PACAP and VIP Neuropeptides’ and Receptors’ Effects on Appetite, Satiety and Metabolism
Abstract
:Simple Summary
Abstract
1. Introduction
2. PACAP
2.1. PACAP and Its Receptors
2.2. PACAP’s Central Effects on Appetite and Thermogenesis
2.3. PACAP and PAC1’s Peripheral Metabolic Effects
2.4. Effects of PACAP and PAC1 on Energy Expenditure
3. VIP
3.1. VIP and Its Receptors (VPAC1 and VPAC2)
3.2. VIP Effects on Appetite, Satiety and Circadian Rhythm
3.3. VIP and Its Receptors in Body Composition
3.4. Effects of VIP on Metabolic Hormone Regulation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CNS | Central nervous system |
GI | Gastrointestinal |
GLP-1 | Glucagon-like peptide 1 |
IGF | Insulin-like growth factor |
PAC1 | Pituitary adenylate cyclase activating polypeptide type 1 receptor |
PACAP | Pituitary adenylate cyclase activating polypeptide |
PYY | Peptide YY |
VIP | Vasoactive intestinal polypeptide |
VPAC1 | Vasoactive intestinal polypeptide receptor 1 |
VPAC2 | Vasoactive intestinal polypeptide receptor 2 BW body weight |
T2D | Type 2 diabetes |
GPCR | G-protein-coupled receptor |
WT | Wild type |
FAIM | Fas apoptotic inhibitory molecule |
GIP | Gastric inhibitory peptide |
WT | Wild type |
HFD | High-fat diet |
SREBP | Sterol regulatory element binding protein |
AMPK | AMP-activated protein kinase |
cAMP | Cyclic adenosine monophosphate |
AMPK | AMP-activated protein kinase |
cAMP | Cyclic adenosine monophosphate |
PKA | Protein kinase A |
References
- Alhabeeb, H.; AlFaiz, A.; Kutbi, E.; AlShahrani, D.; Alsuhail, A.; AlRajhi, S.; Alotaibi, N.; Alotaibi, K.; AlAmri, S.; Alghamdi, S.; et al. Gut Hormones in Health and Obesity: The Upcoming Role of Short Chain Fatty Acids. Nutrients 2021, 13, 481. [Google Scholar] [CrossRef] [PubMed]
- Marić, G.; Gazibara, T.; Zaletel, I.; Borović, M.L.; Tomanović, N.; Cirić, M.; Puškaš, N. The Role of Gut Hormones in Appetite Regulation (Review). Acta Physiol. Hung. 2014, 101, 395–407. [Google Scholar] [CrossRef] [PubMed]
- Spiegelman, B.M.; Flier, J.S. Obesity and the regulation of energy balance. Cell 2001, 104, 531–543. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.C.; McPherson, K.; Marsh, T.; Gortmaker, S.L.; Brown, M. Health and economic burden of the projected obesity trends in the USA and the UK. Lancet 2011, 378, 815–825. [Google Scholar] [CrossRef]
- Dockray, G. Gut endocrine secretions and their relevance to satiety. Curr. Opin. Pharmacol. 2004, 4, 557–560. [Google Scholar] [CrossRef]
- Cummings, D.E.; Overduin, J. Gastrointestinal regulation of food intake. J. Clin. Investig. 2007, 117, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Moody, T.W.; Ito, T.; Osefo, N.; Jensen, R.T. VIP and PACAP: Recent insights into their functions/roles in physiology and disease from molecular and genetic studies. Curr. Opin. Endocrinol. Diabetes Obes. 2011, 18, 61–67. [Google Scholar] [CrossRef] [Green Version]
- Iwasaki, M.; Akiba, Y.; Kaunitz, J.D. Recent advances in VIP physiology and pathophysiology: Focus on the gastrointestinal system. F1000Research 2019, 8, 1629. [Google Scholar] [CrossRef] [Green Version]
- Bains, M.; Laney, C.; Wolfe, A.E.; Orr, M.; Waschek, J.A.; Ericsson, A.C.; Glenn, P.D. VIP is associated with altered gut microbiota communities in male and female C57Bl/6 mice. Front. Microbiol. 2019, 10, 2689. [Google Scholar] [CrossRef] [Green Version]
- Vu, J.P.; Larauche, M.; Flores, M.; Luong, L.; Norris, J.; Oh, S.; Liang, L.-J.; Waschek, J.; Pisegna, J.R.; Germano, P.M.; et al. Regulation of Appetite, Body Composition, and Metabolic Hormones by Vasoactive Intestinal Polypeptide (VIP). J. Mol. Neurosci. 2015, 56, 377–387. [Google Scholar] [CrossRef] [Green Version]
- Vu, J.P.; Goyal, D.; Luong, L.; Oh, S.; Sandhu, R.; Norris, J.; Parsons, W.; Pisegna, J.R.; Germano, P.M. PACAP intraperitoneal treatment suppresses appetite and food intake via PAC1 receptor in mice by inhibiting ghrelin and increasing GLP-1 and leptin. Am. J. Physiol. Gastrointest. Liver Physiol. 2015, 309, G816–G825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waschek, J.A. VIP and PACAP: Neuropeptide modulators of CNS inflammation, injury, and repair. Br. J. Pharmacol. 2013, 169, 512–523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vu, J.P.; Benhammou, J.N.; Goyal, D.; Luong, L.; Oh, S.; Germano, P.; Pisegna, J.R. PACAP Regulation of Gastrointestinal Function and Obesity. PACAP Curr. Top. Neurotox. 2016, 11, 261–269. [Google Scholar]
