, 84, 2444–2453. [Google Scholar] [CrossRef] [Green Version]
- Fussmann, K.E.; Schwarzmüller, F.; Brose, U.; Jousset, A.; Rall, B.C. Ecological stability in response to warming. Nat. Clim. Chang. 2014, 4, 206–210. [Google Scholar] [CrossRef]
- Tscholl, T.; Nachman, G.; Spangl, B.; Walzer, A. Heat waves affect prey and predators differently via developmental plasticity: Who may benefit most from global warming? Pest Manag. Sci. 2022, 78, 1099–1109. [Google Scholar] [CrossRef]
- Walzer, A.; Nachman, G.; Spangl, B.; Stijak, M.; Tscholl, T. Trans- and within-generational developmental plasticity may benefit the prey but not its predator during heat waves. Biology 2022, 11, 1123. [Google Scholar] [CrossRef]
- Vasseur, D.A.; McCann, K.S. A mechanistic approach for modeling temperature-dependent consumer-resource dynamics. Am. Nat. 2005, 166, 184–198. [Google Scholar] [CrossRef] [Green Version]
- Berggren, Å.; Björkman, C.; Bylund, H.; Ayres, M.P. The distribution and abundance of animal populations in a climate of uncertainty. Oikos 2009, 118, 1121–1126. [Google Scholar] [CrossRef]
- Cheng, B.S.; Komoroske, L.M.; Grosholz, E.D. Trophic sensitivity of invasive predator and native prey interactions: Integrating environmental context and climate change. Funct. Ecol. 2016, 31, 642–652. [Google Scholar] [CrossRef]
- Walsh, B.S.; Parratt, S.R.; Hoffmann, A.A.; Atkinson, D.; Snook, R.R.; Bretman, A.; Price, T.A.R. The impact of climate change on fertility. Trends Ecol. Evol. 2019, 34, 249–259. [Google Scholar] [CrossRef] [PubMed]
- Porcelli, D.; Gaston, K.J.; Butlin, R.K.; Snook, R.R. Local adaptation of reproductive performance during thermal stress. J. Evol. Biol. 2017, 30, 422–429. [Google Scholar] [CrossRef] [PubMed]
- Angilletta, M.J., Jr. Thermal Adaptation—A Theoretical and Empirical Synthesis; Oxford University Press: Oxford, UK, 2009. [Google Scholar]
- Johnston, I.A.; Wilson, R.S. Temperature-induced developmental plasticity in ectotherms. In Comparative Developmental Physiology: Contributions, Tools, and Trends; Warburton, S.J., Burggren, W.W., Pelster, B., Reiber, C.L., Spicer, J., Eds.; Oxford University Press: Oxford, UK, 2006; pp. 124–138. [Google Scholar]
- Klepsatel, P.; Knoblochová, D.; Girish, T.N.; Dircksen, H.; Gáliková, M. The influence of developmental diet on reproduction and metabolism in Drosophila. BMC Evol. Biol. 2020, 20, 93. [Google Scholar] [CrossRef] [PubMed]
- Leith, N.T.; Macchiano, A.; Moore, M.P.; Fowler-Finn, K.D. Temperature impacts all behavioral interactions during insect and arachnid reproduction. Curr. Opin. Insect. Sci. 2021, 45, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Sanghvi, K.; Iglesias-Carrasco, M.; Zajitschek, F.; Kruuk, L.E.B.; Head, M.L. Effects of developmental and adult environments on ageing. Evolution 2022, 76, 1868–1882. [Google Scholar] [CrossRef]
- Min, K.W.; Jang, T.; Lee, K.P. Thermal and nutritional environments during development exert different effects on adult reproductive success in Drosophila melanogaster. Ecol. Evol. 2021, 11, 443–457. [Google Scholar] [CrossRef]
- Scharf, I.; Braf, H.; Ifrach, N.; Rosenstein, S.; Subach, A. The effects of temperature and diet during development, adulthood, and mating on reproduction in the red flour beetle. PLoS ONE 2015, 10, e0136924. [Google Scholar] [CrossRef]
