Plant Traits Guide Species Selection in Vegetation Restoration for Soil and Water Conservation
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Investigation and Monitoring Procedures
2.3. Statistical Analysis
3. Results
3.1. Plant Traits, Soil Properties, and Ecohydrological Functions
3.2. Plant Functional Response Types (PFreTs) Related to Soil Resources
3.3. Plant Functional Effect Types (PFefTs) Related to Water and Soil Conservation
3.4. Evaluating the Relationships between PFreTs and PFefTs
3.5. Identification of Key Restoration Species
4. Discussion
4.1. Selection of Plant Functional Traits
4.2. Identification of Plant Functional Effects and Response Types
4.3. Implications of Plant Functional Types for the Construction of Soil and Water Conservation Forests
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Borrelli, P.; Robinson, D.A.; Panagos, P.; Lugato, E.; Yang, J.E.; Alewell, C.; Wuepper, D.; Montanarella, L.; Ballabio, C. Land Use and Climate Change Impacts on Global Soil Erosion by Water (2015–2070). Proc. Natl. Acad. Sci. USA 2020, 117, 21994–22001. [Google Scholar] [CrossRef] [PubMed]
- Nobre, R.L.G.; Caliman, A.; Cabral, C.R.; de Carvalho Araújo, F.; Guerin, J.; Dantas, F.d.C.C.; Quesado, L.B.; Venticinque, E.M.; Guariento, R.D.; Amado, A.M. Precipitation, Landscape Properties and Land Use Interactively Affect Water Quality of Tropical Freshwaters. Sci. Total Environ. 2020, 716, 137044. [Google Scholar] [CrossRef] [PubMed]
- Cerdà, A.; Lucas-Borja, M.E.; Franchn-Pardo, I.; Úbeda, X.; Novara, A.; López-Vicente, M.; Popović, Z.; Pulido, M. The Role of Plant Species on Runoff and Soil Erosion in a Mediterranean Shrubland. Sci. Total Environ. 2021, 799, 149218. [Google Scholar] [CrossRef]
- Fu, D.; Wu, X.; Duan, C.; Chadwick, D.R.; Jones, D.L. Response of Soil Phosphorus Fractions and Fluxes to Different Vegetation Restoration Types in a Subtropical Mountain Ecosystem. Catena 2020, 193, 104663. [Google Scholar] [CrossRef]
- Tang, C.Q.; Hou, X.; Gao, K.; Xia, T.; Duan, C.; Fu, D. Man-Made versus Natural Forests in Mid-Yunnan, Southwestern China. Mt. Res. Dev. 2007, 27, 242–249. [Google Scholar] [CrossRef]
- Cao, S.; Chen, L.; Yu, X. Impact of China’s Grain for Green Project on the Landscape of Vulnerable Arid and Semi-arid Agricultural Regions: A Case Study in Northern Shaanxi Province. J. Appl. Ecol. 2009, 46, 536–543. [Google Scholar] [CrossRef]
- Garnier, E.; Navas, M.-L. A Trait-Based Approach to Comparative Functional Plant Ecology: Concepts, Methods and Applications for Agroecology. A Review. Agron. Sustain. Dev. 2012, 32, 365–399. [Google Scholar] [CrossRef]
- Lavorel, S.; Garnier, É. Predicting Changes in Community Composition and Ecosystem Functioning from Plant Traits: Revisiting the Holy Grail. Funct. Ecol. 2002, 16, 545–556. [Google Scholar] [CrossRef]
- Fu, D.; Duan, C.; Hou, X.; Xia, T.; Gao, K. Patterns and Relationships of Plant Traits, Community Structural Attributes, and Eco-Hydrological Functions during a Subtropical Secondary Succession in Central Yunnan (Southwest China). Arch. Biol. Sci. 2009, 61, 741–749. [Google Scholar] [CrossRef]
