Isolation and Characterization of Bacteria with High Electroactive Potential from Poultry Wastewater
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Collection of Samples and Isolation of Electroactive Bacteria
2.2. A Single-Chambered MFC Configuration and Operation for the Enrichment of Electroactive Microbes on an Anode
2.3. Microbiological Techniques Used for Isolation and Identification of the Electroactive Strain
2.4. Morphological Characterization
2.5. Genetic Identification of Bacteria
2.6. Preparation of Potential Electroactive Strains as Inoculums and Anolyte Substrate for Their Testing in Double-Chamber MFC
2.7. Double-Chamber MFC Configuration and Operation
2.8. Calculation of Current and Power Density
2.9. Estimation of COD Removal and Coulombic Efficiency
3. Results
3.1. Voltage and Current Generation in Single-Chambered MFC
3.2. COD Removal and Coulombic Efficiency
3.3. Phenotypic Characterization of Selected Strains
3.4. Genetic Identification of Selected Strains
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fadzli, F.S.; Bhawani, S.A.; Adam Mohammad, R.E. Microbial Fuel Cell: Recent Developments in Organic Substrate Use and Bacterial Electrode Interaction. J. Chem. 2021, 2021, 4570388. [Google Scholar] [CrossRef]
- Höök, M.; Tang, X. Depletion of Fossil Fuels and Anthropogenic Climate Change—A Review. Energy Policy 2013, 52, 797–809. [Google Scholar] [CrossRef]
- Li, Q.; Cherian, J.; Shabbir, M.S.; Sial, M.S.; Li, J.; Mester, I.; Badulescu, A. Exploring the Relationship between Renewable Energy Sources and Economic Growth. The Case of SAARC Countries. Energies 2021, 14, 520. [Google Scholar] [CrossRef]
- Trifonov, I.; Trukhan, D.; Koshlich, Y.; Prasolov, V.; Ślusarczyk, B. Influence of the Share of Renewable Energy Sources on the Level of Energy Security in EECCA Countries. Energies 2021, 14, 903. [Google Scholar] [CrossRef]
- Włodarczyk, B.; Firoiu, D.; Ionescu, G.H.; Ghiocel, F.; Szturo, M.; Markowski, L. Assessing the Sustainable Development and Renewable Energy Sources Relationship in EU Countries. Energies 2021, 14, 2323. [Google Scholar] [CrossRef]
- Shikhar, U.; Hemmes, K.; Woudstra, T. Exploring the Possibility of Using Molten Carbonate Fuel Cell for the Flexible Coproduction of Hydrogen and Power. Front. Energy Res. 2021, 9, 656490. [Google Scholar] [CrossRef]
- Santoro, C.; Arbizzani, C.; Erable, B.; Ieropoulos, I. Microbial Fuel Cells: From Fundamentals to Applications. A Review. J. Power Sources 2017, 356, 225–244. [Google Scholar] [CrossRef] [PubMed]
- Gude, V.G. Wastewater Treatment in Microbial Fuel Cells—An Overview. J. Clean. Prod. 2016, 122, 287–307. [Google Scholar] [CrossRef]
- Thapa, B.S.; Kim, T.; Pandit, S.; Song, Y.E.; Afsharian, Y.P.; Rahimnejad, M.; Kim, J.R.; Oh, S.-E. Overview of Electroactive Microorganisms and Electron Transfer Mechanisms in Microbial Electrochemistry. Bioresour. Technol. 2022, 347, 126579. [Google Scholar] [CrossRef]
