A Rat Model of the Brain-Derived Neurotrophic Factor Val66Met Polymorphism Shows Attenuated Motivation for Alcohol Self-Administration and Diminished Propensity for Cue-Induced Relapse in Females
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Housing
2.2. Behavioural Testing
2.2.1. Operant Protocol
2.2.2. Elevated plus Maze
2.2.3. Locomotor Activity
2.3. Data Analysis
3. Results
3.1. Body Weight
3.2. Operant Ethanol Self-Administration
3.3. Elevated plus Maze and Locomotor Activity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: DSM-5, 5th ed.; American Psychiatric Publishing: Arlington, VA, USA, 2014. [Google Scholar]
- Grant, B.F.; Goldstein, R.B.; Saha, T.D.; Chou, S.P.; Jung, J.; Zhang, H.; Pickering, R.P.; Ruan, W.J.; Smith, S.M.; Huang, B.; et al. Epidemiology of DSM-5 alcohol use disorder: Results from the National Epidemiologic Survey on Alcohol and Related Conditions III. JAMA Psychiatry 2015, 72, 757–766. [Google Scholar] [CrossRef]
- World Health Organization. Global Status Report on Alcohol and Health 2018; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Fleury, M.J.; Djouini, A.; Huynh, C.; Tremblay, J.; Ferland, F.; Menard, J.M.; Belleville, G. Remission from substance use disorders: A systematic review and meta-analysis. Drug Alcohol Depend. 2016, 168, 293–306. [Google Scholar] [CrossRef]
- Sliedrecht, W.; de Waart, R.; Witkiewitz, K.; Roozen, H.G. Alcohol use disorder relapse factors: A systematic review. Psychiatry Res. 2019, 278, 97–115. [Google Scholar] [CrossRef] [PubMed]
- Stillman, M.A.; Sutcliff, J. Predictors of relapse in alcohol disorder: Identifying individuals most vulnerable to relapse. Addict. Subst. Abus. 2020, 1, 3–8. [Google Scholar] [CrossRef]
- Egervari, G.; Siciliano, C.A.; Whiteley, E.L.; Ron, D. Alcohol and the brain: From genes to circuits. Trends Neurosci. 2021, 44, 1004–1015. [Google Scholar] [CrossRef] [PubMed]
- Ceballos, N.; Sharma, S. Risk and resilience: The role of brain-derived neurotrophic factor in alcohol use disorder. AIMS Neurosci. 2016, 3, 398–432. [Google Scholar] [CrossRef]
- Logrip, M.L.; Barak, S.; Warnault, V.; Ron, D. Corticostriatal BDNF and alcohol addiction. Brain Res. 2015, 1628, 60–67. [Google Scholar] [CrossRef]
- Prakash, A.; Zhang, H.; Pandey, S.C. Innate differences in the expression of brain-derived neurotrophic factor in the regions within the extended amygdala between alcohol preferring and nonpreferring rats. Alcohol. Clin. Exp. Res. 2008, 32, 909–920. [Google Scholar] [CrossRef]
- Li, X.X.; Yang, T.; Wang, N.; Zhang, L.L.; Liu, X.; Xu, Y.M.; Gao, Q.; Zhu, X.F.; Guan, Y.Z. 7,8-Dihydroxyflavone attenuates alcohol-related behavior in rat models of alcohol consumption via TrkB in the ventral tegmental area. Front. Neurosci. 2020, 14, 467. [Google Scholar] [CrossRef]
- Hauser, S.R.; Getachew, B.; Taylor, R.E.; Tizabi, Y. Alcohol induced depressive-like behavior is associated with a reduction in hippocampal BDNF. Pharm. Biochem. Behav. 2011, 100, 253–258. [Google Scholar] [CrossRef]
- Tapocik, J.D.; Barbier, E.; Flanigan, M.; Solomon, M.; Pincus, A.; Pilling, A.; Sun, H.; Schank, J.R.; King, C.; Heilig, M. microRNA-206 in rat medial prefrontal cortex regulates BDNF expression and alcohol drinking. J. Neurosci. 2014, 34, 4581–4588. [Google Scholar] [CrossRef] [PubMed]
