Cocaine Destroys Gray Matter Brain Cells and Accelerates Brain Aging
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants and MRI Acquisition
2.2. MRI Preprocessing
2.3. Brain Age Calculation
2.4. Statistical Analysis
3. Results
3.1. VBM and DBM Analysis
3.2. Brain Age Values
3.3. Regional Relationship between GM and WM Alterations with Brain-PAD
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nestler, E.J. The neurobiology of cocaine addiction. Sci. Pr. Perspect. 2005, 3, 4–10. [Google Scholar] [CrossRef]
- Degenhardt, L.; Hall, W. Extent of illicit drug use and dependence, and their contribution to the global burden of disease. Lancet 2012, 379, 55–70. [Google Scholar] [CrossRef]
- Spronk, D.B.; van Wel, J.H.; Ramaekers, J.G.; Verkes, R.J. Characterizing the cognitive effects of cocaine: A comprehensive review. Neurosci. Biobehav. Rev. 2013, 37, 1838–1859. [Google Scholar] [CrossRef] [PubMed]
- Volkow, N.D.; Michaelides, M.; Baler, R. The neuroscience of drug reward and addiction. Physiol. Rev. 2019, 99, 2115–2140. [Google Scholar] [CrossRef] [PubMed]
- Verdejo-Garcia, A.; Garcia-Fernandez, G.; Dom, G. Cognition and addiction. Dialogues Clin. Neurosci. 2022. [Google Scholar] [CrossRef] [PubMed]
- Frazer, K.M.; Richards, Q.; Keith, D.R. The long-term effects of cocaine use on cognitive functioning: A systematic critical review. Behav. Brain Res. 2018, 348, 241–262. [Google Scholar] [CrossRef]
- Cerretani, D.; Fineschi, V.; Bello, S.; Riezzo, I.; Turillazzi, E.; Neri, M. Role of oxidative stress in cocaine-induced cardiotoxicity and cocaine-related death. Curr. Med. Chem. 2012, 19, 5619–5623. [Google Scholar] [CrossRef]
- Dietrich, J.-B.; Mangeol, A.; Revel, M.-O.; Burgun, C.; Aunis, D.; Zwiller, J. Acute or repeated cocaine administration generates reactive oxygen species and induces antioxidant enzyme activity in dopaminergic rat brain structures. Neuropharmacology 2005, 48, 965–974. [Google Scholar] [CrossRef]
- Correia, C.; Romieu, P.; Olmstead, M.C.; Befort, K. Can cocaine-induced neuroinflammation explain maladaptive cocaine-associated memories? Neurosci. Biobehav. Rev. 2020, 111, 69–83. [Google Scholar] [CrossRef]
- Sharma, H.S.; Muresanu, D.; Sharma, A.; Patnaik, R. Cocaine-induced breakdown of the blood–brain barrier and neurotoxicity. Int. Rev. Neurobiol. 2009, 88, 297–334. [Google Scholar]
- Pereira, R.B.; Andrade, P.B.; Valentão, P. A Comprehensive View of the Neurotoxicity Mechanisms of Cocaine and Ethanol. Neurotox. Res. 2015, 28, 253–267. [Google Scholar] [CrossRef] [PubMed]
- Fowler, J.S.; Volkow, N.D.; Kassed, C.A.; Chang, L. Imaging the addicted human brain. Sci. Pract. Perspect. 2007, 3, 4. [Google Scholar] [CrossRef]
- Garrison, K.A.; Potenza, M.N. Neuroimaging and biomarkers in addiction treatment. Curr. Psychiatry Rep. 2014, 16, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Ersche, K.D.; Williams, G.B.; Robbins, T.W.; Bullmore, E.T. Meta-analysis of structural brain abnormalities associated with stimulant drug dependence and neuroimaging of addiction vulnerability and resilience. Curr. Opin. Neurobiol. 2013, 23, 615–624. [Google Scholar] [CrossRef]
- Mackey, S.; Paulus, M. Are there volumetric brain differences associated with the use of cocaine and amphetamine-type stimulants? Neurosci. Biobehav. Rev. 2013, 37, 300–316. [Google Scholar] [CrossRef] [PubMed]
