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Simple Summary: Cancer is a leading cause of death worldwide and continuous efforts are exerted
to develop novel biomarkers and therapeutic agents that could help in early diagnosis and treatment.
Analysis of a pan-cancer model that includes a list of human tumors could provide us with a global
solution to the heterogeneous condition of human cancers. One of the basic approaches for the
detection of potential tumor biomarkers and drug targets is the assessment of specific proteins
that show upregulation in cancerous tissues versus normal ones. We showed that ECT2 could be
considered as a prognostic and immunological biomarker in a list of human cancers through the
investigation of several databases. We also employed a chemoinformatics approach to analyze
potential inhibitors for ECT2 that could finally act as antitumor agents.

Abstract: Epithelial cell transforming 2 (ECT2) is a potential oncogene and a number of recent studies
have correlated it with the progression of several human cancers. Despite this elevated attention for
ECT2 in oncology-related reports, there is no collective study to combine and integrate the expression
and oncogenic behavior of ECT2 in a panel of human cancers. The current study started with a
differential expression analysis of ECT2 in cancerous versus normal tissue. Following that, the study
asked for the correlation between ECT2 upregulation and tumor stage, grade, and metastasis, along
with its effect on patient survival. Moreover, the methylation and phosphorylation status of ECT2
in tumor versus normal tissue was assessed, in addition to the investigation of the ECT2 effect on
the immune cell infiltration in the tumor microenvironment. The current study revealed that ECT2
was upregulated as mRNA and protein levels in a list of human tumors, a feature that allowed
for the increased filtration of myeloid-derived suppressor cells (MDSC) and decreased the level of
natural killer T (NKT) cells, which ultimately led to a poor prognosis survival. Lastly, we screened for
several drugs that could inhibit ECT2 and act as antitumor agents. Collectively, this study nominated
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ECT2 as a prognostic and immunological biomarker, with reported inhibitors that represent potential
antitumor drugs.

Keywords: ECT2; pan-cancer; differential expression; prognosis; immunotherapy; drug discovery

1. Introduction

Carcinogenesis is a complex process that involves the interaction between several
factors, leading to a change in the normal cell behavior and its transformation into a
cancerous state [1]. The best approach to fight against cancer is to deeply analyze the various
roles of the interacting components in the tumor microenvironment where this analysis
could open new paths for a better understanding of this deleterious cell transformation and
consequently detect potential molecular targets for early prognosis and antitumor drug
discovery [2,3]. One of the basic methods to achieve that is to study the different roles of
oncogenes under several forms and types of human cancers [4]. This pan-cancer analysis
has witnessed a great progression in the last few years owing to the development of several
databases and the suitable tools that make it possible to access and analyze a large amount
of data that has been correlated regarding the differential gene expression, the prognostic
value of different genes, the genetic alteration status of these oncogenes, the correlation
between these gene expressions and the infiltration of several types of human immune
cells, and the gene–gene interaction in the tumor microenvironment that could explain the
molecular mechanism of these oncogenes [5,6]. Analysis of the available data in several
cancer-related databases and integration of the findings of that analysis with the novel
approaches of drug delivery such as nanomedicine-based techniques could revolutionize
the field of cancer treatment and could also extend to other human diseases [7,8].

The Rho family contains a group of proteins that act as GTPases and are considered
a subfamily under the Ras superfamily. These proteins perform several roles in the cell
as they are responsible for organelle development, cytoskeletal dynamics, and cell move-
ment [9]. Because of the vital roles of the Rho proteins, the mechanisms that control their
signaling was extensively studied, where three groups of regulators were detected: gua-
nine nucleotide exchange factor (GEFs), GTPase-activating proteins (GAPs), and guanine
nucleotide dissociation inhibitors (GDIs) [10]. The upregulation of Rho proteins has been
reported in several human cancers [11], where the mechanism of altered Rho tumorigenesis
was largely studied. Firstly, Rho hyperactivity can suppress normal cellular apoptosis,
leading to cell longevity. Following that, polarity loss would be observed, which introduces
abnormal tumor induction. This growing mass can invade and affect the surrounding nor-
mal tissue with the help of altered adhesion proteins, which is controlled via Rho proteins;
finally, the cancerous mass would be free to migrate to other tissues in the body [12].

ECT2 belongs to the family of GEFs, where its major role is the catalysis of the exchange
of GDP for GTP in Rho proteins; consequently, it can control the activation status of the
Rho proteins [13]. GTPases are in active status when they are connected to GTP, while their
binding to GDP transfers them to the inactive condition. Because of the slow process of GDP
dissociation from inactive GTPases, the binding of ECT2 to its GTPase substrates catalyzes
GDP dissociation of GDP, which permits a GTP binding in its place and consequently
transfer the GTPases to the active status. It is noteworthy that the binding of the new
GTP molecule will lead to the release of ECT2, which in turn will activate a new GTPase.
Therefore, we can collectively summarize that ECT2 can both destabilize the GTPase
interaction with GDP and stabilize the nucleotide-free GTPase until a GTP molecule binds
to it and, in both conditions, it is named as an activating factor for GTPases [14]. Analysis
of the cellular roles of ECT2 demonstrated that it was required to signal the transduction
pathways that control the process of cytokinesis [15]. Additionally, ECT2 represented
an important component of the centralspindlin complex that is essential for the myosin
contractile ring formation in the process of cell cycle cytokinesis. Regarding its role in
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tumor progression, ECT2 could associate with the PARD6A-PRKCI complex, which in turn
stimulated RAC1 and finally induced cancer cell proliferation [16]. Moreover, ECT2 was
found to be an activating factor for focal adhesion genes in lung adenocarcinoma, where its
suppression resulted in impaired cancerous cell proliferation and adhesion [17]. In addition
to that, ECT2 had the ability to promote M2 macrophage polarization in hepatocellular
carcinoma, which in turn suppressed the functions of NK and T cells, which are vital
immune cells for fighting against tumor progression [18]. ECT2 was also associated with
the transcriptional program of cancer stem cells in gastric cancer [19] and its elevated
expression was correlated with colorectal cancer progression and growth [20].

While the oncogenic roles of ECT2 have obtained a large focus in the last few years,
there is still a lack of comprehensive studies that can analyze the roles of ECT2 in tumor
progression from different aspects. Hence, the current study aimed to analyze the expres-
sion profile of ECT2 across a large panel of human tumors. We were also interested in
studying the activation status, immune infiltration, genetic alteration, methylation condi-
tion, prognostic value, and molecular interactions of ECT2 in the tumor microenvironment
to obtain an overview of the behavior of ECT2 in the tumor progression. Lastly, we tried
to make screening for potential antitumor drugs through the targeting of this potential
molecular target.

2. Materials and Methods
2.1. ECT2 Differential Level in Tumor and Normal Tissues

Firstly, the differential ECT2 gene expression in tumor versus normal tissue was vi-
sualized through the data deposited in the Tumor Immune Estimation Resource, version
2 (TIMER2.0) [21] and, due to the absence of normal tissue for comparison in some tu-
mor models, we accessed the Gene Expression Profiling Interactive Analysis 2 (GEPIA2)
database [22] to complete our analysis. Following that, ECT2 differential protein expression
between cancerous and normal tissue was investigated through the UALCAN tool, which
runs a protein expression analysis relying on the data of the Clinical Proteomic Tumor
Analysis Consortium (CPTAC) [23]. Finally, we aimed to investigate the level of ECT2 in
the normal, tumor, and metastatic tissue to study whether there is a correlation between
the gene expression level and tumor development; for this purpose, the TNMplot web
server [24] was accessed.

2.2. Association of ECT2 with Tumor Grade and Stage

Tumor grade demonstrates the abnormality degree of cancerous cells, while tumor
stage describes the size and spreading level of the studied tumor [25]. In order to study
the correlation between ECT2 expression and the tumor grade and stage, the TISIDB web
server [26] was accessed. Moreover, for a comparative analysis of ECT2 association with
tumor stage, we accessed the “Stage Plots” tab in the GEPIA2 database [22].

2.3. Survival Prognosis Analysis

We employed 2 web servers to study the correlation between ECT2 expression and
patients’ survival. Firstly, the “Survival Analysis” section in the GEPIA2 database was used
to obtain a heatmap describing the correlation between ECT2 expression and 2 survival
modes, namely overall survival and disease-free survival. Secondly, the KM plotter [27]
was utilized to investigate the role of ECT2 expression in patients’ survival in 5 different
cancer models (breast, ovarian, lung, gastric, and liver cancers).

2.4. ECT2 Genetic Alteration and Its Correlation with Patients’ Survival

In the current stage, the cBioPortal database [28] was employed to investigate the
types and effects of ECT2 genetic alterations. We started by exploring the various type of
ECT2 genetic alterations in a list of human tumors. Following that, we specified the genetic
mutations for deep analysis in terms of their types, sites, and implications on the survival
of cancer patients.
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2.5. Methylation and Phosphorylation Analysis of ECT2

DNA methylation is an established approach for cellular control of specific gene
expression [29], where a hypomethylation status of oncogene allows for its elevated ex-
pression and finally cancer progression [30]. The current study employed 2 web servers—
UALCAN [31] and SMART app [32]—to investigate the methylation status of ECT2 in
tumor versus normal samples. Moving to the phosphorylation analysis, the phosphory-
lation cascade has been correlated with the activation status of several proteins [33] and
the hyperphosphorylation status of tumor-inducing proteins has been correlated with the
oncogenic activity of those proteins [34]. Here, we used the data from CPTAC to compare
the phosphorylation status of ECT2 in cancerous tissues versus normal ones.