- Zhu, H.; Fu, B.; Wang, S.; Zhu, L.; Zhang, L.; Jiao, L.; Wang, C. Reducing Soil Erosion by Improving Community Functional Diversity in Semi-arid Grasslands. J. Appl. Ecol. 2015, 52, 1063–1072. [Google Scholar] [CrossRef]
- Kervroëdan, L.; Armand, R.; Saunier, M.; Ouvry, J.-F.; Faucon, M.-P. Plant Functional Trait Effects on Runoff to Design Herbaceous Hedges for Soil Erosion Control. Ecol. Eng. 2018, 118, 143–151. [Google Scholar] [CrossRef]
- McGill, B.J.; Enquist, B.J.; Weiher, E.; Westoby, M. Rebuilding Community Ecology from Functional Traits. Trends Ecol. Evol. 2006, 21, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Faucon, M.P.; Houben, D.; Lambers, H. Plant Functional Traits: Soil and Ecosystem Services. Trends Plant Sci. 2017, 22, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Wood, S.A.; Karp, D.S.; DeClerck, F.; Kremen, C.; Naeem, S.; Palm, C.A. Functional Traits in Agriculture: Agrobiodiversity and Ecosystem Services. Trends Ecol. Evol. 2015, 30, 531–539. [Google Scholar] [CrossRef]
- Klumpp, K.; SOUSSANA, J. Using Functional Traits to Predict Grassland Ecosystem Change: A Mathematical Test of the Response-and-effect Trait Approach. Glob. Chang. Biol. 2009, 15, 2921–2934. [Google Scholar] [CrossRef]
- Funk, J.L.; Larson, J.E.; Ames, G.M.; Butterfield, B.J.; Cavender-Bares, J.; Firn, J.; Laughlin, D.C.; Sutton-Grier, A.E.; Williams, L.; Wright, J. Revisiting the H Oly G Rail: Using Plant Functional Traits to Understand Ecological Processes. Biol. Rev. 2017, 92, 1156–1173. [Google Scholar] [CrossRef]
- Blanco, C.C.; Sosinski, E.E.; Dos Santos, B.R.C.; da Silva, M.A.; Pillar, V.D. On the Overlap between Effect and Response Plant Functional Types Linked to Grazing. Community Ecol. 2007, 8, 57–65. [Google Scholar] [CrossRef]
- Louault, F.; Pillar, V.D.; Aufrere, J.; Garnier, E.; Soussana, J. Plant Traits and Functional Types in Response to Reduced Disturbance in a Semi-natural Grassland. J. Veg. Sci. 2005, 16, 151–160. [Google Scholar] [CrossRef]
- Poorter, H.; De Jong, R.O.B. A Comparison of Specific Leaf Area, Chemical Composition and Leaf Construction Costs of Field Plants from 15 Habitats Differing in Productivity. New Phytol. 1999, 143, 163–176. [Google Scholar] [CrossRef]
- Cornelissen, J.H.C.; Lavorel, S.; Garnier, E.; Díaz, S.; Buchmann, N.; Gurvich, D.E.; Reich, P.B.; ter Steege, H.; Morgan, H.D.; van der Heijden, M.G.A.; et al. A Handbook of Protocols for Standardised and Easy Measurement of Plant Functional Traits Worldwide. Aust. J. Bot. 2003, 51, 335–380. [Google Scholar] [CrossRef]
- Gregorich, E.G.; Carter, M.R. Soil Sampling and Methods of Analysis; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Garnier, E.; Cortez, J.; Billès, G.; Navas, M.-L.; Roumet, C.; Debussche, M.; Laurent, G.; Blanchard, A.; Aubry, D.; Bellmann, A.; et al. Plant Functional Markers Capture Ecosystem Properties during Secondary Succession. Ecology 2004, 85, 2630–2637. [Google Scholar] [CrossRef]
- Casanoves, F.; Pla, L.; Di Rienzo, J.A.; Díaz, S. FDiversity: A Software Package for the Integrated Analysis of Functional Diversity. Methods Ecol. Evol. 2011, 2, 233–237. [Google Scholar] [CrossRef]