- Jeanblanc, J.; He, D.Y.; Carnicella, S.; Kharazia, V.; Janak, P.H.; Ron, D. Endogenous BDNF in the dorsolateral striatum gates alcohol drinking. J. Neurosci. 2009, 29, 13494–13502. [Google Scholar] [CrossRef] [PubMed]
- Liran, M.; Rahamim, N.; Ron, D.; Barak, S. Growth Factors and Alcohol Use Disorder. Cold Spring Harb. Perspect. Med. 2020, 10, a039271. [Google Scholar] [CrossRef] [PubMed]
- Hensler, J.G.; Ladenheim, E.E.; Lyons, W.E. Ethanol consumption and serotonin-1A (5-HT1A) receptor function in heterozygous BDNF (+/–) mice. J. Neurochem. 2003, 85, 1139–1147. [Google Scholar] [CrossRef] [PubMed]
- McGough, N.N.H.; He, D.-Y.; Logrip, M.L.; Jeanblanc, J.; Phamluong, K.; Luong, K.; Kharazia, V.; Janak, P.H.; Ron, D. RACK1 and brain-derived neurotrophic factor: A homeostatic pathway that regulates alcohol addiction. J. Neurosci. 2004, 24, 10542. [Google Scholar] [CrossRef] [PubMed]
- Pandey, S.C.; Roy, A.; Zhang, H.; Xu, T. Partial deletion of the cAMP response element-binding protein gene promotes alcohol-drinking behaviors. J. Neurosci. 2004, 24, 5022. [Google Scholar] [CrossRef]
- Hogarth, S.J.; Jaehne, E.J.; van den Buuse, M.; Djouma, E. Brain-derived neurotrophic factor (BDNF) determines a sex difference in cue-conditioned alcohol seeking in rats. Behav. Brain Res. 2018, 339, 73–78. [Google Scholar] [CrossRef]
- Hogarth, S.J.; Djouma, E.; van den Buuse, M. 7,8-Dihydroxyflavone enhances cue-conditioned alcohol reinstatement in rats. Brain Sci. 2020, 10, 270. [Google Scholar] [CrossRef]
- Peregud, D.I.; Baronets, V.Y.; Terebilina, N.N.; Gulyaeva, N.V. Role of BDNF in neuroplasticity associated with alcohol dependence. Biochemistry 2023, 88, 404–416. [Google Scholar] [CrossRef]
- Chen, Z.Y.; Jing, D.; Bath, K.G.; Ieraci, A.; Khan, T.; Siao, C.J.; Herrera, D.G.; Toth, M.; Yang, C.; McEwen, B.S.; et al. Genetic variant BDNF (Val66Met) polymorphism alters anxiety-related behavior. Science 2006, 314, 140–143. [Google Scholar] [CrossRef]
- Egan, M.F.; Kojima, M.; Callicott, J.H.; Goldberg, T.E.; Kolachana, B.S.; Bertolino, A.; Zaitsev, E.; Gold, B.; Goldman, D.; Dean, M.; et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 2003, 112, 257–269. [Google Scholar] [CrossRef]
- Forero, D.A.; Lopez-Leon, S.; Shin, H.D.; Park, B.L.; Kim, D.J. Meta-analysis of six genes (BDNF, DRD1, DRD3, DRD4, GRIN2B and MAOA) involved in neuroplasticity and the risk for alcohol dependence. Drug Alcohol Depend. 2015, 149, 259–263. [Google Scholar] [CrossRef]
- Haerian, B.S. BDNF rs6265 polymorphism and drug addiction: A systematic review and meta-analysis. Pharmacogenomics 2013, 14, 2055–2065. [Google Scholar] [CrossRef] [PubMed]
- Colzato, L.S.; Van der Does, A.J.; Kouwenhoven, C.; Elzinga, B.M.; Hommel, B. BDNF Val66Met polymorphism is associated with higher anticipatory cortisol stress response, anxiety, and alcohol consumption in healthy adults. Psychoneuroendocrinology 2011, 36, 1562–1569. [Google Scholar] [CrossRef] [PubMed]
- Grzywacz, A.; Samochowiec, A.; Ciechanowicz, A.; Samochowiec, J. Family-based study of brain-derived neurotrophic factor (BDNF) gene polymorphism in alcohol dependence. Pharm. Rep. 2010, 62, 938–941. [Google Scholar] [CrossRef] [PubMed]