- Kellermann, V.; Van Heerwaarden, B.; Sgrò, C.M. How important is thermal history? Evidence for lasting effects of developmental temperature on upper thermal limits in Drosophila melanogaster. Proc. R. Soc. B 2017, 284, 20170447. [Google Scholar] [CrossRef] [Green Version]
- Huey, R.B.; Wakefield, T.; Crill, W.D.; Gilchrist, G.W. Within- and between-generation effects of temperature on early fecundity of Drosophila melanogaster. Heredity 1995, 74, 216–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huey, R.B.; Berrigan, D.; Gilchrist, G.W.; Herron, J.C. Testing the adaptive significance of acclimation: A strong inference approach. Am. Zool. 1999, 39, 323–336. [Google Scholar] [CrossRef] [Green Version]
- Truong, K.N.; Vu, N.-A.; Doan, N.X.; Le, M.-H.; Vu, M.T.T.; Dinh, K.V. Predator cues increase negative effects of a simulated marine heatwave on tropical zooplankton. J. Exp. Mar. Biol. Ecol. 2020, 530–531, 151415. [Google Scholar] [CrossRef]
- Škaloudová, B.; Zemek, R.; Křivan, V. The effect of predation risk on an acarine system. Anim. Behav. 2007, 74, 813–821. [Google Scholar] [CrossRef]
- Li, G.Y.; Zhang, Z.Q. Development, lifespan and reproduction of spider mites exposed to predator-induced stress across generations. Biogerontology 2019, 20, 871–882. [Google Scholar] [CrossRef]
- Knapp, M.; van Houten, Y.M.; van Baal, E.; Groot, T. Use of predatory mites in commercial biocontrol: Current status and future prospects. Acarologia 2018, 58, 72–82. [Google Scholar] [CrossRef]
- Helle, W.; Pijnacker, L.P. Parthenogenesis, chromosomes and sex. In Spider Mites: Their Biology, Natural Enemies and Control; Helle, W., Sabelis, M.W., Eds.; Elsevier Science Publishers B.V.: Amsterdam, The Netherlands, 1985; Volume 1A, pp. 129–139. [Google Scholar]
- Schulten, G.G.M. Pseudo-Arrhenotoky. In Spider Mites: Their Biology, Natural Enemies and Control; Helle, W., Sabelis, M.W., Eds.; Elsevier Science Publishers B.V.: Amsterdam, The Netherlands, 1985; Volume 1B, pp. 67–71. [Google Scholar]
- Wrensch, D.L. Reproductive parameters. In Spider Mites: Their Biology, Natural Enemies and Control; Helle, W., Sabelis, M.W., Eds.; Elsevier Science Publishers B.V.: Amsterdam, The Netherlands, 1985; Volume 1A, pp. 165–170. [Google Scholar]
- Sabelis, M.W. Sex allocation. In Spider Mites: Their Biology, Natural Enemies and Control; Helle, W., Sabelis, M.W., Eds.; Elsevier Science Publishers B.V.: Amsterdam, The Netherlands, 1985; Volume 1B, pp. 83–94. [Google Scholar]
- Macke, E.; Magalhães, S.; Khan, H.D.-T.; Luciano, A.; Frantz, A.; Facon, B.; Olivieri, I. Sex allocation in haplodiploids is mediated by egg size: Evidence in the spider mite Tetranychus urticae Koch. Proc. R. Soc. B 2011, 278, 1054–1063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshioka, T.; Yano, S. Do Tetranychus urticae males avoid mating with familiar females? J. Exp. Biol. 2014, 217, 2297–2300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LÜ, J.-L.; Zhang, B.-H.; Jiang, X.-H.; Wang, E.-D.; Xu, X.-N. Quantitative impact of mating duration on reproduction and offspring sex ratio of Phytoseiulus persimilis (Acari: Phytoseiidae). J. Integr. Agric. 2019, 18, 884–892. [Google Scholar] [CrossRef] [Green Version]