- Williams, Y.; Basitere, M.; Ntwampe, S.K.O.; Ngongang, M.; Njoya, M.; Kaskote, E. Application of Response Surface Methodology to Optimize the Cod Removal Efficiency of an Egsb Reactor Treating Poultry Slaughterhouse Wastewater. Water Pract. Technol. 2019, 14, 507–514. [Google Scholar] [CrossRef]
- Avula, R.Y.; Nelson, H.M.; Singh, R.K. Recycling of Poultry Process Wastewater by Ultrafiltration. Innov. Food Sci. Emerg. Technol. 2009, 10, 1–8. [Google Scholar] [CrossRef]
- Basitere, M.; Njoya, M.; Rinquest, Z.; Ntwampe, S.K.O.; Sheldon, M.S. Performance Evaluation and Kinetic Parameter Analysis for Static Granular Bed Reactor (SGBR) for Treating Poultry Slaughterhouse Wastewater at Mesophilic Condition. Water Pract. Technol. 2019, 14, 259–268. [Google Scholar] [CrossRef]
- Fatima, F.; Du, H.; Kommalapati, R.R. Treatment of Poultry Slaughterhouse Wastewater with Membrane Technologies: A Review. Water 2021, 13, 1905. [Google Scholar] [CrossRef]
- Tahernia, M.; Plotkin-Kaye, E.; Mohammadifar, M.; Gao, Y.; Oefelein, M.R.; Cook, L.C.; Choi, S. Characterization of Electrogenic Gut Bacteria. ACS Omega 2020, 5, 29439–29446. [Google Scholar] [CrossRef]
- Tekebayeva, Z.; Zakarya, K.; Abzhalelov, A.B.; Beisenova, R.R.; Tazitdinova, R.M. Efficiency of a Probiotic in Carp Lactococcosis in an in Vitro Experiment. Microb. Pathog. 2021, 161, 105289. [Google Scholar] [CrossRef]
- Tekebayeva, Z.; Temirbekova, A.; Bazarkhankyzy, A.; Bissenova, G.; Abzhalelov, A.; Tynybayeva, I.; Temirkhanov, A.; Askarova, N.; Mkilima, T.; Sarmurzina, Z. Selection of Active Microorganism Strains Isolated from a Naturally Salty Lake for the Investigation of Different Microbial Potentials. Sustainability 2022, 15, 51. [Google Scholar] [CrossRef]
- Urazova, M.; Zakarya, K.; Sarmurzina, Z.; Bissenova, G.; Abitayeva, G.; Shevtsov, A.; Tekebayeva, Z.; Abzhalelov, A. Diversity and Characterization of Lactic Acid Bacteria from Common Carp (Cyprinus carpio L.) Intestine in Winter (Northern Kazakhstan). Vestn. Tomsk. Gos. Univ. Biol. 2020, 34–47. [Google Scholar] [CrossRef]
- Ayol, A.; Biryol, İ.; Taşkan, E.; Hasar, H. Enhanced Sludge Stabilization Coupled with Microbial Fuel Cells (MFCs). Int. J. Hydrogen Energy 2021, 46, 29529–29540. [Google Scholar] [CrossRef]
- Mkilima, T. The Irrigation Suitability Potential of an Effluent Treated by a Pseudo-natural Wetland. Water Environ. J. 2022, 2022, 1–13. [Google Scholar] [CrossRef]
- Mkilima, T.; Bazarbayeva, T.; Assel, K.; Nurmukhanbetova, N.; Ostretsova, I.; Khamitova, A.; Makhanova, S.; Sergazina, S. Pore Size in the Removal of Phosphorus and Nitrogen from Poultry Slaughterhouse Wastewater Using Polymeric Nanofiltration Membranes. Water 2022, 14, 2929. [Google Scholar] [CrossRef]
- Mkilima, T. Treatment of Livestock Slaughterhouse Wastewater by the Electrochemical Method Using Stainless Steel and Copper Electrodes. Environ. Qual. Manag. 2022, 32, 367–379. [Google Scholar] [CrossRef]
- Dessie, Y.; Tadesse, S.; Eswaramoorthy, R. Review on Manganese Oxide Based Biocatalyst in Microbial Fuel Cell: Nanocomposite Approach. Mater. Sci. Energy Technol. 2020, 3, 136–149. [Google Scholar] [CrossRef]