- Nedic, G.; Perkovic, M.N.; Sviglin, K.N.; Muck-Seler, D.; Borovecki, F.; Pivac, N. Brain-derived neurotrophic factor Val66Met polymorphism and alcohol-related phenotypes. Prog. Neuropsychopharmacol. Biol. Psychiatry 2013, 40, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Wojnar, M.; Brower, K.J.; Strobbe, S.; Ilgen, M.; Matsumoto, H.; Nowosad, I.; Sliwerska, E.; Burmeister, M. Association between Val66Met brain-derived neurotrophic factor (BDNF) gene polymorphism and post-treatment relapse in alcohol dependence. Alcohol. Clin. Exp. Res. 2009, 33, 693–702. [Google Scholar] [CrossRef] [PubMed]
- Warnault, V.; Darcq, E.; Morisot, N.; Phamluong, K.; Wilbrecht, L.; Massa, S.M.; Longo, F.M.; Ron, D. The BDNF valine 68 to methionine polymorphism increases compulsive alcohol drinking in mice that is reversed by Tropomyosin Receptor Kinase B activation. Biol. Psychiatry 2016, 79, 463–473. [Google Scholar] [CrossRef]
- Hogan, N.L.; Jaehne, E.J.; Bak, S.; Djouma, E.; van den Buuse, M. Brain-Derived neurotrophic factor Val66Met induces female-specific changes in impulsive behaviour and alcohol self-administration in mice. Behav. Brain Res. 2021, 401, 113090. [Google Scholar] [CrossRef]
- Davis, M.I. Ethanol-BDNF interactions: Still more questions than answers. Pharmacol. Ther. 2008, 118, 36–57. [Google Scholar] [CrossRef]
- Mercado, N.M.; Stancati, J.A.; Sortwell, C.E.; Mueller, R.L.; Boezwinkle, S.A.; Duffy, M.F.; Fischer, D.L.; Sandoval, I.M.; Manfredsson, F.P.; Collier, T.J.; et al. The BDNF Val66Met polymorphism (rs6265) enhances dopamine neuron graft efficacy and side-effect liability in rs6265 knock-in rats. Neurobiol. Dis. 2021, 148, 105175. [Google Scholar] [CrossRef] [PubMed]
- Jaehne, E.J.; Kent, J.N.; Lam, N.; Schonfeld, L.; Spiers, J.G.; Begni, V.; De Rosa, F.; Riva, M.A.; van den Buuse, M. Chronic running-wheel exercise from adolescence leads to increased anxiety and depression-like phenotypes in adulthood in rats: Effects on stress markers and interaction with BDNF Val66Met genotype. Dev. Psychobiol. 2022, 65, e22347. [Google Scholar] [CrossRef] [PubMed]
- Pallant, J.F. SPSS Survival Manual: A Step by Step Guide to Data Analysis Using IBM SPSS, 6th ed.; Sydney Allen & Unwin: Sydney, Australia, 2016. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; L. Erlbaum Associates: Hillsdale, NJ, USA, 1988; pp. xxi, 567p. [Google Scholar]
- Cao, L.; Dhilla, A.; Mukai, J.; Blazeski, R.; Lodovichi, C.; Mason, C.A.; Gogos, J.A. Genetic modulation of BDNF signaling affects the outcome of axonal competition in vivo. Curr. Biol. 2007, 17, 911–921. [Google Scholar] [CrossRef]
- van den Buuse, M.; Biel, D.; Radscheit, K. Does genetic BDNF deficiency in rats interact with neurotransmitter control of prepulse inhibition? Implications for schizophrenia. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2017, 75, 192–198. [Google Scholar] [CrossRef]
- MacLennan, A.J.; Lee, N.; Walker, D.W. Chronic ethanol administration decreases brain-derived neurotrophic factor gene expression in the rat hippocampus. Neurosci. Lett. 1995, 197, 105–108. [Google Scholar] [CrossRef] [PubMed]
- Orrù, A.; Caffino, L.; Moro, F.; Cassina, C.; Giannotti, G.; Di Clemente, A.; Fumagalli, F.; Cervo, L. Contingent and non-contingent recreational-like exposure to ethanol alters BDNF expression and signaling in the cortico-accumbal network differently. Psychopharmacology (Berl.) 2016, 233, 3149–3160. [Google Scholar] [CrossRef]
- Moonat, S.; Starkman, B.G.; Sakharkar, A.; Pandey, S.C. Neuroscience of alcoholism: Molecular and cellular mechanisms. Cell. Mol. Life Sci. 2010, 67, 73–88. [Google Scholar] [CrossRef]