- Wrensch, D.L.; Young, S.S.Y. Effects of quality of resource and fertilization status on some fitness traits in the two-spotted spider mite, Tetranychus urticae Koch. Oecologia 1975, 18, 259–267. [Google Scholar] [CrossRef]
- Kasap, İ. Effect of apple cultivar and of temperature on the biology and life table parameters of the twospotted spider mite Tetranychus urticae. Phytoparasitica 2004, 32, 73–82. [Google Scholar] [CrossRef]
- Bayu, M.; Ullah, M.S.; Takano, Y.; Gotoh, T. Impact of constant versus fluctuating temperatures on the development and life history parameters of Tetranychus urticae (Acari: Tetranychidae). Exp. Appl. Acarol. 2017, 72, 205–227. [Google Scholar] [CrossRef]
- Riahi, E.; Shishehbor, P.; Nemati, A.R.; Saeidi, Z. Temperature effects on development and life table parameters of Tetranychus urticae (Acari: Tetranychidae). J. Agr. Sci. Technol. 2013, 15, 661–672. [Google Scholar]
- Gotoh, T.; Saito, M.; Suzuki, A.; Nachman, G. Effects of constant and variable temperatures on development and reproduction of the two-spotted spider mite Tetranychus urticae (Acari: Tetranychidae). Exp. Appl. Acarol. 2014, 64, 465–478. [Google Scholar] [CrossRef] [PubMed]
- Vangansbeke, D.; De Schrijver, L.; Spranghers, T.; Audenaert, J.; Verhoeven, R.; Nguyen, D.T.; Gobin, B.; Tirry, L.; De Clercq, P. Alternating temperatures affect life table parameters of Phytoseiulus persimilis, Neoseiulus californicus (Acari: Phytoseiidae) and their prey Tetranychus urticae (Acari: Tetranychidae). Exp. Appl. Acarol. 2013, 61, 285–298. [Google Scholar] [CrossRef] [PubMed]
- Stenseth, C. Effect of temperature and humidity on the development of Phytoseiulus persimilis and its ability to regulate populations of Tetranychus urticae [Acarina: Phytoseiidae. Tetranychidae]. Entomophaga 1979, 24, 311–317. [Google Scholar] [CrossRef]
- Kazak, C. The development, predation, and reproduction of Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae) from Hatay fed Tetranychus cinnabarinus Boisduval (Acari: Tetranychidae) larvae and protonymphs at different temperatures. Turk. J. Zool. 2008, 32, 407–413. [Google Scholar]
- Rojas, M.G.; Morales-Ramos, J.A.; Riddick, E.W. Determining an optimal temperature range for reproduction of Phytoseiulus persimilis, a predator of the two-spotted spider mite Tetranychus urticae. Biopestic. Int. 2013, 9, 101–112. [Google Scholar]
- Urbaneja-Bernat, P.; Jaques, J.A. Effect of pollen provision on life-history parameters of phytoseiid predators under hot and dry environmental conditions. J. Appl. Entomol. 2021, 145, 191–205. [Google Scholar] [CrossRef]
- Roff, D.A. The Evolution of Life Histories: Theory and Analysis; Chapman and Hall: New York, NY, USA, 1992. [Google Scholar]
- Li, G.Y.; Zhang, Z.Q. Does size matter? Fecundity and longevity of spider mites (Tetranychus urticae) in relation to mating and food availability. Syst. Appl. Acarol. 2018, 23, 1796–1808. [Google Scholar] [CrossRef]
- Walzer, A.; Schausberger, P. Intra- and trans-generational costs of reduced female body size caused by food limitation early in life in mites. PLoS ONE 2013, 8, e79089. [Google Scholar] [CrossRef]