- Tsekouras, G.J.; Deligianni, P.M.; Kanellos, F.D.; Kontargyri, V.T.; Kontaxis, P.A.; Manousakis, N.M.; Elias, C.N. Microbial Fuel Cell for Wastewater Treatment as Power Plant in Smart Grids: Utopia or Reality? Front. Energy Res. 2022, 10, 370. [Google Scholar] [CrossRef]
- Ding, W.; Cheng, S.; Yu, L.; Huang, H. Effective Swine Wastewater Treatment by Combining Microbial Fuel Cells with Flocculation. Chemosphere 2017, 182, 567–573. [Google Scholar] [CrossRef] [PubMed]
- Beylier, M.R.; Balaguer, M.D.; Colprim, J.; Pellicer-Nàcher, C.; Ni, B.-J.; Smets, B.F.; Sun, S.-P.; Wang, R.-C. Biological Nitrogen Removal From Domestic Wastewater. In Comprehensive Biotechnology; Elsevier: Amsterdam, The Netherlands, 2011; pp. 285–296. [Google Scholar]
- Singh, A.; Kaushik, A. Sustained Energy Production from Wastewater in Microbial Fuel Cell: Effect of Inoculum Sources, Electrode Spacing and Working Volume. 3 Biotech 2021, 11, 344. [Google Scholar] [CrossRef]
- Elakkiya, E.; Niju, S. Bioelectrochemical Treatment of Real-Field Bagasse-Based Paper Mill Wastewater in Dual-Chambered Microbial Fuel Cell. 3 Biotech 2021, 11, 42. [Google Scholar] [CrossRef] [PubMed]
- Armato, C.; Ahmed, D.; Agostino, V.; Traversi, D.; Degan, R.; Tommasi, T.; Margaria, V.; Sacco, A.; Gilli, G.; Quaglio, M.; et al. Anodic Microbial Community Analysis of Microbial Fuel Cells Based on Enriched Inoculum from Freshwater Sediment. Bioprocess Biosyst. Eng. 2019, 42, 697–709. [Google Scholar] [CrossRef]
- Karuppiah, T.; Pugazhendi, A.; Subramanian, S.; Jamal, M.T.; Jeyakumar, R.B. Deriving Electricity from Dye Processing Wastewater Using Single Chamber Microbial Fuel Cell with Carbon Brush Anode and Platinum Nano Coated Air Cathode. 3 Biotech 2018, 8, 437. [Google Scholar] [CrossRef]
- De Sá, J.S.; Mezzomo, H.; Fraga, M.F.; Ogrodowski, C.S.; Santana, F.B. Anode Air Exposure during Microbial Fuel Cell Operation Inoculated with Marine Sediment. J. Environ. Chem. Eng. 2017, 5, 1821–1827. [Google Scholar] [CrossRef]
- Salar-Garcia, M.J.; Obata, O.; Kurt, H.; Chandran, K.; Greenman, J.; Ieropoulos, I.A. Impact of Inoculum Type on the Microbial Community and Power Performance of Urine-Fed Microbial Fuel Cells. Microorganisms 2020, 8, 1921. [Google Scholar] [CrossRef]
- Rahman, M.; Hassan, A.; Hossain, I.; Jahangir, M.; Chowdhury, E.; Parvin, R. Current State of Poultry Waste Management Practices in Bangladesh, Environmental Concerns, and Future Recommendations. J. Adv. Vet. Anim. Res. 2022, 9, 490. [Google Scholar] [CrossRef] [PubMed]
- Kristensen, K.; Ward, L.M.; Mogensen, M.L.; Cichosz, S.L. Using Image Processing and Automated Classification Models to Classify Microscopic Gram Stain Images. Comput. Methods Programs Biomed. Updat. 2023, 3, 100091. [Google Scholar] [CrossRef]
- De Vegas, E.Z.S.; Nieves, B.; Araque, M.; Velasco, E.; Ruíz, J.; Vila, J. Outbreak of Infection with Acinetobacter Strain RUH 1139 in an Intensive Care Unit. Infect. Control Hosp. Epidemiol. 2006, 27, 397–403. [Google Scholar] [CrossRef] [PubMed]