- Taylor, W.D.; Züchner, S.; McQuoid, D.R.; Steffens, D.C.; Speer, M.C.; Krishnan, K.R. Allelic differences in the brain-derived neurotrophic factor val66met polymorphism in late-life depression. Am. J. Geriatr. Psychiatry 2007, 15, 850–857. [Google Scholar] [CrossRef]
- Yan, Q.S.; Feng, M.J.; Yan, S.E. Different expression of brain-derived neurotrophic factor in the nucleus accumbens of alcohol-preferring (P) and -nonpreferring (NP) rats. Brain Res. 2005, 1035, 215–218. [Google Scholar] [CrossRef]
- Petryshen, T.L.; Sabeti, P.C.; Aldinger, K.A.; Fry, B.; Fan, J.B.; Schaffner, S.F.; Waggoner, S.G.; Tahl, A.R.; Sklar, P. Population genetic study of the brain-derived neurotrophic factor (BDNF) gene. Mol. Psychiatry 2010, 15, 810–815. [Google Scholar] [CrossRef]
- Tsai, S.J. Critical issues in BDNF Val66Met genetic studies of neuropsychiatric disorders. Front. Mol. Neurosci. 2018, 11, 156. [Google Scholar] [CrossRef] [PubMed]
- Eisener-Dorman, A.F.; Lawrence, D.A.; Bolivar, V.J. Cautionary insights on knockout mouse studies: The gene or not the gene? Brain Behav. Immun. 2009, 23, 318–324. [Google Scholar] [CrossRef] [PubMed]
- Bailey, K.R.; Rustay, N.R.; Crawley, J.N. Behavioral phenotyping of transgenic and knockout mice: Practical concerns and potential pitfalls. ILAR J. 2006, 47, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Perry, J.L.; Carroll, M.E. The role of impulsive behavior in drug abuse. Psychopharmacology 2008, 200, 1–26. [Google Scholar] [CrossRef]
- Wu, Y.C.; Hill, R.A.; Gogos, A.; van den Buuse, M. Sex differences and the role of estrogen in animal models of schizophrenia: Interaction with BDNF. Neuroscience 2013, 239, 67–83. [Google Scholar] [CrossRef]
- Cavus, I.; Duman, R.S. Influence of estradiol, stress, and 5-HT2A agonist treatment on brain-derived neurotrophic factor expression in female rats. Biol. Psychiatry 2003, 54, 59–69. [Google Scholar] [CrossRef]
- García-Burgos, D.; Manrique Zuluaga, T.; Gallo Torre, M.; González Reyes, F. Sex differences in the alcohol deprivation effect in rats. Psicothema 2010, 22, 887–892. [Google Scholar]
- Scharfman, H.E.; Maclusky, N.J. Similarities between actions of estrogen and BDNF in the hippocampus: Coincidence or clue? Trends Neurosci. 2005, 28, 79–85. [Google Scholar] [CrossRef]
- Becker, J.B.; Koob, G.F. Sex differences in animal models: Focus on addiction. Pharmacol. Rev. 2016, 68, 242–263. [Google Scholar] [CrossRef]
- Jackson, L.R.; Robinson, T.E.; Becker, J.B. Sex differences and hormonal influences on acquisition of cocaine self-administration in rats. Neuropsychopharmacology 2006, 31, 129–138. [Google Scholar] [CrossRef]
- Jaehne, E.J.; Kent, J.N.; Antolasic, E.J.; Wright, B.J.; Spiers, J.G.; Creutzberg, K.C.; De Rosa, F.; Riva, M.A.; Sortwell, C.E.; Collier, T.J.; et al. Behavioral phenotyping of a rat model of the BDNF Val66Met polymorphism reveals selective impairment of fear memory. Transl. Psychiatry 2022, 12, 93. [Google Scholar] [CrossRef] [PubMed]
- Notaras, M.J.; Hill, R.A.; Gogos, J.A.; van den Buuse, M. BDNF Val66Met genotype interacts with a history of simulated stress exposure to regulate sensorimotor gating and startle reactivity. Schizophr. Bull. 2017, 43, 665–672. [Google Scholar] [CrossRef]