- McMurtry, J.A.; Croft, B.A. Life-styles of phytoseiid mites and their roles in biological control. Annu. Rev. Entomol. 1997, 42, 291–321. [Google Scholar] [CrossRef]
- Sabelis, M.W.; Dicke, M. Long range dispersal and searching behaviour. In Spider Mites: Their Biology, Natural Enemies and Control; Helle, W., Sabelis, M.W., Eds.; Elsevier Science Publishers B.V.: Amsterdam, The Netherlands, 1985; Volume 1B, pp. 141–160. [Google Scholar]
- Walzer, A.; Schausberger, P. Integration of multiple cues allows threat-sensitive anti-intraguild predator responses in predatory mites. Behaviour 2013, 150, 115–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meehl, G.A.; Tebaldi, C. More intense, more frequent, and longer lasting heat waves in the 21st century. Science 2004, 305, 994–997. [Google Scholar] [CrossRef] [Green Version]
- Huth, R.; Kyselý, J.; Pokorná, L. A GCM simulation of heat waves, dry spells, and their relationships to circulation. Clim. Chang. 2000, 46, 29–60. [Google Scholar] [CrossRef]
- Kyselý, J.; Kalvova, J.; Květoň, V. Heat waves in the south Moravian region during the period 1961-1995. Stud. Geophys. Geod. 2000, 44, 57–72. [Google Scholar] [CrossRef]
- Kielland, O.N.; Bech, C.; Einum, S. No evidence for thermal transgenerational plasticity in metabolism when minimizing the potential for confounding effects. Can. J. Zool. 2017, 284, 20162494. [Google Scholar] [CrossRef] [Green Version]
- Schausberger, P. Inter- and intraspecific predation on immatures by adult females in Euseius finlandicus, Typhlodromus pyri and Kampimodromus aberrans (Acari: Phytoseiidae). Exp. Appl. Acarol. 1997, 21, 131–150. [Google Scholar] [CrossRef]
- Walzer, A.; Formayer, H.; Tixier, M.S. Evidence of trans-generational developmental modifications induced by simulated heat waves in an arthropod. Sci. Rep. 2020, 10, 4098. [Google Scholar] [CrossRef] [Green Version]
- Breslow, N. A generalized Kruskal-Wallis test for comparing K samples subject to unequal patterns of censorship. Biometrika 1970, 57, 579–594. [Google Scholar] [CrossRef]
- Colquhoun, D. Lectures on Biostatistics. An Introduction to Statistics with Applications in Biology and Medicine; Clarendon Press: Oxford, UK, 1971; p. 425. [Google Scholar]
- Gerson, U. Webbing. In Spider Mites: Their Biology, Natural Enemies and Control; Helle, W., Sabelis, M.W., Eds.; Elsevier Science Publishers B.V.: Amsterdam, The Netherlands, 1985; Volume 1A, pp. 223–232. [Google Scholar]
- Li, J.; Margolies, D.C. Effects of mite age, mite density, and host quality on aerial dispersal behavior in the twospotted spider mite. Entomol. Exp. Appl. 1993, 68, 79–86. [Google Scholar] [CrossRef]
- Skirvin, D.; Fenlon, J. Of mites and movement: The effects of plant connectedness and temperature on movement of Phytoseiulus persimilis. Biol. Control 2003, 27, 242–250. [Google Scholar] [CrossRef]
- Praslička, J.; Huszár, J. Influence of temperature and host plants on the development and fecundity of the spider mite Tetranychus urticae (Acarina: Tetranychidae). Plant Prot. Sci. 2004, 40, 141–144. [Google Scholar] [CrossRef] [Green Version]
- Abd El-Wahed, N.; El-Halawany, A. Effect of temperature degrees on the biology and life table parameters of Tetranychus urticae Koch on two pear varieties. Egypt. Acad. J. Biol. 2012, 4, 103–109. [Google Scholar] [CrossRef]