2.6. Assessment of ECT2 Effects on the Tumor Microenvironment

Human immune cells that infiltrate the tumor microenvironment have different roles
and, sometimes, opposing outcomes [35]. Here, we accessed the TIMER2 web server to
analyze the possible effect of ECT2 overexpression in controlling the immune cell infiltration
in a list of human tumors. Moreover, we utilized the data from the SangerBox web server
to study the correlation between ECT2 expression in cancerous tissue and microsatellite
instability (MSI), tumor mutational burden (TMB), tumor neoantigens, and finally immune
checkpoints.

2.7. Analysis of ECT2 Protein–Protein Interactions

At this stage, we aimed to analyze the network of ECT2 interacting proteins; for this
purpose, we accessed the STRING database [36] under the conditions of “Experiments”
as the source of interactions and “Low confidence” for the scoring. Following that, we
employed the GEPIA2 database to obtain the list of the top 100 correlated genes to ECT2.
Lastly, the online server (http://bioinformatics.psb.ugent.be/webtools/Venn/; (accessed
on 5 January 2023)) was used to find the common genes in the above-mentioned generated
lists, where the genes generated after removing duplications were submitted to the Database
for Annotation, Visualization, and Integrated Discovery (DAVID) [37] to run an enrichment
analysis.

2.8. Small Molecule–ECT2 Binding Investigation

We further investigated the molecular interaction aspects of several reported small
molecules as potential inhibitors of ECT2 RhoGEF through a molecular docking-coupled
explicit molecular dynamic simulation. Variable-scaffold small molecules were adopted:
PubChem CID_989521 (SM1), CID_1942568 (SM2), CID_1924897 (SM3), CID_1419318 (SM4),
CID_136852531 (SM5), CID_4094173 (SM6), and CID_1220023 (SM7), being previously
reported as potential inhibitors of the leukemia-associated RhoGEF, namely LARG, showing
the top-active molecule (SM1) with a relative Rho-LARG binding inhibition of 27.12% [38].
Binding interaction profiles and thermodynamic behavior analysis for the docked molecules
at ECT2 interfaces were evaluated, as compared with the reported SM7-LARG complex.
All ligands were constructed via the AutoDock Vina 12.0 software suit (Scripps Research,
La Jolla, CA, USA) [39]. Structural optimization through assigning Gasteiger charges and
merging non-polar hydrogens were proceeded within the software.

Atomic coordinates of the biological targets ECT2 and LARG were acquired from
the respective deposited Protein Data Bank (PDB) files 6L30 [40] and 1X86 [41] and then
prepared within AutoDock Vina by removing ion/solvent/water, computing Gasteiger
partial charges, and introducing polar/non-polar hydrogen atoms being missed from
the crystallized proteins [42]. Both N-terminal BRCT units were removed, keeping only
the C-terminal catalytic Dbl oncoprotein and pleckstrin homology (DH-PH) domains.
Further structure repairment involved correcting bond distance/angle and predicting the
ionization states of polar exposed residues at pH 7.4 (0.9% w/v NaCl). The binding site
was defined through a qualitative approach by examining concave surfaces with inherited
low-thermodynamic motions (cold β-factor values) as well as high-density protein–protein
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interfaces between the C-terminal catalytic DH-PH domains of the guanine nucleotide
exchange factors. Thus, the concave surface at ECT2, comprising Val520, Phe523, Glu524,
Lys527, Glu528, Val556, Ile563, Val566, Gln567, Asp610, Arg612, Lys613, Ala616, His638,
Arg639, Ser640, and Asn667, and that at LARG, including the surrounding residues of
both Asn975 and Arg986 amino acids (i.e., Cys888, Ser889, Gln891, Pro892, Phe893, Glu896,
Met934, Leu971, Val974, Val978, Glu982, and Gln985), met the adopted criteria as potential
binding sites.

Under an assigned Vina forcefield, a docking workflow proceeded, where a Lamar-
ckian genetic algorithm was implemented for ligand’s conformation search. Then, the
genetic algorithm was applied for dock binding mode prediction. Global search exhaus-
tiveness and maximum energy differences between binding poses were predefined at 8
and 3 Kcal·mol−1, respectively [43]. Docking poses with high-scoring energies achieving
significant binding contacts with reported important DH-PH domain interface residues
and redocking RMSD values < 2.0 Å cut-off were selected for the best docking poses of
the particular ligand. Visualizing binding interactions and docking pose analysis was
performed via PyMol2.0.6 (Schrödinger, New York, NY, USA).

The best docking poses for ligand-ECT2 complexes, as well as the SM1-LARG com-
plex, were adopted as reference structures for the conducted explicit molecular dynamics
simulations using GROMACS-2019 under the CHARMM general forcefield for ligands
and the CHARMM36m forcefield adopted for the target protein [44]. Compound–protein
complexes were individually solvated in TIP3P cube-shaped boxes using periodic boundary
conditions at a marginal distance of 10 Å [45]. Standard ionization at pH 7.4 was set for the
target’s amino acids, keeping the whole system neutralized with sufficient negative and
positive ions of chloride and potassium, respectively [46]. The systems proceeded through a
steep descent-minimization stage for 5 ps [47], while being subsequently equilibrated under
NVT (303.15 K) and then NPT (303.15 K; 1 atm. pressure) ensembles for 100 ps each [48].
Molecular dynamic runs through 100 ns proceeded under the NPT ensemble, adopting the
particle mesh Ewald algorithm for computing long-range electrostatic interactions. LINCS
at 2 fs integration time step size was adopted for modeling all covalent bonds [49]. The
Verlet cut-off scheme was used to truncate both van der Waals and Coulomb’s non-bonded
interactions at 10 Å [50]. Ligand–protein binding-free energies, across the whole simu-
lation runs, were estimated using molecular mechanics Poisson–Boltzmann surface area
(MM_PBSA) calculations, where constituting energy terms were dissected and residue-wise
binding contributions were investigated [51].

3. Results

The abbreviations and the full names of analyzed tumors in the current study are
shown in Supplementary Table S1.

3.1. ECT2 Elevated Expression in Several Human Tumors versus Normal Tissue

TIMER2 was employed to analyze the differential expression of ECT2 between can-
cerous and adjacent normal tissues. Our analysis revealed that ECT2 was significantly
upregulated in BLCA, BRCA, CHOL, COAD, ESCA, GBM, HNSC, KIRP, LIHC, LUAD,
LUSC, PRAD, READ, STAD, UCEC (p < 0.001), CESC, PAAD (p < 0.01), and THCA (p < 0.05)
(Figure 1A). Because of the absence of normal tissue for expression comparison in 10 tu-
mors, we accessed the GEPIA2 database, where we found a significant elevation of ECT2
expression in 5 tumors, namely DLBC, OV, SKCM, THYM, and UCS (p < 0.05) (Figure 1B).
On the other hand, four tumors (ACC, LGG, SRAC, and TGCT) demonstrated nonsignif-
icant differences and only one tumor, LAML, experienced a significantly higher ECT2
expression in normal tissues versus cancerous ones (Supplementary Figure S1). Moving
to the protein expression levels, eight tumors, namely breast cancer, clear cell RCC, colon
cancer, hepatocellular carcinoma, HNSC, PAAD, UCEC (p < 0.001), and LUAD (p < 0.05),
experienced a significantly higher ECT2 protein expression in tumor samples versus normal
ones (Figure 1C), while only two tumors—ovarian cancer and glioblastoma multiforme—
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showed a nonsignificant difference (Supplementary Figure S2). Finally, we applied the
“compare tumor, normal, and metastasis” module of the TNMplot web server to study
the correlation between ECT2 mRNA levels and cancer progression and metastasis. The
generated graphs (Figure 1D) illustrated that, in breast, kidney, liver, and prostate cancers,
ECT2 was significantly upregulated in tumor tissues versus normal ones, a trend that
was kept when we set a comparison between ECT2 expression in tumor tissues versus
metastatic ones.
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panel of TCGA tumors analyzed by TIMER2.0. (*: p-value < 0.05; **: p-value < 0.01; ***: p-value < 0.001)
(B) Tumors experienced a significant elevation in ECT2 expression in tumor versus normal tissue
when analyzed in the GEPIA2 database. (*: p-value with a significant score) (C) Tumors experienced
a statistically significant higher ECT2 protein expression in the tumor sample versus normal one.
(D) Tumors experienced a consistent positive correlation between CHD1L expression and tissue type
(normal–tumor–metastatic).

3.2. Several Human Cancers Demonstrated a Correlation between ECT2 Expression and Tumor
Stage and Grade

After confirming the upregulation of ECT2 in mRNA and protein levels, we aimed
to find whether this upregulation would affect the grade and the stage of human tumors.
The output from the TISIDB web server demonstrated that there was a positive correlation
between ECT2 expression and the tumor grade in KIRC, LGG, LIHC, UCEC (p < 0.001),
PAAD, and HNSC (p < 0.01) (Figure 2A,B). Moving to the tumor stage, the results from the
TISIDB web server exhibited a positive correlation with ECT2 expression in nine tumors,
namely ACC, KIRC, KIRP, LIHC, LUAD, LUSC, PAAD, TGCT, and UCEC (Figure 2C), while
the same assessment from the data deposited in the GEPIA2 database showed the positive
correlation with ACC, BRCA, KICH, KIRC, LIHC, LUAD, PAAD, and SKCM (Figure 2D).
Collectively, five tumors, namely ACC, KIRC, LIHC, LUAD, and PAAD, experienced a
positive correlation between the ECT2 level and the tumor stage, based on the results from
the two employed databases.