- Pillar, V.D. SYNCSA Software for Character-Based Community Analysis; v. 2.2.4; UFRGS: Porto Alegre, Brazil, 2004. [Google Scholar]
- Pillar, V.D. On the Identification of Optimal Plant Functional Types. J. Veg. Sci. 1999, 10, 631–640. [Google Scholar] [CrossRef]
- Baronti, S.; Magno, R.; Maienza, A.; Montagnoli, A.; Ungaro, F.; Vaccari, F.P. Long Term Effect of Biochar on Soil Plant Water Relation and Fine Roots: Results after 10 Years of Vineyard Experiment. Sci. Total Environ. 2022, 851, 158225. [Google Scholar] [CrossRef] [PubMed]
- Oktavia, D.; Jin, G. Variations in Leaf Morphological and Chemical Traits in Response to Life Stages, Plant Functional Types, and Habitat Types in an Old-Growth Temperate Forest. Basic Appl. Ecol. 2020, 49, 22–33. [Google Scholar] [CrossRef]
- Jung, V.; Albert, C.H.; Violle, C.; Kunstler, G.; Loucougaray, G.; Spiegelberger, T. Intraspecific Trait Variability Mediates the Response of Subalpine Grassland Communities to Extreme Drought Events. J. Ecol. 2014, 102, 45–53. [Google Scholar] [CrossRef]
- Fu, D.; Wu, X.; Duan, C.; Smith, A.R.; Jones, D.L. Traits of Dominant Species and Soil Properties Co-Regulate Soil Microbial Communities across Land Restoration Types in a Subtropical Plateau Region of Southwest China. Ecol. Eng. 2020, 153, 105897. [Google Scholar] [CrossRef]
- Fu, D.; Wu, X.; Duan, C.; Guan, Q.; Huang, N. Changes in Functional Structure Characteristics Mediate Ecosystem Functions during Human-Induced Land-Cover Alteration: A Case Study in Southwest China. J. Soil Water Conserv. 2018, 73, 461–468. [Google Scholar] [CrossRef]
- Padilla, F.M.; Pugnaire, F.I. Rooting Depth and Soil Moisture Control Mediterranean Woody Seedling Survival during Drought. Funct. Ecol. 2007, 21, 489–495. [Google Scholar] [CrossRef]
- Padilla, F.M.; Ortega, R.; Sánchez, J.; Pugnaire, F.I. Rethinking Species Selection for Restoration of Arid Shrublands. Basic Appl. Ecol. 2009, 10, 640–647. [Google Scholar] [CrossRef]
Shrubland | Coniferous Forest | Mixed Forest | Natural Secondary Forest | |
---|---|---|---|---|
SLA | 13.25 ± 0.24 b | 17.47 ± 0.58 a | 11.32 ± 0.61 c | 9.71 ± 0.06 d |
LDMC | 285.7 ± 3.7 c | 322.4 ± 7.3 b | 395.8 ± 13.6 a | 406.8 ± 11.9 a |
LNC | 14.02 ± 0.18 a | 8.90 ± 0.17 b | 8.74 ± 0.14 b | 9.22 ± 0.10 b |
SRL | 38.90 ± 0.69 b | 44.02 ± 1.12 a | 29.26 ± 1.35 c | 18.91 ± 0.72 d |
LA | 7.65 ± 0.15 c | 5.48 ± 0.33 d | 10.83 ± 1.70 b | 15.38 ± 1.05 a |
H | 0.89 ± 0.03 d | 5.55 ± 0.14 c | 6.84 ± 0.46 b | 8.88 ± 0.52 a |
pH | 4.15 ± 0.14 a | 4.08 ± 0.04 a | 4.26 ± 0.01 a | 4.19 ± 0.11 a |
BD (g/cm3) | 1.12 ± 0.03 b | 1.28 ± 0.04 a | 1.02 ± 0.04 c | 0.99 ± 0.06 c |
SWC (%) | 26.34 ± 0.48 b | 29.07 ± 1.59 b | 31.98 ± 2.37 ab | 37.11 ± 2.60 a |
SOC (mg/g) | 28.42 ± 1.41 b | 26.02 ± 1.78 b | 38.62 ± 3.38 ab | 45.11 ± 7.70 a |
TN (mg/g) | 0.48 ± 0.05 b | 0.44 ± 0.05 b | 0.47 ± 0.05 b | 0.69 ± 0.06 a |
TP (mg/g) | 0.25 ± 0.00 b | 0.23 ± 0.01 b | 0.22 ± 0.02 b | 0.34 ± 0.05 a |
In (mm) | - | 37.65 ± 3.14 b | 46.84 ± 4.95 a | 53.91 ± 3.26 a |
MWClitter (t/hm2) | 1.79 ± 0.10 b | 7.28 ± 0.74 a | 7.66 ± 0.49 a | 9.01 ± 1.41 a |
MWCsoil (t/hm2) | 4137 ± 169 a | 4080 ± 48 a | 4490 ± 170 a | 4133 ± 70 a |
Soil surface runoff (m3/hm2·a) | 57.26 ± 28.06 b | 363.18 ± 155.55 a | 63.16 ± 61.60 b | 2.70 ± 1.33 c |