- Herbert, H.J. Biology, life tables, and innate capacity for increase of the twospotted spider mite, Tetranychus urticae (Acarina: Tetranychidae). Can. Entomol. 1981, 113, 371–378. [Google Scholar] [CrossRef]
- Vucic-Pestic, O.; Ehnes, R.B.; Rall, B.C.; Brose, U. Warming up the system: Higher predator feeding rates but lower energetic efficiencies. Glob. Chang. Biol. 2011, 17, 1301–1310. [Google Scholar] [CrossRef]
- Deutsch, C.A.; Tewksbury, J.J.; Tigchelaar, M.; Battisti, D.S.; Merrill, S.C.; Huey, R.B.; Naylor, R.L. Increase in crop losses to insect pests in a warming climate. Science 2018, 361, 916–919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gillooly, J.F.; Brown, J.H.; West, G.B.; Savage, V.M.; Charnov, E.L. Effects of size and temperature on metabolic rate. Science 2001, 293, 2248–2251. [Google Scholar] [CrossRef] [Green Version]
- Brown, J.H.; Gillooly, J.F.; Allen, A.P.; Savage, V.M.; West, G.B. Toward a metabolic theory of ecology. Ecology 2004, 85, 1771–1789. [Google Scholar] [CrossRef]
- Avelar, T. Egg size in Drosophila: Standard Unit of investment of variable response to environment? The effect of temperature. J. Insect Physiol. 1993, 39, 283–289. [Google Scholar] [CrossRef]
- Ernsting, G.; Isaaks, A. Ectotherms, temperature, and trade-offs: Size and number of eggs in a carabid beetle. Am. Nat. 2000, 155, 804–813. [Google Scholar] [CrossRef]
- Bernardo, J. The particular maternal effect of propagule size, especially egg size: Patterns, models, quality of evidence and interpretations. Am. Zool. 1996, 36, 216–236. [Google Scholar] [CrossRef]
- Fox, C.W.; Czesak, M.E. Evolutionary ecology of progeny size in arthropods. Annu. Rev. Entomol. 2000, 45, 341–369. [Google Scholar] [CrossRef] [Green Version]
- Walzer, A.; Schausberger, P. Food stress causes sex-specific maternal effects in mites. J. Exp. Biol. 2015, 218, 2603–2609. [Google Scholar] [CrossRef] [Green Version]
- Walzer, A.; Schausberger, P. Sex-specific developmental plasticity of generalist and specialist predatory mites (Acari: Phytoseiidae) in response to food stress. Biol. J. Linn. Soc. 2011, 102, 650–660. [Google Scholar] [CrossRef]
- Klepsatel, P.; Girish, T.N.; Gáliková, M. Acclimation temperature affects thermal reaction norms for energy reserves in Drosophila. Sci. Rep. 2020, 10, 1–11. [Google Scholar] [CrossRef]
- Nagelkerke, C.J.; Sabelis, M.W. Precise control of sex allocation in pseudo-arrhenotokous phytoseiid mites. J. Evol. Biol. 1998, 11, 649–684. [Google Scholar] [CrossRef]
- Sabelis, M.W. Reproductive strategies. In Spider Mites: Their Biology, Natural Enemies and Control; Helle, W., Sabelis, M.W., Eds.; Elsevier Science Publishers B.V.: Amsterdam, The Netherlands, 1985; Volume 1A, pp. 265–278. [Google Scholar]
- Fernandez Ferrari, M.C.; Schausberger, P. From repulsion to attraction: Species- and spatial context-dependent threat sensitive response of the spider mite Tetranychus urticae to predatory mite cues. Naturwissenschaften 2013, 100, 541–549. [Google Scholar] [CrossRef]
- Choh, Y.; Uefune, M.; Takabayashi, J. Predation-related odours reduce oviposition in a herbivorous mite. Exp. Appl. Acarol. 2010, 50, 1–8. [Google Scholar] [CrossRef]