3.3. Increased ECT2 Levels Were Negatively Correlated with the Clinical Outcomes

The elevated levels of ECT2 in tumor tissues versus normal ones made us question the
possible roles of ECT2 in patients’ survival; to answer that question we investigated two
resources: GEPIA2 and a Kaplan–Meier (KM) plotter. Results from the GEPIA2 database
revealed that six tumors, namely COAD, KIRP, SARC (p < 0.05), LGG, LIHC (p < 0.01),
and ACC (p < 0.001), experienced a negative correlation in terms of disease-free survival
(Figure 3A), where the same tumors (except COAD) also experienced a negative correlation
in terms of overall survival. Not only the above-mentioned tumors but others, namely
LUAD, MESO, and PAAD (Figure 3B), also showed a negative correlation in terms of
overall survival. Moving to the results of the KM plotter, breast, gastric, and liver tumors
demonstrated a negative correlation between ECT2 expression and patient survival in all
of the analyzed models (Figure 4A,D,E), while ovarian cancer showed the same correlation
in terms of overall and progress-free survival (Figure 4B). Finally, lung cancer exhibited a
negative correlation only in the overall survival module (Figure 4C).
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Figure 2. Correlation between ECT2 level and tumor stage and grade. (A) Bar chart showing the
correlation between ECT2 level and tumor grade. (B) Box plot for tumors that experienced a positive
correlation between ECT2 level and tumor grade. (C) Bar chart showing the correlation between ECT2
level and tumor stage. (D) Violin plot for tumors that experienced a positive correlation between
ECT2 level and tumor stage.



Biology 2023, 12, 613 9 of 34
Biology 2023, 12, x FOR PEER REVIEW 11 of 37 
 

 

 
Figure 3. The correlation between ECT2 expression and the clinical outcome. (A) Disease-free sur-
vival; (B) overall survival as assessed from the GEPIA2 database. Boxes represent the tumors that 
experienced a significant correlation.  

Figure 3. The correlation between ECT2 expression and the clinical outcome. (A) Disease-free
survival; (B) overall survival as assessed from the GEPIA2 database. Boxes represent the tumors that
experienced a significant correlation.



Biology 2023, 12, 613 10 of 34
Biology 2023, 12, x FOR PEER REVIEW 12 of 37 
 

 

 
Figure 4. The correlation between ECT2 expression and the survival prognosis as assessed with the 
Kaplan–Meier ploĴer tool for (A) breast, (B) ovarian, (C) lung, (D) gastric, and (E) liver cancer. 

3.4. ECT2 Genetic Alteration Predicts Poor Patient Outcome 
The output from the cBioPortal database revealed that ovarian epithelial tumor, non-

small cell lung cancer, and cervical cancer were the top three human tumors that experi-
enced genetic alterations in ECT2, with alteration frequency approximately between 16 
and 24%. Moreover, “amplification” was the dominant form of genetic alteration in most 
of the analyzed human tumors, except for melanoma and colorectal cancer, which exhib-
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Figure 4. The correlation between ECT2 expression and the survival prognosis as assessed with the
Kaplan–Meier plotter tool for (A) breast, (B) ovarian, (C) lung, (D) gastric, and (E) liver cancer.

3.4. ECT2 Genetic Alteration Predicts Poor Patient Outcome

The output from the cBioPortal database revealed that ovarian epithelial tumor, non-
small cell lung cancer, and cervical cancer were the top three human tumors that experi-
enced genetic alterations in ECT2, with alteration frequency approximately between 16 and
24%. Moreover, “amplification” was the dominant form of genetic alteration in most of
the analyzed human tumors, except for melanoma and colorectal cancer, which exhibited
“mutation” as a dominant ECT2 genetic alteration (Figure 5A). A deep analysis of the ECT2
mutation forms showed that the missense mutation was the most common form and that
site D320 was one of the most altered sites in ECT2, with three reported missense mutations
in uterine-related carcinoma patients (Figure 5B,C). The final interesting finding regard-
ing ECT2 genetic alteration analysis was that, in four analyzed models, namely overall,
disease-specific, disease-free, and progress-free survival, there was a negative correlation
between ECT2 alterations and patient survival (Figure 5D).
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Figure 5. Mutation assessment for ECT2 using the cBioPortal tool. (A) The alteration frequency
with mutation type in a panel of analyzed human cancers. (B) A map representation for sites
and types of ECT2 mutations. (C) The 3D structure of ECT2, with a highlight on the most altered
site. (D) Assessment of the correlation between ECT2 mutation and disease-free, disease-specific,
progression-free, and overall survival.

3.5. Opposing Methylation–Phosphorylation Status of ECT2 in Several Human Cancers

Starting with the methylation assessment, the output of the UALCAN web server
revealed that five tumors, namely COAD, LUAD, LUSC, UCEC (p < 0.001), and BRCA
(p < 0.01), experienced a promoter hypomethylation status in comparison with normal sam-
ples (Figure 6A). Moreover, results of the SMART app showed that BLCA, BRCA, COAD,
HNSC, LIHC, LUSC, PRAD, READ, THCA, and UCEC experienced CpG-aggregated hy-
pomethylation compared with corresponding normal samples (Figure 6B). Moving to the
phosphorylation analysis, nine positions, namely T395, S367, S443, T444, T857, S858, S861
(p < 0.001), T373 (p < 0.05), and S442 (p < 0.01), experienced significantly elevated phos-
phorylation levels of ECT2 in HNSC versus normal samples (Figure 7A). A similar pattern
was observed in positions T359 and S866, when we analyzed the samples of hepatocellular
carcinoma versus normal ones (Figure 7B), and position T373 in breast cancer (Figure 7C),
in addition to positions T359 and S858 in lung adenocarcinoma (Figure 7D), and finally
position T359 in pancreatic adenocarcinoma (Figure 7E). Collectively, ECT2 experienced a
hypomethylation and phosphorylation status in tumor conditions, a property that can be
correlated with its overexpression and activity in cancerous tissues versus normal ones.
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Figure 6. Differential methylation analysis of ECT2 in tumor samples versus normal ones. (A) Tumors
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assessed by UALCAN analysis. (B) Analysis of CpG-aggregated methylation of ECT2 in a list of
human tumors. ns: p > 0.05; *: p <= 0.05; **: p <= 0.01; ***: p <= 0.001; ****: p <= 0.0001.
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3.6. ECT2 Expression in Cancerous Tissue Was Positively Correlated with the Infiltration of Cells
with Immunosuppressive Characteristics

It was established that several types of immune cells with different roles can infiltrate
the tumor. Here, we targeted two cells, namely MDSC and NKT, that have immunosuppres-
sive and antitumor activity, respectively, to be analyzed for their potential correlation with
ECT2 expression in cancerous tissue. Regarding MDSC, 90% of the analyzed tumors expe-
rienced a significantly positive correlation between ECT2 and MDSC levels (Figure 8A,B).
It is important to mention that not a single tumor showed a negative correlation between
ECT2 and these cells with the immunosuppressive roles. Moving to the NKT cells, the
opposite correlation was demonstrated in 80% of the analyzed tumors, with the presence
of only one tumor, LIHC, that showed a positive correlation between ECT2 and NKT cell
levels (Supplementary Figure S3). A combined analysis revealed that BLCA, BRCA, CESC,
COAD, ESCA, GBM, HNSC, KICH, LGG, LUAD, LUSC, PAAD, PCPG, PRAD, READ,
SARC, SKCM, STAD, THYM, UCS, and UVM experienced a positive correlation between
ECT2 and MDSC, in addition to a negative correlation between the same gene and the NKT
cells. The output from the SangerBox web server showed that THCA, KIRC, and LIHC
experienced a positive correlation between ECT2 and the expression of several immune
checkpoints, while TGCT showed a negative correlation with most of the immune check-
points (Figure 9A). Moreover, five tumors, namely BRCA, STAD, READ, HNSC, and UCEC,
exhibited a positive correlation between ECT2 and tumor neoantigen (Figure 9B), while
tumors PRAD, COAD, STAD, KIRC, READ, DLBC, and PCPG demonstrated a positive
correlation between the same gene and the MSI (Figure 9C). Finally, a total number of 12
tumors, namely LUAD, PRAD, BRCA, COAD, STAD, SKCM, KIRC, READ, KICH, ACC,
PCPG, and GBM, experienced a significantly positive correlation between ECT2 and the
TBM (Figure 9D).
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Figure 9. Correlations of ECT2 expression with immune checkpoints, tumor neoantigens, MSI, and
TMB. (A) Heatmap correlating the immune checkpoints and ECT2 across a list of human tumors.
(B–D) Radar charts showing the overlaps of ECT2 with tumor neoantigens, MSI, and TMB respectively.
(*: p-value < 0.05; **: p-value < 0.01; ***: p-value < 0.001).