Soil erosion (t/hm2·a) | 14.04 ± 7.99 b | 61.47 ± 26.05 a | 10.11 ± 9.84 b | 0.26 ± 0.17 c |
LDMC | SLA | LA | H | LNC | SRL | |
---|---|---|---|---|---|---|
pH | 0.420 | −0.455 | 0.350 | 0.322 | −0.238 | −0.448 |
SWC | 0.881 ** | −0.622 * | 0.483 | 0.769 ** | −0.350 | −0.615 * |
BD | −0.706 * | 0.895 ** | −0.678 * | −0.720 ** | 0.238 | 0.860 ** |
SOC | 0.692 * | −0.804 ** | 0.671 * | 0.622 * | −0.077 | −0.797 ** |
TN | 0.175 | −0.559 | 0.420 | 0.308 | 0.287 | −0.545 |
TP | 0.182 | −0.594 * | 0.538 | 0.231 | 0.406 | −0.573 * |
In | 0.700 * | −0.717 * | 0.700 * | 0.767 * | −0.083 | −0.733 * |
MWClitter | 0.720 ** | −0.392 | 0.210 | 0.650 * | −0.517 | −0.357 |
MWCsoil | 0.126 | −0.182 | 0.014 | 0.084 | −0.196 | −0.210 |
Soil surface runoff | −0.469 | 0.720 ** | −0.538 | −0.531 | 0.231 | 0.692 * |
Soil erosion | −0.559 | 0.783 ** | −0.608 * | −0.587 * | 0.252 | 0.755 ** |
PFefT | Number of Species | Functional Traits | Presence (%) | Average Performance | Representative Species | |
---|---|---|---|---|---|---|
SLA | LNC | |||||
1 | 20 | 2 | 3 | 100 | 26.5 | Lithocarpus polystachya, Eurya nitida, Osteomeles schwerinae, Eucalyptus smithii |
2 | 17 | 2 | 2 | 100 | 13 | Keteleeria evelyniana, Pyrus pashia, Ternstroemia gymnanthera, Myrsine africana |
PFefT | Number of Species | Functional Traits | Presence (%) | Average Performance | Representative Species | ||
---|---|---|---|---|---|---|---|
SLA | LS | SRL | |||||
1 | 9 | 3 | 1 | 3 | 100 | 8.3 | Keteleeria evelyniana, Lithocarpus polystachya |
2 | 11 | 2 | 2 | 2 | 100 | 15.5 | Cyclobalanopsis glaucoides, Pinus yunnanensis |
3 | 5 | 1 | 1 | 2 | 100 | 6.8 | Pyrus pashia, Myrica nana |
4 | 5 | 2 | 1 | 4 | 93.3 | 7 | Myrsine africana |
5 | 2 | 2 | 5 | 3 | 33.3 | 3.4 | Dichotomanthus tristaniaecarpa |
6 | 1 | 1 | 3 | 4 | 6.7 | 3 | Lithocarpus dealbatus |
7 | 1 | 3 | 5 | 2 | 20 | 8 | Eucalyptus smithii |
Canonical Axes | Non-Canonical Axes | ||||||
---|---|---|---|---|---|---|---|
I | II | III | IV | I | II | III | IV |
0.153 | 0.060 | 0.003 | 0.001 | 0.308 | 0.279 | 0.243 | 0.170 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, D.; Wu, X.; Hu, L.; Ma, X.; Shen, C.; Shang, H.; Huang, G.; He, Y.; Duan, C. Plant Traits Guide Species Selection in Vegetation Restoration for Soil and Water Conservation. Biology 2023, 12, 618. https://doi.org/10.3390/biology12040618
Fu D, Wu X, Hu L, Ma X, Shen C, Shang H, Huang G, He Y, Duan C. Plant Traits Guide Species Selection in Vegetation Restoration for Soil and Water Conservation. Biology. 2023; 12(4):618. https://doi.org/10.3390/biology12040618
Chicago/Turabian StyleFu, Denggao, Xiaoni Wu, Lianyu Hu, Xudong Ma, Chunjie Shen, Huaye Shang, Gongning Huang, Yongjian He, and Changqun Duan. 2023. "Plant Traits Guide Species Selection in Vegetation Restoration for Soil and Water Conservation" Biology 12, no. 4: 618. https://doi.org/10.3390/biology12040618
APA StyleFu, D., Wu, X., Hu, L., Ma, X., Shen, C., Shang, H., Huang, G., He, Y., & Duan, C. (2023). Plant Traits Guide Species Selection in Vegetation Restoration for Soil and Water Conservation. Biology, 12(4), 618. https://doi.org/10.3390/biology12040618