- Jacobsen, S.K.; Alexakis, I.; Sigsgaard, L. Antipredator responses in Tetranychus urticae differ with predator specialization. J. Appl. Entomol. 2016, 140, 228–231. [Google Scholar] [CrossRef]
- Stephens, D.W.; Krebs, J.R. Foraging Theory; Princeton University Press: Princeton, NJ, USA, 1986. [Google Scholar]
- Johnstone, R.A. Multiple displays in animal communication: ‘backup signals’ and ‘multiple messages’. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1996, 351, 329–338. [Google Scholar] [CrossRef]
- Walzer, A.; Schausberger, P. Interdependent effects of male and female body size plasticity on mating behaviour of predatory mites. Anim. Behav. 2015, 100, 96–105. [Google Scholar] [CrossRef] [Green Version]
- Nachman, G. An acarine predator-prey metapopulation system inhabiting greenhouse cucumbers. Biol. J. Linn. Soc. Lond. 1991, 42, 285–303. [Google Scholar] [CrossRef]
- Perez-Sayas, C.; Aguilar-Fenollosa, E.; Hurtado, M.A.; Jaques, J.A.; Pina, T. When do predatory mites (Phytoseiidae) attack? Understanding their diel and seasonal predation patterns. Insect Sci. 2018, 25, 1056–1064. [Google Scholar] [CrossRef] [PubMed]
- Urbaneja-Bernat, P.; Ibáñez-Gual, V.; Montserrat, M.; Aguilar-Fenollosa, E.; Jaques, J. Can interactions among predators alter the natural regulation of an herbivore in a climate change scenario? The case of Tetranychus urticae and its predators in citrus. J. Pest. Sci. 2019, 92, 1149–1164. [Google Scholar] [CrossRef]
Time of the Day | Mild Heat Waves | Extreme Heat Waves | ||
---|---|---|---|---|
Temperature (°C) | RH (%) | Temperature (°C) | RH (%) | |
00:00–02:00 | 18.0 | 75.0 | 24.0 | 65.0 |
02:00–04:00 | 17.0 | 80.0 | 23.0 | 70.0 |
04:00–06:00 | 16.0 | 85.0 | 22.0 | 75.0 |
06:00–08:00 | 19.0 | 75.0 | 25.0 | 65.0 |
08:00–10:00 | 27.0 | 60.0 | 33.0 | 50.0 |
10:00–12:00 | 30.0 | 50.0 | 36.0 | 50.0 |
12:00–14:00 | 32.0 | 50.0 | 38.0 | 50.0 |
14:00–16:00 | 29.0 | 55.0 | 35.0 | 50.0 |
16:00–18:00 | 24.0 | 65.0 | 30.0 | 55.0 |
18:00–20:00 | 22.0 | 70.0 | 28.0 | 60.0 |
20:00–22:00 | 19.0 | 75.0 | 25.0 | 65.0 |
22:00–00:00 | 18.0 | 75.0 | 24.0 | 65.0 |
MEAN | 22.6 | 67.9 | 28.6 | 60.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tscholl, T.; Nachman, G.; Spangl, B.; Serve, H.C.; Walzer, A. Reproducing during Heat Waves: Influence of Juvenile and Adult Environment on Fecundity of a Pest Mite and Its Predator. Biology 2023, 12, 554. https://doi.org/10.3390/biology12040554
Tscholl T, Nachman G, Spangl B, Serve HC, Walzer A. Reproducing during Heat Waves: Influence of Juvenile and Adult Environment on Fecundity of a Pest Mite and Its Predator. Biology. 2023; 12(4):554. https://doi.org/10.3390/biology12040554
Chicago/Turabian StyleTscholl, Thomas, Gösta Nachman, Bernhard Spangl, Hanna Charlotte Serve, and Andreas Walzer. 2023. "Reproducing during Heat Waves: Influence of Juvenile and Adult Environment on Fecundity of a Pest Mite and Its Predator" Biology 12, no. 4: 554. https://doi.org/10.3390/biology12040554
APA StyleTscholl, T., Nachman, G., Spangl, B., Serve, H. C., & Walzer, A. (2023). Reproducing during Heat Waves: Influence of Juvenile and Adult Environment on Fecundity of a Pest Mite and Its Predator. Biology, 12(4), 554. https://doi.org/10.3390/biology12040554