- Werle, E.; Schneider, C.; Renner, M.; Völker, M.; Fiehn, W. Convenient Single-Step, One Tube Purification of PCR Products for Direct Sequencing. Nucleic Acids Res. 1994, 22, 4354–4355. [Google Scholar] [CrossRef] [PubMed]
- Hasanah, U.; Mulyati, A.H.; Widiastuti, D.; Warnasih, S.; Syahputri, Y.; Panji, T. Development of cod (chemical oxygen demand) analysis method in waste water using uv-vis spectrophotometer. J. Sci. Innovare 2020, 3, 35–38. [Google Scholar] [CrossRef]
- Nandy, A.; Kumar, V.; Kundu, P.P. Utilization of Proteinaceous Materials for Power Generation in a Mediatorless Microbial Fuel Cell by a New Electrogenic Bacteria Lysinibacillus Sphaericus VA5. Enzyme Microb. Technol. 2013, 53, 339–344. [Google Scholar] [CrossRef]
- He, H.; Yuan, S.-J.; Tong, Z.-H.; Huang, Y.-X.; Lin, Z.-Q.; Yu, H.-Q. Characterization of a New Electrochemically Active Bacterium, Lysinibacillus sphaericus D-8, Isolated with a WO3 Nanocluster Probe. Process Biochem. 2014, 49, 290–294. [Google Scholar] [CrossRef]
- Tian, T.; Fan, X.; Feng, M.; Su, L.; Zhang, W.; Chi, H.; Fu, D. Flavin-Mediated Extracellular Electron Transfer in Gram-Positive Bacteria Bacillus Cereus DIF1 and Rhodococcus Ruber DIF2. RSC Adv. 2019, 9, 40903–40909. [Google Scholar] [CrossRef]
- Dai, H.N.; Duong Nguyen, T.-A.; My LE, L.-P.; Van Tran, M.; Lan, T.-H.; Wang, C.-T. Power Generation of Shewanella Oneidensis MR-1 Microbial Fuel Cells in Bamboo Fermentation Effluent. Int. J. Hydrogen Energy 2021, 46, 16612–16621. [Google Scholar] [CrossRef]
- Liu, M.; Yuan, Y.; Zhang, L.; Zhuang, L.; Zhou, S.; Ni, J. Bioelectricity Generation by a Gram-Positive Corynebacterium Sp. Strain MFC03 under Alkaline Condition in Microbial Fuel Cells. Bioresour. Technol. 2010, 101, 1807–1811. [Google Scholar] [CrossRef]
- Shao, Y.; Liu, G.; Wang, Y.; Zhang, Y.; Wang, H.; Qi, L.; Xu, X.; Wang, J.; He, Y.; Li, Q.; et al. Sludge Characteristics, System Performance and Microbial Kinetics of Ultra-Short-SRT Activated Sludge Processes. Environ. Int. 2020, 143, 105973. [Google Scholar] [CrossRef] [PubMed]
- Sonawane, J.M.; Mahadevan, R.; Pandey, A.; Greener, J. Recent Progress in Microbial Fuel Cells Using Substrates from Diverse Sources. Heliyon 2022, 8, e12353. [Google Scholar] [CrossRef] [PubMed]
- Lal, D. Microbes to Generate Electricity. Indian J. Microbiol. 2013, 53, 120–122. [Google Scholar] [CrossRef] [PubMed]
- Ghangrekar, M.M.; Shinde, V.B. Performance of Membrane-Less Microbial Fuel Cell Treating Wastewater and Effect of Electrode Distance and Area on Electricity Production. Bioresour. Technol. 2007, 98, 2879–2885. [Google Scholar] [CrossRef] [PubMed]
- Koffi, N.J.; Okabe, S. High Voltage Generation from Wastewater by Microbial Fuel Cells Equipped with a Newly Designed Low Voltage Booster Multiplier (LVBM). Sci. Rep. 2020, 10, 18985. [Google Scholar] [CrossRef]
- Islam, M.M.M.; Shafi, S.; Bandh, S.A.; Shameem, N. Impact of Environmental Changes and Human Activities on Bacterial Diversity of Lakes. In Freshwater Microbiology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 105–136. [Google Scholar]