3.7. ECT2-Protein Interactions and Enrichment Analysis

Until the current stage, we have pointed out the upregulation of ECT2 in cancer-
ous tissues versus normal samples and shown the correlation of that finding with the
tumor stage, grade, patient prognosis, and immune reactivity. Therfore, it was essential
to investigate the molecular mechanisms of ECT2 tumorigenic effects. First of all, 50 ex-
perimentally validated interacting proteins with ECT2 were obtained from the STRING
database (Figure 10A). Following that, the top 100 ECT2 correlated proteins in the tumor
microenvironment were obtained from the GEPIA2 database, where a heatmap (Figure 10B)
and correlation plots (Figure 10D) for the top five correlated genes were obtained through
the “Gene Corr” module under the TIMER web server and the “Correlation Analysis” tab
in the GEPIA2 database. A Venn diagram demonstrating the common genes of the above-
mentioned lists showed that two genes, namely RACGAP1 and KIF23, were duplicated
(Figure 10C). The new gene list, derived from the combination of “ECT2-interacting genes”
and “ECT2-correlated genes”, was simply created and, after duplicate removal, this new list
was uploaded to the DAVID database for enrichment analysis. This gene list was enriched
for cell division and cell cycle in terms of biological process, cytosol and nucleus in terms of
cellular components, protein and ATP binding in terms of molecular function, and finally
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the KEGG pathway analysis demonstrated that these genes were enriched for cell cycle
(Figure 10E).
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3.8. Docked Small Molecules Showed Promising Binding Affinities at DH-PH Catalytic Interface

The docked small molecules predicted excellent accommodation at the cleft interface
between the DH-PH catalytic domains of ECT2 enclosed within α3, α5, and α6 helices of the
DH domain, together with the αN, αC, and β1–4 sheet loops of the PH region (Figure 11A).
Extended orientations/conformations were depicted for the ligands’ structural scaffold
along the DH-PH interface site, having their lipopholic aryl moieties deeply anchored. Such
orientation was reasoned for the dominant hydrophobic nature of the binding cleft medi-
ated by non-polar residues, including Val520, Phe523, Val556, and Ile563 of the DH domain
and Val566, Ala616, and His638 of the PH one. On the other hand, highly polar/ionized
residues (Asp610, Arg612, and Lys613 of PH domain; Glu524, Lys527, and Glu528 of DH
domain) were settled decorating the solvent-exposed entrance of the binding site. The
depicted polar amino acids allowed favored orientations for the ligands’ hydrogen bond
acceptor/donner functionalities to be preferentially directed at the solvent site.

Comparative analysis of the ligand binding modes at the ECT2 site showed prefer-
ential residue-wise binding profiles for several small molecules (Table 1). Relevant polar
hydrogen bonding interactions with the solvent-exposed Arg612 sidechain were seen as
consistent with all docked ligands being directed at close range towards the ligands’ po-
lar functionalities decorating the aryl/heterocyclic scaffolds (Figure 11B–H). This ECT2
cationic residue at the PH domain even showed double polar binding interactions with
some ligands, including SM3, SM4, SM5, and SM6, particularly with the benzimidazole,
quinoline or purine-analogous rings. Moreover, Arg612 depicted relevant π-cationic inter-
actions with all docked ligands, providing relevant stability for the ligands’ central and/or
terminal aryl/heterocyclic rings at the ECT2 binding interface. Similar to Arg612, the polar
Gln567 residue at the DH domain showed both polar hydrogen bonding and/or π-cationic
interactions with different ligands, including SM1, SM3, SM4, SM5, SM6, and/or SM7.
Generally, Gln567 is settled deep within the highly hydrophobic binding site, which could
provide some sort of ligand selectivity towards preferential ECT2 binding. Another DH
domain cationic residue, Lys527, was seen as significant for anchoring docked ligands such
as SM1, SM2, and SM7 through hydrogen bonding, as well as ligands SM5 and SM7 via
π-cationic interactions. Besides the depicted polar interactions, several non-polar lining
residues (Val520, Phe523, Val559, Ile563, Val566, Pro570, Ile607, Ala616, His638, and/or
His759) showed DH-PH interface-mediated ligand-associated hydrophobic interactions.
The aromatic DH domain residue, Phe523, depicted π-π or even π-hydrogen bonding, with
aromatic functionalities of almost all docked ligands. On the other hand, the sidechain
carbons of Glu524 and Lys613 were found in close proximity to several ligands hydrophobic
skeletons, mediating close-range van der Waal interactions. Combining both polar and
hydrophobic interactions provided both distinct and variable extent residue-wise binding
profiles for each ligand being correlated to favorable docking scores, with binding energies
ranging from −5.469 to −6.369 Kcal.mol−1. Ligands such as SM2, SM3, and SM4 were
assigned the highest docking scores, being associated with the extended and diverse nature
of binding interactions towards ECT2.

The adopted docking protocol was validated via a triple approach, where obtaining
low RMSD values (<2.0 Å) between docked and redocked poses conferred the validity
of the adopted docking procedure and the furnished docking modes and energies were
of ensured biological significance [52–54]. Secondly, the docking of SM1 at the LARG
DH-PH domain interface was replicated, as previously reported by Shang et al. [38], in a
way to partially ensure the adequacy of the applied docking protocol. Interestingly, SM1
showed comparable extended anchoring at the LARG catalytic domain, being stabilized
through polar hydrogen bonding with Pro892 and Arg986 via its pyrazolidindione central
scaffold (Figure 11I). Dominant hydrophobic interactions with Phe893 (π-hydrogen), van
der Waal side chain of Glu896, Asn975, and Gln985, as well as non-polar contact with
Cys888, Phe892, Leu895, Met934, Leu937, Leu971, Val974, and Val978 lining residues,
were correlated with the LARG’s interface hydrophobic nature. Finally, validation of the
obtained ligand-ECT2 complexes also proceeded through subsequent explicit molecular
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dynamic simulations using these docked poses as starting structures while comparing them
with the reference-simulated SM1-LARG system.
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Figure 11. Docked binding modes and interactions for investigated small molecules at ECT2 catalytic
DH-PH interface. (A) Overlay of docked small molecules (blue sticks) at ECT2 catalytic interface
(PDB; 6L30) shown in surface representation and colored according to domain (DH and PH domains
as red and green, respectively). Zoomed image defines the assigned DH-PH interface endorsed by
α3, α5, α6 helices (DH domain) and αN, αC, β1–4 sheet loops (PH domain). (B–H) Predicted binding
modes of the docked ligands (blue sticks); (B) SM1, (C) SM2, (D) SM3, (E) SM4, (F) SM5, (G) SM6,
and (H) SM7 at ECT2 catalytic interface binding site. (I) Replicated binding mode of SM1 at LARG
RhoGEF (PDB; 1X86) as reported in the literature. Residues (lines) within a radius of 5 Å from the
bounded ligands are displayed, colored with regard to their position at the catalytic domains and
labeled with a sequence number. Black dashed lines represent the polar ligand–target interactions.

Table 1. Dissected docking–binding interactions for small molecules at DH-PH catalytic interface of
RhoGEF ECT2 and/or LARGE.

Small Molecules Docking Binding
Energy (Kcal.mol−1;

RMSD Å)

H-Bond Interaction
(Length Å/angle◦)

Hydrophobic
Interaction

π-Driven
Interaction
(Length Å)

van der Waal
with Side

Chain CarbonsCode-Target Chemical Structure

SM1-ECT2

Biology 2023, 12, x FOR PEER REVIEW 20 of 36 
 

 

Figure 11. Docked binding modes and interactions for investigated small molecules at ECT2 cata-
lytic DH-PH interface. (A) Overlay of docked small molecules (blue sticks) at ECT2 catalytic inter-
face (PDB; 6L30) shown in surface representation and colored according to domain (DH and PH 
domains as red and green, respectively). Zoomed image defines the assigned DH-PH interface en-
dorsed by α3, α5, α6 helices (DH domain) and αN, αC, β1-4 sheet loops (PH domain). (B–H) Pre-
dicted binding modes of the docked ligands (blue sticks); (B) SM1, (C) SM2, (D) SM3, (E) SM4, (F) 
SM5, (G) SM6, and (H) SM7 at ECT2 catalytic interface binding site. (I) Replicated binding mode of 
SM1 at LARG RhoGEF (PDB; 1X86) as reported in the literature. Residues (lines) within a radius of 
5 Å from the bounded ligands are displayed, colored with regard to their position at the catalytic 
domains and labeled with a sequence number. Black dashed lines represent the polar ligand–target 
interactions. 

The adopted docking protocol was validated via a triple approach, where obtaining 
low RMSD values (<2.0 Å) between docked and redocked poses conferred the validity of 
the adopted docking procedure and the furnished docking modes and energies were of 
ensured biological significance [52–54]. Secondly, the docking of SM1 at the LARG DH-
PH domain interface was replicated, as previously reported by Shang et al. [38], in a way 
to partially ensure the adequacy of the applied docking protocol. Interestingly, SM1 
showed comparable extended anchoring at the LARG catalytic domain, being stabilized 
through polar hydrogen bonding with Pro892 and Arg986 via its pyrazolidindione central 
scaffold (Figure 11I). Dominant hydrophobic interactions with Phe893 (π-hydrogen), van 
der Waal side chain of Glu896, Asn975, and Gln985, as well as non-polar contact with 
Cys888, Phe892, Leu895, Met934, Leu937, Leu971, Val974, and Val978 lining residues, were 
correlated with the LARG’s interface hydrophobic nature. Finally, validation of the ob-
tained ligand-ECT2 complexes also proceeded through subsequent explicit molecular dy-
namic simulations using these docked poses as starting structures while comparing them 
with the reference-simulated SM1-LARG system. 