- Lim, K.O.; Wozniak, J.R.; Mueller, B.A.; Franc, D.T.; Specker, S.M.; Rodriguez, C.P.; Silverman, A.B.; Rotrosen, J.P. Brain macrostructural and microstructural abnormalities in cocaine dependence. Drug Alcohol Depend. 2008, 92, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Ersche, K.D.; Barnes, A.; Jones, P.S.; Morein-Zamir, S.; Robbins, T.W.; Bullmore, E.T. Abnormal structure of frontostriatal brain systems is associated with aspects of impulsivity and compulsivity in cocaine dependence. Brain 2011, 134, 2013–2024. [Google Scholar] [CrossRef]
- Kaag, A.M.; Crunelle, C.L.; van Wingen, G.; Homberg, J.; van den Brink, W.; Reneman, L. Relationship between trait impulsivity and cortical volume, thickness and surface area in male cocaine users and non-drug using controls. Drug Alcohol Depend. 2014, 144, 210–217. [Google Scholar] [CrossRef]
- Hodges, C.B.; Steinberg, J.L.; Zuniga, E.A.; Ma, L.; Bjork, J.M.; Moeller, F.G. Chronic Cocaine Use and White Matter Coherence: A Diffusion Tensor Imaging Study. J. Stud. Alcohol Drugs 2023. [Google Scholar] [CrossRef]
- Hirsiger, S.; Hänggi, J.; Germann, J.; Vonmoos, M.; Preller, K.H.; Engeli, E.J.; Kirschner, M.; Reinhard, C.; Hulka, L.M.; Baumgartner, M.R. Longitudinal changes in cocaine intake and cognition are linked to cortical thickness adaptations in cocaine users. NeuroImage Clin. 2019, 21, 101652. [Google Scholar] [CrossRef]
- Franke, K.; Gaser, C. Ten years of brainage as a neuroimaging biomarker of brain aging: What insights have we gained? Front. Neurol. 2019, 10, 789. [Google Scholar] [CrossRef]
- Sone, D.; Beheshti, I. Neuroimaging-based brain age estimation: A promising personalized biomarker in neuropsychiatry. J. Pers. Med. 2022, 12, 1850. [Google Scholar] [CrossRef]
- Beheshti, I.; Nugent, S.; Potvin, O.; Duchesne, S. Disappearing metabolic youthfulness in the cognitively impaired female brain. Neurobiol. Aging 2021, 101, 224–229. [Google Scholar] [CrossRef] [PubMed]
- Gaser, C.; Franke, K.; Klöppel, S.; Koutsouleris, N.; Sauer, H.; Initiative, A.s.D.N. BrainAGE in Mild Cognitive Impaired Patients: Predicting the Conversion to Alzheimer's Disease. PLoS ONE 2013, 8, e67346. [Google Scholar] [CrossRef] [PubMed]
- Franke, K.; Gaser, C. Longitudinal changes in individual BrainAGE in healthy aging, mild cognitive impairment, and Alzheimer’s disease. GeroPsych 2012. [Google Scholar] [CrossRef]
- Sone, D.; Beheshti, I.; Maikusa, N.; Ota, M.; Kimura, Y.; Sato, N.; Koepp, M.; Matsuda, H. Neuroimaging-based brain-age prediction in diverse forms of epilepsy: A signature of psychosis and beyond. Mol. Psychiatry 2021, 26, 825–834. [Google Scholar] [CrossRef]
- Beheshti, I.; Mishra, S.; Sone, D.; Khanna, P.; Matsuda, H. T1-weighted MRI-driven brain age estimation in Alzheimer’s disease and Parkinson’s disease. Aging Dis. 2020, 11, 618. [Google Scholar] [CrossRef]
- Eickhoff, C.R.; Hoffstaedter, F.; Caspers, J.; Reetz, K.; Mathys, C.; Dogan, I.; Amunts, K.; Schnitzler, A.; Eickhoff, S.B. Advanced brain ageing in Parkinson’s disease is related to disease duration and individual impairment. Brain Commun. 2021, 3, fcab191. [Google Scholar] [CrossRef]
- Koutsouleris, N.; Davatzikos, C.; Borgwardt, S.; Gaser, C.; Bottlender, R.; Frodl, T.; Falkai, P.; Riecher-Rössler, A.; Möller, H.J.; Reiser, M.; et al. Accelerated brain aging in schizophrenia and beyond: A neuroanatomical marker of psychiatric disorders. Schizophr. Bull. 2014, 40, 1140–1153. [Google Scholar] [CrossRef] [PubMed]