- Li, W.; Jia, M.-X.; Deng, J.; Wang, J.-H.; Lin, Q.-L.; Liu, C.; Wang, S.-S.; Tang, J.-X.; Zeng, X.-X.; Ma, L.; et al. Isolation, Genetic Identification and Degradation Characteristics of COD-Degrading Bacterial Strain in Slaughter Wastewater. Saudi J. Biol. Sci. 2018, 25, 1800–1805. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, P. Future Microbial Applications for Bioenergy Production: A Perspective. Front. Microbiol. 2017, 8, 450. [Google Scholar] [CrossRef]
Strains | GenBank Inventory Number (Accession Number) | Name of the Strain | % Match |
---|---|---|---|
Strain A1 | NR_112627.1 | Lysinibacillus sphaericus | 100% |
Strain A2 | NR_115526.1 | Bacillus cereus | 100% |
Bacterial Strain | Voltage Generation | Current Generation | Power Generation | COD Removal Efficiency | Coulombic Efficiency | Substrate | External Resistance | Operational Days | Reference |
---|---|---|---|---|---|---|---|---|---|
Lysinibacillus sphaericus A1 Accession number NR_112627.1 | 0.4 mV | 40.2 mA/m2 | 16.16 mW/m2 | 94.28% | 10% | acetate | 100 Ω | 3 | this work |
Lysinibacillus sphaericus VA5 Accession number HE648059 | 0.7 V | 270 mA/m2 | 85 mW/m2 | 70% | between 1 and 3% | glucose | 100 Ω | 12.5 | [37] |
Lysinibacillus sphaericus D-8 Accession number KC691284 | 0.4 V | 142 mA/m2 | 92 mW/m2 | 12.69% | lactate | 1000 Ω | 3 | [38] | |
Bacillus cereus A2 Accession number NR_115526.1 | 0.3 mV | 35 mA/m2 | 12.25 mW/m2, | 91.71% | 3.5% | acetate | 100 Ω | 3 | this work |
Bacillus cereus DIF1 Accession number MH351294.1 | 0.3 V | 37.05 mA | - | - | - | - | 1000 Ω | 1.25 | [39] |
Shewanella oneidensis MR-1 Accession number NC_004347.2 | 0.7 mV | 2700 mA/m2 | 578 mBt/m2 | 83% | - | acetate | 1000 Ω | 8 | [40] |
Corynebacterium sp. strain MFC03 | - | 33.6 mA/m2 | 7.3 mW/m2 | 80.1% | 5.9% | glucose with 0.1 mM anthroquinone-2,6-disulfonate (AQDS) | 1000 Ω | 3 | [41] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Temirbekova, A.; Tekebayeva, Z.; Temirkhanov, A.; Yevneyeva, D.; Sadykov, A.; Meiramkulova, K.; Mkilima, T.; Abzhalelov, A. Isolation and Characterization of Bacteria with High Electroactive Potential from Poultry Wastewater. Biology 2023, 12, 623. https://doi.org/10.3390/biology12040623
Temirbekova A, Tekebayeva Z, Temirkhanov A, Yevneyeva D, Sadykov A, Meiramkulova K, Mkilima T, Abzhalelov A. Isolation and Characterization of Bacteria with High Electroactive Potential from Poultry Wastewater. Biology. 2023; 12(4):623. https://doi.org/10.3390/biology12040623
Chicago/Turabian StyleTemirbekova, Aliya, Zhanar Tekebayeva, Aslan Temirkhanov, Dinara Yevneyeva, Azamat Sadykov, Kulyash Meiramkulova, Timoth Mkilima, and Akhan Abzhalelov. 2023. "Isolation and Characterization of Bacteria with High Electroactive Potential from Poultry Wastewater" Biology 12, no. 4: 623. https://doi.org/10.3390/biology12040623
APA StyleTemirbekova, A., Tekebayeva, Z., Temirkhanov, A., Yevneyeva, D., Sadykov, A., Meiramkulova, K., Mkilima, T., & Abzhalelov, A. (2023). Isolation and Characterization of Bacteria with High Electroactive Potential from Poultry Wastewater. Biology, 12(4), 623. https://doi.org/10.3390/biology12040623