Table 1. Dissected docking–binding interactions for small molecules at DH-PH catalytic interface of 
RhoGEF ECT2 and/or LARGE. 

Small Molecules Docking Bind-
ing Energy 
(Kcal.mol−1; 
RMSD Å) 

H-Bond Inter-
action (Length 

Å/angle°) 

Hydrophobic Inter-
action 

π-Driven 
Interaction 
(Length Å) 

van der Waal 
with Side 

Chain Carbons 
Code-Tar-

get 
Chemical Structure 

SM1-ECT2 
−5.824 
(1.890) 

Lys527; 2.5/121 
Gln567; 2.4/159 
Asp610; 2.9/140 
Arg612; 3.0/126 

Val520, Phe523, 
Val559, Ile563, 
Val566, Ala616, 

His638 

Phe523; 5.1 
Arg612; 3.2 

Glu524 (Cβ,Cγ) 
Lys613 (Cγ,Cδ) 

SM2-ECT2 

 

−6.369 
(1.370) 

Glu524; 2.6/124 
Lys527; 1.9/158 
Lys527; 2.4/129 
Arg612; 2.7/125 

Val520, Phe523, 
Ile563, Val566, 
Pro570, Ile607, 
Ala616, His638 

Phe523; 5.0 
Arg612; 3.1 
Arg612; 2.0 

Glu524 (Cβ,Cγ) 
Lys613 

(Cβ,Cγ,Cδ) 

SM3-ECT2 

 

−6.061 
(1.207) 

Gln567; 3.2/133 
Arg612; 2.6/130 
Arg612; 2.4/128 

Val520, Phe523, 
Ile563, Val566, 
Pro570, Ile607, 
Ala616, His638 

Phe523; 4.9 
Arg612; 3.1 

Glu524 (Cβ,Cγ) 
Lys613 (Cγ,Cδ) 

−5.824
(1.890)

Lys527; 2.5/121
Gln567; 2.4/159
Asp610; 2.9/140
Arg612; 3.0/126

Val520,
Phe523,

Val559, Ile563,
Val566, Ala616,

His638

Phe523; 5.1
Arg612; 3.2

Glu524 (Cβ,Cγ)
Lys613 (Cγ,Cδ)

SM2-ECT2

Biology 2023, 12, x FOR PEER REVIEW 22 of 37 
 

 

SM2-ECT2 

 

−6.369 
(1.370) 

Glu524; 2.6/124 
Lys527; 1.9/158 
Lys527; 2.4/129 
Arg612; 2.7/125 

Val520, Phe523, 
Ile563, Val566, 
Pro570, Ile607, 
Ala616, His638 

Phe523; 5.0 
Arg612; 3.1 
Arg612; 2.0 

Glu524 (Cβ,Cγ) 
Lys613 

(Cβ,Cγ,Cδ) 

SM3-ECT2 

 

−6.061 
(1.207) 

Gln567; 3.2/133 
Arg612; 2.6/130 
Arg612; 2.4/128 

Val520, Phe523, 
Ile563, Val566, 
Pro570, Ile607, 
Ala616, His638 

Phe523; 4.9 
Arg612; 3.1 

Glu524 (Cβ,Cγ) 
Lys613 (Cγ,Cδ) 

SM4-ECT2 

 

−5.855 
(1.078) 

Gln567; 3.2/133 
Arg612; 2.7/121 
Arg612; 2.3/131 

Phe523, Val559, 
Ile563, Val566, 
Ala616, His638 

Phe523; 5.0 
Gln567; 5.1 
Arg612; 3.1 
Arg612; 3.0 

Glu524 (Cβ,Cγ) 
Lys613 

(Cβ,Cγ,Cδ) 

SM5-ECT2 

 

−4.972 
(1.623) 

Arg612; 1.3/143 
Arg612; 3.2/126 

Val520, Phe523, 
Ile563, Val566, 
Pro570, Ile607, 
Ala616, His638 

Gln567; 3.7 
Lys527; 3.0 
Arg612; 2.7 

Glu524 (Cγ) 
Lys613 (Cγ,Cδ) 

SM6-ECT2 

 

−4.853 
(1.569) 

Arg612; 2.5/131 
Arg612; 2.7/129 

Phe523, Val559, 
Ile563, Ala616, 
His638, His759 

Phe523; 4.8 
Glu567; 3.9 
Arg612; 2.3 

Glu524 (Cβ,Cγ) 
Lys613 (Cγ,Cδ) 

SM7-ECT2 

 

−5.469 
(1.012) 

Gln567; 2.4/159 
Asp610; 2.9/140 
Arg612; 3.0/120 
Lys527; 2.5/126 

Val520, Phe523, 
Val559, Ile563, 
Val566, Ala616, 

His638 

Phe523; 4.8 
Lys527; 4.7 
Arg612; 3.2 

Glu524 (Cβ,Cγ) 
Lys613 (Cβ,Cγ) 

SM1-LARG 
−5.534 
(1.065) 

Pro892; 3.2/146 
Arg986; 2.5/143 
Arg986; 2.1/159 

Cys888, Phe892, 
Leu895, Met934, 
Leu937, Leu971, 
Val974, Val978 

Phe893; 4.9 
Glu896 (Cβ,Cγ) 

Asn975 (Cβ) 
Gln985 (Cβ,Cγ) 

3.9. Several Small Molecules Exhibited Thermodynamic Stability at DH-PH Catalytic Interface 
Typical thermodynamic behaviors were depicted for the simulated proteins since 

carbon-alpha RMSDs showed elevation across initial times owing to system relaxation 
followed by leveled-off trajectories around respective averages for more than half of the 
simulation runs. In reference to corresponding initial structures, the root-mean standard 
deviation (RMSD) trajectories were monitored for each of the simulated RhoGEF target 
protein and bound ligand molecules to investigate their conformational changes and rel-
ative stabilities [55]. Interestingly, the monitored RMSDs for all ligand-bound RhoGEF 
proteins were at lower average values and less fluctuating trajectories compared with the 
apo/unliganded ones (2.91 ± 0.34 Å versus 3.40 ± 0.34 Å for ECT2s and 4.08 ± 0.78 Å versus 
4.35 ± 0.71 Å for LARG models) (Figure 12A). The laĴer apo versus holo dynamic behavior 
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carbon-alpha RMSDs showed elevation across initial times owing to system relaxation 
followed by leveled-off trajectories around respective averages for more than half of the 
simulation runs. In reference to corresponding initial structures, the root-mean standard 
deviation (RMSD) trajectories were monitored for each of the simulated RhoGEF target 
protein and bound ligand molecules to investigate their conformational changes and rel-
ative stabilities [55]. Interestingly, the monitored RMSDs for all ligand-bound RhoGEF 
proteins were at lower average values and less fluctuating trajectories compared with the 
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Typical thermodynamic behaviors were depicted for the simulated proteins since 

carbon-alpha RMSDs showed elevation across initial times owing to system relaxation 
followed by leveled-off trajectories around respective averages for more than half of the 
simulation runs. In reference to corresponding initial structures, the root-mean standard 
deviation (RMSD) trajectories were monitored for each of the simulated RhoGEF target 
protein and bound ligand molecules to investigate their conformational changes and rel-
ative stabilities [55]. Interestingly, the monitored RMSDs for all ligand-bound RhoGEF 
proteins were at lower average values and less fluctuating trajectories compared with the 
apo/unliganded ones (2.91 ± 0.34 Å versus 3.40 ± 0.34 Å for ECT2s and 4.08 ± 0.78 Å versus 
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3.9. Several Small Molecules Exhibited Thermodynamic Stability at DH-PH Catalytic Interface 
Typical thermodynamic behaviors were depicted for the simulated proteins since 

carbon-alpha RMSDs showed elevation across initial times owing to system relaxation 
followed by leveled-off trajectories around respective averages for more than half of the 
simulation runs. In reference to corresponding initial structures, the root-mean standard 
deviation (RMSD) trajectories were monitored for each of the simulated RhoGEF target 
protein and bound ligand molecules to investigate their conformational changes and rel-
ative stabilities [55]. Interestingly, the monitored RMSDs for all ligand-bound RhoGEF 
proteins were at lower average values and less fluctuating trajectories compared with the 
apo/unliganded ones (2.91 ± 0.34 Å versus 3.40 ± 0.34 Å for ECT2s and 4.08 ± 0.78 Å versus 
4.35 ± 0.71 Å for LARG models) (Figure 12A). The laĴer apo versus holo dynamic behavior 
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Typical thermodynamic behaviors were depicted for the simulated proteins since 

carbon-alpha RMSDs showed elevation across initial times owing to system relaxation 
followed by leveled-off trajectories around respective averages for more than half of the 
simulation runs. In reference to corresponding initial structures, the root-mean standard 
deviation (RMSD) trajectories were monitored for each of the simulated RhoGEF target 
protein and bound ligand molecules to investigate their conformational changes and rel-
ative stabilities [55]. Interestingly, the monitored RMSDs for all ligand-bound RhoGEF 
proteins were at lower average values and less fluctuating trajectories compared with the 
apo/unliganded ones (2.91 ± 0.34 Å versus 3.40 ± 0.34 Å for ECT2s and 4.08 ± 0.78 Å versus 
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3.9. Several Small Molecules Exhibited Thermodynamic Stability at DH-PH Catalytic Interface