- Han, L.K.M.; Dinga, R.; Hahn, T.; Ching, C.R.K.; Eyler, L.T.; Aftanas, L.; Aghajani, M.; Aleman, A.; Baune, B.T.; Berger, K.; et al. Brain aging in major depressive disorder: Results from the ENIGMA major depressive disorder working group. Mol. Psychiatry 2021, 26, 5124–5139. [Google Scholar] [CrossRef]
- Angeles-Valdez, D.; Rasgado-Toledo, J.; Issa-Garcia, V.; Balducci, T.; Villicaña, V.; Valencia, A.; Gonzalez-Olvera, J.J.; Reyes-Zamorano, E.; Garza-Villarreal, E.A. The Mexican magnetic resonance imaging dataset of patients with cocaine use disorder: SUDMEX CONN. Sci. Data 2022, 9, 133. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Beheshti, I.; Khanna, P. A Review of Neuroimaging-driven Brain Age Estimation for identification of Brain Disorders and Health Conditions. IEEE Rev. Biomed. Eng. 2021, PP. [Google Scholar] [CrossRef] [PubMed]
- Beheshti, I.; Nugent, S.; Potvin, O.; Duchesne, S. Bias-adjustment in neuroimaging-based brain age frameworks: A robust scheme. Neuroimage Clin. 2019, 24, 102063. [Google Scholar] [CrossRef] [PubMed]
- Rabin, R.A.; Parvaz, M.A.; Alia-Klein, N.; Goldstein, R.Z. Emotion recognition in individuals with cocaine use disorder: The role of abstinence length and the social brain network. Psychopharmacology 2022, 239, 1019–1033. [Google Scholar] [CrossRef]
- Potvin, S.; Stavro, K.; Rizkallah, E.; Pelletier, J. Cocaine and cognition: A systematic quantitative review. J. Addict. Med. 2014, 8, 368–376. [Google Scholar] [CrossRef]
- Sim, M.E.; Lyoo, I.K.; Streeter, C.C.; Covell, J.; Sarid-Segal, O.; Ciraulo, D.A.; Kim, M.J.; Kaufman, M.J.; Yurgelun-Todd, D.A.; Renshaw, P.F. Cerebellar gray matter volume correlates with duration of cocaine use in cocaine-dependent subjects. Neuropsychopharmacology 2007, 32, 2229–2237. [Google Scholar] [CrossRef]
- Farokhian, F.; Beheshti, I.; Sone, D.; Matsuda, H. Comparing CAT12 and VBM8 for Detecting Brain Morphological Abnormalities in Temporal Lobe Epilepsy. Front. Neurol. 2017, 8, 428. [Google Scholar] [CrossRef]
- Nenadić, I.; Dietzek, M.; Langbein, K.; Sauer, H.; Gaser, C. BrainAGE score indicates accelerated brain aging in schizophrenia, but not bipolar disorder. Psychiatry Res. Neuroimaging 2017, 266, 86–89. [Google Scholar] [CrossRef]
- Han, L.K.M.; Schnack, H.G.; Brouwer, R.M.; Veltman, D.J.; van der Wee, N.J.A.; van Tol, M.J.; Aghajani, M.; Penninx, B.W.J.H. Contributing factors to advanced brain aging in depression and anxiety disorders. Transl. Psychiatry 2021, 11, 402. [Google Scholar] [CrossRef]
- Conner, K.R.; Pinquart, M.; Holbrook, A.P. Meta-analysis of depression and substance use and impairment among cocaine users. Drug Alcohol Depend. 2008, 98, 13–23. [Google Scholar] [CrossRef]
- Fries, G.R.; Khan, S.; Stamatovich, S.; Dyukova, E.; Walss-Bass, C.; Lane, S.D.; Schmitz, J.M.; Wardle, M.C. Anhedonia in cocaine use disorder is associated with inflammatory gene expression. PLoS ONE 2018, 13, e0207231. [Google Scholar] [CrossRef] [PubMed]
- Devinsky, O.; Morrell, M.J.; Vogt, B.A. Contributions of anterior cingulate cortex to behaviour. Brain 1995, 118, 279–306. [Google Scholar] [CrossRef] [PubMed]
- Vogt, B.A. Pain and emotion interactions in subregions of the cingulate gyrus. Nat. Rev. Neurosci. 2005, 6, 533–544. [Google Scholar] [CrossRef]