- Hill, R.A.; van den Buuse, M. Sex-dependent and region-specific changes in TrkB signaling in BDNF heterozygous mice. Brain Res. 2011, 1384, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Corrone, M.; Nanev, A.; Amato, I.; Bicknell, R.; Wundersitz, D.W.T.; van den Buuse, M.; Wright, B.J. Brain-derived neurotropic factor val66met is a strong predictor of decision making and attention performance on the CONVIRT virtual reality cognitive battery. Neuroscience 2021, 455, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Greening, D.W.; Notaras, M.; Chen, M.; Xu, R.; Smith, J.D.; Cheng, L.; Simpson, R.J.; Hill, A.F.; van den Buuse, M. Chronic methamphetamine interacts with BDNF Val66Met to remodel psychosis pathways in the mesocorticolimbic proteome. Mol. Psychiatry 2021, 26, 4431–4447. [Google Scholar] [CrossRef] [PubMed]
Sex | Genotype | Number |
---|---|---|
Male | Val/Val | 16 |
Val/Met | 16 | |
Met/Met | 15 | |
Female | Val/Val | 16 |
Val/Met | 17 | |
Met/Met | 11 |
Grand Mean | % Above (n) | % Below (n) | χ2 | p |
---|---|---|---|---|
Female rats—number of active lever presses | ||||
Grand mean = 30.9 | ||||
Val/Val | 63 (10) | 38 (6) | 2.644 | 0.104 |
Val/Met | 63 (10) | 38 (6) | 2.644 | 0.104 |
Met/Met | 18 (2) | 82 (9) | 21.412 | <0.001 |
Male rats—number of active lever presses | ||||
Grand mean = 37.2 | ||||
Val/Val | 40 (6) | 60 (9) | 1.636 | 0.200 |
Val/Met | 44 (7) | 56 (9) | 0.502 | 0.479 |
Met/Met | 40 (6) | 60 (9) | 1.636 | 0.200 |
Female rats—potential amount of alcohol ingested expressed as ratio of body weight | ||||
Grand mean = 0.228 | ||||
Val/Val | 56 (9) | 44 (7) | 0.501 | 0.479 |
Val/Met | 53 (8) | 47 (7) | 0.080 | 0.772 |
Met/Met | 27 (3) | 73 (8) | 10.221 | 0.001 |
Male rats—potential amount of alcohol ingested expressed as ratio of body weight | ||||
Grand mean = 0.138 | ||||
Val/Val | 40 (6) | 60 (9) | 1.636 | 0.200 |
Val/Met | 44 (7) | 56 (9) | 0.502 | 0.478 |
Met/Met | 40 (6) | 60 (9) | 1.636 | 0.200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaehne, E.J.; McInerney, E.; Sharma, R.; Genders, S.G.; Djouma, E.; van den Buuse, M. A Rat Model of the Brain-Derived Neurotrophic Factor Val66Met Polymorphism Shows Attenuated Motivation for Alcohol Self-Administration and Diminished Propensity for Cue-Induced Relapse in Females. Biology 2023, 12, 799. https://doi.org/10.3390/biology12060799
Jaehne EJ, McInerney E, Sharma R, Genders SG, Djouma E, van den Buuse M. A Rat Model of the Brain-Derived Neurotrophic Factor Val66Met Polymorphism Shows Attenuated Motivation for Alcohol Self-Administration and Diminished Propensity for Cue-Induced Relapse in Females. Biology. 2023; 12(6):799. https://doi.org/10.3390/biology12060799
Chicago/Turabian StyleJaehne, Emily J., Elizabeth McInerney, Ronan Sharma, Shannyn G. Genders, Elvan Djouma, and Maarten van den Buuse. 2023. "A Rat Model of the Brain-Derived Neurotrophic Factor Val66Met Polymorphism Shows Attenuated Motivation for Alcohol Self-Administration and Diminished Propensity for Cue-Induced Relapse in Females" Biology 12, no. 6: 799. https://doi.org/10.3390/biology12060799
APA StyleJaehne, E. J., McInerney, E., Sharma, R., Genders, S. G., Djouma, E., & van den Buuse, M. (2023). A Rat Model of the Brain-Derived Neurotrophic Factor Val66Met Polymorphism Shows Attenuated Motivation for Alcohol Self-Administration and Diminished Propensity for Cue-Induced Relapse in Females. Biology, 12(6), 799. https://doi.org/10.3390/biology12060799