Typical thermodynamic behaviors were depicted for the simulated proteins since
carbon-alpha RMSDs showed elevation across initial times owing to system relaxation
followed by leveled-off trajectories around respective averages for more than half of the
simulation runs. In reference to corresponding initial structures, the root-mean standard
deviation (RMSD) trajectories were monitored for each of the simulated RhoGEF target
protein and bound ligand molecules to investigate their conformational changes and
relative stabilities [55]. Interestingly, the monitored RMSDs for all ligand-bound RhoGEF
proteins were at lower average values and less fluctuating trajectories compared with the
apo/unliganded ones (2.91 ± 0.34 Å versus 3.40 ± 0.34 Å for ECT2s and 4.08 ± 0.78 Å
versus 4.35 ± 0.71 Å for LARG models) (Figure 12A). The latter apo versus holo dynamic
behavior conferred the compactness and gain of stability for the complexed target proteins
upon ligand binding. Notably, the LARG model depicted higher RMSD values compared
with those of the simulated ECT2 ones. Comparative RMSDs for bound ECT2 proteins
showed greater stability and minimal fluctuations for most simulated bound proteins,
yet only for those in complexes with SM1 and SM7 were slightly higher RMSD tones
depicted (3.22 ± 0.40 Å and 3.49 ± 0.52 Å, respectively). Despite differential ECT2 protein
RMSD tones across the simulation window, all bound ECT2 proteins managed to converge
around a mean RMSD of almost 3.19 Å at the end of the simulation runs (100 ns). The
latter thermodynamic behavior is considered adequate with relevant protein stability
and convergence, and confers molecular dynamic validity with no need for further time
extensions.
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Figure 12. Thermodynamic stability of the simulated small molecules bound to RhoGEFs. (A) Alpha-
carbon atom RMSDs for RhoGEF proteins. (B) Sole ligand RMSDs in relation to simulation time
frames in nanoseconds (ns). (C) Overlaid ligand/RhoGEF trajectories at initial and final time frames.
Ligands (sticks) and bound RhoGEF proteins (cartoon) are colored green and red with respect to 0 ns
and 100 ns extracted frames. For ECT2 proteins, Pro703 β4-sheet tip and C-terminal Cys765 at the PH
domain are annotated. (D) Difference RMSF (∆RMSF) trajectories for ECT2 target proteins along the
whole molecular dynamic simulations in relation to apo/unliganded state.
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Moving toward the sole ligand RMSDs, it was obvious that almost all ligands were
confined and stable at the bound target-binding site pocket, as illustrated in Figure 12B.
Across the simulation runs, limited fluctuations and steady trajectories were assigned
for SM2, SM3, SM4, and SM6 in complexes with ECT2. None of the latter simulated
ligands exceeded 10 Å, while the ligand RMSD tones were just below three-fold the RMSD
trajectories of their bound proteins. The latter data conferred system convergence and
great ligand stability at the reference ECT2–DH-PH interface [56,57]. On the contrary, the
pyrazolidindione-based ligand, SM1, showed an abrupt increase in its RMSDs beyond 15 ns,
where the upraised tones were then maintained along the RMSD plateau (17.59 ± 2.20 Å)
until the end of the simulation run. Similar abrupt RMSD tone increases were seen with
the quinoline ligand, SM5, yet at a much delayed time of the simulation run being not
prior to 75 ns. Interestingly, both comparable upraised RMSDs for SM1 and SM5 indicated
a significant ligand orientation shift from the initial DH-PH binding site in order to be
then maintained at a new surface pocket that could be opened during the simulation run.
This could partially explain the higher RMSDs for SM1- and SM7-bound proteins. Finally,
only SM7 showed the most fluctuating RMSDs beyond half of the molecular dynamics
simulation run, indicating significant ligand drift towards the solvent side far from the ECT2
interface. Unlike the orientation drift seen for SM1 at ECT2, the same ligand showed the
steadiest ligand RMSDs (6.29 ± 1.06 Å) at the LARG RhoGEF–DH-PH interface, conferring
relevant ligand-pocket stability.

The time evolution of ligand–target complex conformations and ligand orientation
was monitored via the overlaid timeframes at the beginning and end of the simulation
runs (Figure 12C). Limited orientation changes were illustrated for the simulated SM2,
SM3, SM4, SM5, and SM6 bound to ECT2, which was consistent with their corresponding
RMSDs. However, some ligands, including SM2, SM3, and SM6, showed deeper orientation
at the DH-PH interface pocket at the end of the dynamic runs. Regarding SM1 and SM5,
the ones with the upraised RMSD tones, they depicted major drift from the initial DH-
PH site while settled at the PH interface close to the groove endorsed by αC-helix and
β-sheets. Interestingly, both latter ligands that anchored at close range from C-terminal
PH-domain residues, Pro703 and Cys765, have been reported as important for ECT2
autoinhibition [40]. On the contrary, SM1 depicted a major drift far away from the DH-PH
site and towards the solvent side. Interestingly, all ECT2-bound ligands, even the two that
drifted towards the PH side, maintained the PH domain sequestration of the DH catalytic
interface where the Pro703 at β4-sheet tip and C-terminal Cys765 of the PH domain were
anchored at separate DH grooves. Such PH-associated ternary structure insertions were
more disordered in the case of the simulated SM7-ECT2 model compared with the others,
particularly as SM7 drifted away towards the solvent side. Notably, SM1 showed limited
conformational/orientation shift at the LARG interface, except for a twist for its terminal
methyl benzyl ring owing to rotation around its dihedral angle.

Monitoring the RMS_Fluctuations (RMSF) of the bound and apo target proteins in
relation to their alpha-carbon references provided further stability analysis by dissecting
the proteins’ flexibility/immobility profiles down to their constituting residues [58]. We
adopted normalized RMSF data across the simulated models, where difference RMSF
(∆RMSF) trajectories were estimated for each ligand-bound RhoGEF protein in relation to
unliganded/apo target state (∆RMSF = RMSFapo − RMSFholo) [52]. Reported significant
ternary structural mobility/flexibility was assigned for residues with much higher negative
∆RMSFs below a cut-off of 0.3 Å [47,52]. Similar to findings with RMSD analysis, higher
flexibility and mobility tones across almost all protein regions were assigned for the apo
ECT2 target protein in relation to its different holo states. The latter was obvious, since
positive ∆RMSF values (high stability) were depicted for most of the protein regions
(Figure 12D). The latter dynamic behavior confers the significant positive impact of ligand
binding on the stability of ECT2 and such influence was extended beyond the canonical
catalytic site, affecting even the far target regions. As expected, the DH domain inherited
many more stability patterns compared with the PH-domain regions, owing to the latter
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ternary structure comprising several β-loops interconnecting the eight β-sheets and just
two α-helices. One of the most inherited flexible PH regions was the residue range across
Cys630-to-Val645 at all simulated models (∆RMSF up to −3.24 Å with SM7), which actually
represented the distorted loop connecting the αN-helix with the β1-sheet. Other PH-
domain β-loops were flexibly assigned, including Lys675-to-Leu696 and Met742-to-Glu750
being reported with low secondary structure compactness and intermolecular bindings [59].
On the contrary, the peak stable anti-parallel β-sheets (Val642-to-Glu652) were assigned
relevant immobility profiles (∆RMSF up to 1.63 Å). Notably, the ECT2 C-terminal region at
the PH domain was assigned a great immobility profile compared with the amino terminus
presented at the DH region. The stable C-terminus included the αC-helix tip anchored at
the DH groove, which confers stable autoinhibition of the catalytic DH domain via the PH
region. Similar stability findings were assigned for β4-sheet Pro703 and vicinal residues
endorsing the coverage of the DH catalytic interface.

3.10. Hydrophobic Potentials Dominated the Binding-Free Energy Contributions at DH-PH
Catalytic Site

Free binding energy calculations via the trajectory-oriented MM_PBSA approach were
performed for understanding the nature of ligand/RhoGEF binding, estimating affinity
magnitude, as well as individual energy contributions of the key binding residues [60].
Typically, MM_PBSA is reported with comparable accuracy in relation to free-energy
perturbations yet with lower computational expenders [61]. Interestingly, van der Waal
hydrophobic potential energy contributions (∆GvdW) dominated the free-binding energies
of all simulated ECT2 models (Table 2 and Figure 13A). Hydrophobic contributions were
more than three-fold higher than those of Coulomb’s electrostatic potentials (∆Gelectrostatic).
Similarly, the van der Waal domination over the electrostatic potential energies was also
seen with the SM1-LARG system, conferring the comparable nature of the DH-PH interface
at both RhoGEFs. Notably, ligands that managed to stay confined at the DH-PH interface
site were assigned with higher electrostatic potentials than those being drifted towards
the PH-domain side (SM1 and SM5) or even the one that drifted far away to the solvent
side (SM7). Nevertheless, those that maintained their grip at the ECT2 interface (SM1
and SM5) managed to partially compensate their poor electrostatic potentials through
van der Waal hydrophobic contacts. Owing to the higher hydrophobic characteristics of
SM1 being inherited within its exetended aromatic/heterocyclic architecture, the ligand
overcompensated the electrostatic loss more than SM5, which was correlated with higher
total binding energy (∆Gtotal) for SM1. Another interesting observation was that higher
electrostatic potentials were associated with higher positive values of the repulsive polar
solvation energies (∆GSolvation), which would compromise the ∆Gtotal for several site-
oriented ligands; this was obvious when comparing SM1 against SM2, SM3, SM4, and
SM6 at ECT2 or even against SM1 at the LARG interface, where all the latter ligands
came second to the SM1-ECT2 model. Regarding the solvent-drifted ligand, SM7, the
quinoline-based molecule achieved the worst free binding energies, as, being far from
the ECT2 site for half the simulation run, it failed to compensate for such binding energy
loss. Finally, evaluating the total non-polar interactions (summation of apolar solvation;
∆GSolvent-accessible surface area/SASA and ∆Gvan der Waal) [54,62] of both ECT2 versus LARG
systems (−128.96 versus − 137.88 kJ.mol−1) illustrated that the LARG interface is bigger
and more hydrophobic in nature and is suitable for the accommodation of large-sized
non-polar molecules [40,59].
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Table 2. Total free binding energy (∆G ± SE) for ligand/RhoGEF systems via MM_PBSA approach.