- Terraneo, A.; Leggio, L.; Saladini, M.; Ermani, M.; Bonci, A.; Gallimberti, L. Transcranial magnetic stimulation of dorsolateral prefrontal cortex reduces cocaine use: A pilot study. Eur. Neuropsychopharmacol. 2016, 26, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Zeighami, Y.; Dadar, M.; Daoust, J.; Pelletier, M.; Biertho, L.; Bouvet-Bouchard, L.; Fulton, S.; Tchernof, A.; Dagher, A.; Richard, D.; et al. Impact of weight loss on brain age: Improved brain health following bariatric surgery. Neuroimage 2022, 259, 119415. [Google Scholar] [CrossRef]
- Xu, K.; Liu, Y.; Zhan, Y.; Ren, J.; Jiang, T. BRANT: A versatile and extendable resting-state fMRI toolkit. Front. Neuroinformatics 2018, 12, 52. [Google Scholar] [CrossRef]
HC | CUD | p | |
---|---|---|---|
Number | 62, 83% male | 74, 88% male | |
Age, years | 30.60 ± 8.26 | 30.99 ± 7.25 | 0.77 |
Education, years | 12.73 ± 3.34 | 11.26 ± 3.17 | 0.01 |
Years of consumption | n.a | 10.07 ± 6.79 a | n.a |
Cocaine age onset | n.a | 20.91 ± 5.59 a | n.a |
Weekly dose | n.a | 2.97 ± 1.21 b | n.a |
Cluster | Region | BA | Cluster Size (No. of Voxels) | q (FDR) | Hemisphere | MNI Coordinates (x, y, z) | T Value (Peak Voxel) |
---|---|---|---|---|---|---|---|
1 | Temporal Lobe/Insula/Superior Temporal Gyrus/Superior temporal gyrus/Temporal pole | 13/22/38 | 1579 | 0.005 | L | −45, 4, −3 | 5.58 |
L | −44, −10, −8 | 4.14 | |||||
L | −44, 12, −16 | 3.66 | |||||
2 | Frontal_Mid_2/Middle Frontal Gyrus/Superior Frontal Gyrus | 10/11 | 2558 | 0.001 | R | 45, 45, 4 | 4.58 |
R | 15, 62, −4 | 4.59 | |||||
R | 30, 66, 0 | 4.45 | |||||
3 | Temporal Lobe/Temporal_Mid/Middle Temporal Gyrus/Superior Temporal Gyrus | 21/22 | 1726 | 0.005 | R | 66, −34, 0 | 4.41 |
R | 60, −39, −4 | 4.41 | |||||
R | 60, −27, −2 | 4.06 | |||||
4 | Frontal Lobe/Middle Frontal Gyrus/Frontal_Mid_2/Superior Frontal Gyrus | 10/11 | 986 | 0.028 | L | −36, 51, −9 | 4.28 |
L | −27, 51, −9 | 4.23 | |||||
L | −30, 63, −6 | 4.20 | |||||
5 | Frontal Lobe/Medial Frontal Gyrus/Rectal Gyrus/Limbic lobe | 11/25 | 971 | 0.028 | L | 0, 38, −27 | 4.26 |
L | −2, 27, −15 | 4.02 |
Analysis | Cluster | Region | BA | Cluster Size (No. of Voxels) | p (PWE) | Hemisphere | MNI Coordinates (x, y, z) | T Value (Peak Voxel) |
---|---|---|---|---|---|---|---|---|
GM in CUD | 1 | Frontal Lobe/Limbic Lobe/Subcallosal Gyrus/Parahippocampal Gyrus | 34/47 | 327 | 0.000 | L | −24, 6, −15 | 6.79 |
2 | Limbic Lobe/Cingulate Gyrus | 24/32 | 150 | 0.001 | R | 8, −3, 45 | 6.06 | |
R | 4, 6, 46 | 5.69 | ||||||
3 | Limbic Lobe/Cingulate Gyrus/Anterior Cingulate | 32/9 | 239 | 0.000 | R | 4, 28, 33 | 6.04 | |
R | 8, 18, 40 | 5.95 | ||||||
4 | Frontal Lobe/Middle Frontal Gyrus/Limbic Lobe/Cingulate Gyrus | 6/8/32 | 253 | 0.000 | L | −2, 32, 40 | 6.02 | |
L | −10, 38, 40 | 5.70 | ||||||
L | −12, 26, 46 | 5.57 | ||||||
WM in HC | 1 | Frontal Lobe/Subgyral | - | 57 | 0.007 | L | 42, 24, 18 | 5.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beheshti, I. Cocaine Destroys Gray Matter Brain Cells and Accelerates Brain Aging. Biology 2023, 12, 752. https://doi.org/10.3390/biology12050752
Beheshti I. Cocaine Destroys Gray Matter Brain Cells and Accelerates Brain Aging. Biology. 2023; 12(5):752. https://doi.org/10.3390/biology12050752
Chicago/Turabian StyleBeheshti, Iman. 2023. "Cocaine Destroys Gray Matter Brain Cells and Accelerates Brain Aging" Biology 12, no. 5: 752. https://doi.org/10.3390/biology12050752
APA StyleBeheshti, I. (2023). Cocaine Destroys Gray Matter Brain Cells and Accelerates Brain Aging. Biology, 12(5), 752. https://doi.org/10.3390/biology12050752