Ligand/RhoGEF
Energy (kJ/mol ± SE)

∆GvdW ∆Gelectrostatic ∆GSolvation ∆GSASA ∆GTotal

SM1-ECT2 −115.21 ± 8.66 −7.83 ± 14.77 65.68 ± 7.55 −13.75 ± 2.15 −71.11 ± 9.84
SM2-ECT2 −114.20 ± 32.03 −36.58 ± 37.89 103.21 ± 30.75 −14.69 ± 3.95 −62.26 ± 21.79
SM3-ECT2 −103.52 ± 9.21 −30.26 ± 15.56 103.99 ± 32.83 −12.70 ± 2.44 −42.49 ± 14.68
SM4-ECT2 −133.56 ± 19.32 −35.22 ± 23.48 147.80 ± 30.33 −18.34 ± 1.70 −39.32 ± 24.11
SM5-ECT2 −116.85 ± 19.44 −5.20 ± 8.63 76.88 ± 31.92 −14.64 ± 2.23 −59.81 ± 17.65
SM6-ECT2 −135.18 ± 5.64 −36.59 ± 34.42 138.11 ± 48.95 −16.89 ± 0.75 −50.55 ± 16.45
SM7-ECT2 −58.45 ± 53.16 −5.80 ± 14.24 60.72 ± 43.58 −7.91 ± 7.26 −11.44 ± 69.52
SM1-LARG −121.79 ± 10.85 −41.63 ± 16.39 109.01 ± 17.33 −16.09 ± 0.50 −70.50 ± 10.25
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Figure 13. Free binding energies for ligand/ECT2 complexes based on MM_PBSA calculations.
(A) Total free binding energies and their constituting energy terms. (B) Residue-based energy
contributions within the free binding energies.

Dissecting the total free binding energies down to residue-wise levels has provided
more insights concerning key ligand–residue interactions relevant to system stability. As
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illustrated in Figure 13, several residues illustrated significant contributions within the
calculated free binding energy. Most recognized binding residues were those initially
depicted at the preliminary docking study, including Phe523 (−0.76 to −5.32 kJ.mol−1),
Lys527 (−1.83 to −7.83 kJ.mol−1), Ile563 (−0.78 to −3.11 kJ.mol−1), Arg564 (−0.29 to
−1.57 kJ.mol−1), Val566 (−0.96 to −3.10 kJ.mol−1), Gln567 (−0.89 to −2.45 kJ.mol−1),
Arg612 (−1.56 to −3.52 kJ.mol−1), Arg613 (−1.21 to −6.35 kJ.mol−1), and Ala616 (−0.24
to −4.27 kJ.mol−1). As expected, ligands confined at the DH-PH interface showed higher
negative residue-wise contributions at both DH and PH interface residues than those
that drifted away. However, several αC-helical residues were particularly significant for
energy contributions at SM1 and SM5 systems, including Leu747, Pro748, Trp752, Met755,
and Arg758, reaching up to −5.83 kJ.mol−1 binding energy. The deep interface residue
Arg639 was more significant for SM2 and SM6 binding compared with any other ligand.
On the other hand, several polar/ionized residues such as Glu524, Glu528, and Glu560
contributed negatively to total binding energy, with high positive repulsive energy values.
Regarding the SM1-LARG system, several non-polar residues contributed well within
the free binding energies, including Cys888 (−1.14 kJ.mol−1), Pro892 (−4.79 kJ.mol−1),
Leu (−2.19 kJ.mol−1), Met934 (−5.57 kJ.mol−1), and Val978 (−5.75 kJ.mol−1), while polar
Arg986 contributed in electrostatic potentials (−6.39 kJ.mol−1). On the contrary, polar
residues such as Gln891 2.46 kJ.mol−1, Glu896 2.8 kJ.mol−1, and Glu982 12.24 kJ.mol−1

compromised the SM1-LARg stability.

4. Discussion

Rho GTPases are molecular switches with a main function of signal transduction,
therefore they control the basic cellular processes, including cytoskeleton organization,
cell migration, proliferation, and survival, where nucleotide-exchange factors (GEFs), to
whom ECT2 belongs, regulate the activity of these molecular switches [63]. Consequently,
ECT2 has a vital role in controlling cell proliferation, division, survival, and apoptosis [64].
Moreover, ECT2 has been reported to be overexpressed in a panel of human cancers [65].
In ovarian cancer, ECT2 was reported to stimulate cellular transformation by acting as
a RhoGEF specifically within the nucleus [66]. Regarding breast cancer, analysis of 165
breast cancer specimens and 100 normal samples nominated ECT2 as one of the main
causes of the occurrence and development of that cancer [67]; in addition to that, a recent
study reported that an increased ECT2 level was highly associated with advanced TNM
stage [68]. Moving to gastric cancer, an analysis of 52 cancerous specimens attributed ECT2
to the progression of gastric cancer [69]; another study investigated the ECT2 expression
gene in tissues and serum of gastric cancer patients and reported it as a new diagnostic
marker [70]. Moreover, ECT2 was detected by RT-PCR and was found to be overexpressed
in pancreatic tumor tissues [71]. Colorectal cancer is another form of human cancer where
upregulation in ECT2 expression predicts an unfavorable prognosis [72]. Another report
that studied the same tumor recommended the utilization of ECT2 expression as a sensitive
biomarker for the diagnosis and monitoring of the patients [73]. Furthermore, ECT2
overexpression was reported to stimulate the polarization of tumor-associated macrophages
in hepatocellular carcinoma, a cell that suppress the functions of NK and T cells in the tumor
microenvironment [18]. The same tumor, hepatocellular carcinoma, was promoted for
recurrence also by the action of ECT2 [74] and, along with NEK2 and DLGAP5, ECT2 was
identified via a genome-scale analysis to act as a prognostic biomarker in lung cancer [75].

While the oncogenic properties of ECT2 have been discussed in many reports, there is
a lack of a comprehensive studies that analyze the behavior, molecular interactions, and
effects of this oncogene in a panel of human tumors. It is well established that the tumor
microenvironment is a complex system and it is important to deeply study and analyze the
basic molecular interactions in that environment to put our hands on potential diagnostic
and therapeutic pathways [6,76]. The current study started with a differential analysis,
where we confirmed the reported overexpression of ECT2 in cancerous tissues versus
normal ones. Then, we moved to correlate this overexpression with tumor grade and stage;
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the combined analysis showed that four human tumors, namely KIRC, LIHC, UCEC, and
PAAD, experienced a positive correlation between ECT2 overexpression and both tumor
grade and stage. Survival analysis is an essential approach for investigating the clinical out-
come as a result of a specific point of analysis, such as therapeutic intervention or targeted
gene expression [77], and, due to its importance, we analyzed the correlation between ECT2
overexpression and the patients’ survival, where several human tumors, including COAD,
KIRP, SARC, LGG, LIHC, and ACC, experienced a negative correlation between ECT2 and
the clinical outcome in terms of overall and disease-free survival. Moreover, the mutation
status of the gene has been largely correlated with patients’ survival. For example, KRAS
mutations were correlated with a poor clinical outcome in pancreatic [78] and lung cancer
patients [79], TP53 mutation predicted poor survival in lung cancer patients [80], and
STK11 mutations were negatively correlated with patients’ survival with NSCLC [81,82].
Consistent with these reports, the current study found a negative correlation between
ECT2 mutation and patients’ survival in terms of overall, disease-specific, disease-free, and
progress-free survival.

Gene methylation status is a basic cellular technique for controlling gene expres-
sion [83,84], where, under the tumor condition, tumor suppressor genes are generally
hypermethylated (silenced) [85], while oncogenes are hypomethylated (activated) [86].
Consistent with that, the current study revealed the hypomethylation status of ECT2 (as
both promoter and CpG-aggregated hypomethylation) in a large set of human cancers. An
opposed status was observed when we considered the phosphorylation status of ECT2
in cancerous tissues versus normal ones as several positions, including T395, S367, S443,
T444, T857, S858, S861, T373, S442, T359, and S866, demonstrated hyperphosphorylation in
several human cancers. Again, this observation matchedwith the essential role of oncogene
phosphorylation to induce tumor progression; examples include the phosphorylation of
BRD4 [87], Smad3 [88], and EGFR [89].

Reinvigoration of malfunctioning immune cells to fight against a growing tumor
opened the door for a new branch of “tumor immunotherapy” that has expanded largely
in the last few years [90]. From this point, we aimed to correlate the expression of ECT2
in the tumor microenvironment with the infiltration of immune cells. The analysis of
MDSC infiltration, which is known for immunosuppressive roles [91], showed a positive
correlation with ECT2 in most of the analyzed human tumors. This point is of great
importance, as MDSC inhibition was correlated with the improved response to immune
checkpoint inhibitors (ICI) [92], therefore the combination of ICI with ECT2 inhibitors is an
antitumor approach with a potential synergistic effect. In addition to its effect on MDSC
infiltration, the current study found that ECT2 was positively correlated with the infiltration
of NKT cells, which are known for their antitumor activity [93]. Collectively, 21 tumors,
namely BLCA, BRCA, CESC, COAD, ESCA, GBM, HNSC, KICH, LGG, LUAD, LUSC,
PAAD, PCPG, PRAD, READ, SARC, SKCM, STAD, THYM, UCS, and UVM, experienced
a positive correlation between ECT2 and MDSC, in addition to a negative correlation
between the same gene and NKT cell infiltration, which potentiates the selection of ECT2 as
a therapeutic target for enhancing the immune response against human tumors. As ECT2
showed important roles in affecting the clinical outcome, tumor stage, grade, and immune
cell infiltration, we investigated the molecular interactions of ECT2, where two proteins,
namely RACGAP1 and KIF23, were common ones in the two lists of “ECT2-interacting” and
“ECT2-correlated” proteins. It was not a surprise that both of these proteins correlated with
the progression of several types of human cancers [94–97]. Consequently, this interaction
pathway could be a potential target for novel antitumor medications.

In continuation of our attempt to fully highlight the potentiality of ECT2 as a promis-
ing antitumor target, we explored its druggability for inhibition via small molecules. Small
drug-like ligands are the cornerstone for drug discovery and development programs being
broadly persued for targeting oncogenic proteins and their signaling pathways [98]. Such
ligands harbor the ease of structural alterations while maintaining the optimized kinetic
profiles, which allows their survival through the rigors of lead optimization and clinical
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development stages. Additionally, exhibiting drug-like properties favors the administration
of small non-peptide ligands orally, the most convenient route [99]. To date, the pharma-
cological inhibition of RhoGEF is still elusive, yet several attempts have been introduced
for encountering the aberrant nuclear oncogenic protein kinase C iota/RhoGEF/GTPase
signaling cascade [100]. Clinical investigation of the FDA-approved small molecule drug,
auranofin, as a promising protein kinase C iota inhibitor with antitumorogenic and an-
timetastatic activities, has been introduced [101,102]. However, concerns regarding drug-
target selectivity have been raised and have represented great challenges against drug
development [103]. In order to receive attention regarding another potential target, re-
searchers have focused on inhibiting Rho GTPase proteins by targeting the surface grooves
of Rac1. Small molecules identified from virtual screening approaches showed antiin-
vasive and antiproliferative activities on different cancerous cells, including malignant
glioma brain neoplasms, aggressive breast carcinoma, and/or prostate cancerous cell
lines [104–106]. Despite promising attempts, several other Rho GTPases considered less
traditionally druggable have shown globular architectures with limited accessible surface
grooves, which would hamper the scope of drug discovery/development efforts [107,108].
Such a drawback has caused research attention to focus on targeting RhoGEFs.

Notably, the RhoGEF DH-PH interface model represented a more druggable site for
high-affinity chemical bindings, being concave, deep, and hydrophobically suitable for
GTPase recognition and catalysis [108]. A successful approach was presented by Shang
et al. targeting the DH-PH interface of LARG RhoGEF, showing SM1 as binding to the
C-terminal DH-domain junction site with the PH region. SM1 managed to selectively
hamper serum-driven RhoA activity and RhoA-associated signaling, as well as work
synergistically with an inhibitor of Rho GTPase site-activation affecting mammalian breast
cancerous cell lines. To our knowledge, identifying small ligand inhibitors for ECT2 is still
elusive. Therefore, here, we reported for the first time molecular insights for targeting the
ECT2–DH-PH interface site via small molecules in order to hamper the ECT2-mediated
RhoGTPase-activated signaling pathway. The adopted ECT2 protein depicted a different
topology compared with other reported RhoGEFs showing a significant autoinhibition
ternary structure. The ECT2–DH-domain catalytic interface, which would be available for
RhoA GTPase binding and recognition, was found totally sequestered via the PH domain,
providing a mechanism for ECT2 autoinhibition [40]. Such architecture was recognized as
similar to that depicted by son of sevenless (SOS), having its PH domain partially occlude
the RhoGTPase binding site at the DH region [109]. Hydrophobic interactions primarily
guide the PH-DH autoinhibition binding, being mediated via two anchoring thumb-like
structures: (1) PH-domain β4-sheet tip Pro703 sidechain packing against DH-domain
Leu574 and Leu575domain; (2) PH-domain αC-helix Cys765 sidechain into the pocket at
DH-domain surface comprising Asn435, Arg564, and Arg568 residues. Mutagenesis studies
at ECT2P703D/C765K showed dramatic elevation of the RhoGEF activities beyond 10-fold
increases. In this regard, the ability of small molecules to bind at the DH-PH interface site
while being able to maintain the autoinhibition architecture of ECT2 would be considered
promising to lack ECT2 at its inactive state.

Our study illustrated several small molecule ligands being suitable to bind at the
DH-PH interface at high-chemical affinities, which was ensured through the molecular
docking–coupled explicit dynamic approach. Docking of the investigated ligands at the
DH-PH interface showed preferentiality for extended ligand structure, with the adaptation
of hydrophobic functionalities such as aromatic/heterocyclic scaffolds. This was generally
owed to the lipophilic topology of the ECT2 interface, which has also been seen with
different RhoGEFs; such as Trio (PDB: 6D8Z), faciogenital dysplasia-5 (FGD5; PDB; 3MPX),
p115 (PDB: 3P6A), FARP-2/1 (PDB: 4GZU and 4H6Y), and LARG (PDB: 1X86) [110–112].
Thermodynamic stability of several compounds was highlighted via monitored RMSD
and RMSF trajectories, being optimum for almost all ligands except for SM7. Typically,
altered conformational profiles and compromised stability are correlated with high protein
RMSD values, whereas ligands with excellent pocket accommodation are related to steady
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and small-valued RMSD tones [113]. On the other hand, RMSF evaluates the residues’
dynamic behaviors (mobility/flexibility) by exploring the mean deviation of each protein
amino acid in relation to its reference position across the simulated times. While being
more accurate, RMSF can assess the fluctuations of a particular protein region from the
average structure. This analysis tool would permit us to grasp the residue-wise dynamic
behaviors at the protein’s binding pocket/vicinal loops in addition to pinpointing the key
amino acids being significant for the ligand’s anchoring [114,115].

To our delight, molecular dynamics findings highlighted the significance of the pre-
liminary docking residues for stabilizing ligands at the ECT2 site. Additionally, RMSF
and conformational analysis highlighted the ability of the DH-PH site-confined simulated
ligands, or even those drifted at the αC-helix of the PH domain, to keep the autoinhibition
architecture. Finally, correspondence to the ECT2 interface nature predominance of van der
Waal interactions was ensured through MM_PBSA free binding energy calculations. Molec-
ular insights from ligand/ECT2 studies provided guidance for promising ligand structure
modification and optimization. Improving the ligand’s inherited lipophilicity would boost
chemical affinity towards the ECT2. Nevertheless, such an approach would increase the
desolvation enthalpy needed to be compensated owing to highly ordered water molecules
at the ligand/interface surfaces. In turn, providing balanced hydrophobic/polarity would
be advantageous, yet increasing electrostatic potentiality could be associated with higher
polar solvation penalties compromising binding and target affinity, since binding is a sol-
vent displacement process. Therefore, a better lead optimization approach was suggested
by introducing lipophilic functionalities with inherited ionizable characteristics that would
provide a balanced deal for improving the ligand’s pharmacodynamic and kinetic/ADME
profiles. Moreover, such polar decorating functional groups would satisfy the few polar
residues (Gln567, Arg639, and Ser640) settled at the deep ECT2 interface, providing points
for target selectivity. Examples of such moieties include the tetrazole ring and carboxylate
bioisosteres.

5. Conclusions

In the current study, we employed a multi-omics analysis to assess the roles of ECT2
in tumor progression. ECT2 was found to be highly expressed in tumor tissues versus
normal ones. Moreover, this overexpression predicted a progression in tumor stage and
grade and a poor clinical outcome in a list of human tumors, where the genetic alterations
in ECT2 also predicted poor patient survival. ECT2 also interfered with the infiltration
of immune cells, where it allowed for the infiltration of immune suppressor cells. Due to
these oncogenic roles, ECT2 could be selected as a target for antitumor therapies, where the
current study employed a chemoinformatic approach to assess several inhibitors for ECT2.
Future wet lab assessments are required to confirm the findings of the current study.
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between ECT2 expression level and infiltration of NKT cells. (B) Scatter plots that demonstrate the
correlation between the expression of ECT2 and the infiltration level of NKT cells; Table S1: The
abbreviations and the full name of analyzed tumors in the current study.
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