- Liao, C.; Remington, J.M.; May, V.; Li, L. Molecular Basis of Class B GPCR Selectivity for the Neuropeptides PACAP and VIP. Front. Mol. Biosci. 2021, 8, 644644. [Google Scholar] [CrossRef]
- Vaudry, D.; Falluel-Morel, A.; Bourgault, S.; Basille, M.; Burel, D.; Wurtz, O.; Fournier, A.; Chow, B.K.; Hashimoto, H.; Galas, L.; et al. Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacol. Rev. 2009, 61, 283–357. [Google Scholar] [CrossRef] [PubMed]
- Kimura, C.; Ohkubo, S.; Ogi, K.; Hosoya, M.; Itoh, Y.; Onda, H.; Miyata, A.; Jiang, L.; Dahl, R.R.; Stibbs, H.H.; et al. A novel peptide which stimulates adenylate cyclase: Molecular cloning and characterization of the ovine and human cDNAs. Biochem. Biophys. Res. Commun. 1990, 166, 81–89. [Google Scholar] [CrossRef]
- Miyata, A.; Jiang, L.; Dahl, R.D.; Kitada, C.; Kubo, K.; Fujino, M.; Minamino, N.; Arimura, A. Isolation of a neuropeptide corresponding to the N-terminal 27 residues of the pituitary adenylate cyclase activating polypeptide with 38 residues (PACAP38). Biochem. Biophys. Res. Commun. 1990, 170, 643–648. [Google Scholar] [CrossRef] [PubMed]
- Harmar, A.J.; Fahrenkrug, J.; Gozes, I.; Laburthe, M.; May, V.; Pisegna, J.R.; Vaudry, D.; Vaudry, H.; Waschek, J.A.; Said, S.I. Pharmacology and functions of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide: IUPHAR review 1. Br. J. Pharmacol. 2012, 166, 4–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pisegna, J.R.; Wank, S.A. Molecular cloning and functional expression of the pituitary adenylate cyclase-activating polypeptide type I receptor. Proc. Natl. Acad. Sci. USA 1993, 90, 6345–6349. [Google Scholar] [CrossRef]
- Arimura, A.; Somogyvári-Vigh, A.; Miyata, A.; Mizuno, K.; Coy, D.H.; Kitada, C. Tissue distribution of PACAP as determined by RIA: Highly abundant in the rat brain and testes. Endocrinology 1991, 129, 2787–2789. [Google Scholar] [CrossRef]
- Miampamba, M.; Germano, P.M.; Arli, S.; Wong, H.H.; Scott, D.; Taché, Y.; Pisegna, J.R. Expression of pituitary adenylate cyclase-activating polypeptide and PACAP type 1 receptor in the rat gastric and colonic myenteric neurons. Regul. Pept. 2002, 105, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Pisegna, J.R.; Oh, D.S. Pituitary adenylate cyclase-activating polypeptide: A novel peptide with protean implications. Curr. Opin. Endocrinol. Diabetes Obes. 2007, 14, 58–62. [Google Scholar] [CrossRef] [PubMed]
- Karpiesiuk, A.; Palus, K. Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) in Physiological and Pathological Processes within the Gastrointestinal Tract: A Review. Int. J. Mol. Sci. 2021, 22, 8682. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Germano, P.; Ohning, G.V.; Vu, J.P.; Pisegna, J.R. PAC1 deficiency in a murine model induces gastric mucosa hypertrophy and higher basal gastric acic output. J. Mol. Neurosci. 2011, 43, 76–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reglodi, D.; Illes, A.; Opper, B.; Schaafer, E.; Tamas, A.; Horvath, G. Presence and Effects of PACAP under Physiological and Pathological Conditions in the Stomach. Front. Endocrinol. 2018, 9, 90. [Google Scholar] [CrossRef] [Green Version]
- Tomimoto, S.; Ojika, T.; Shintani, N.; Hashimoto, H.; Hamagami, K.-I.; Ikeda, K.; Nakata, M.; Yada, T.; Sakurai, Y.; Shimada, T.; et al. Markedly reduced white adipose tissue and increased insulin sensitivity in adcyap1-deficient mice. J. Pharmacol. Sci. 2008, 107, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Chance, W.T.; Thompson, H.; Thomas, I.; Fischer, J.E. Anorectic and neurochemical effects of pituitary adenylate cyclase activating polypeptide in rats. Peptides 1995, 16, 1511–1516. [Google Scholar] [CrossRef]
- Mizuno, Y.; Kondo, K.; Terashima, Y.; Arima, H.; Murase, T.; Oiso, Y. Anorectic effect of pituitary adenylate cyclase activating polypeptide (PACAP) in rats: Lack of evidence for involvement of hypothalamic neuropeptide gene expression. J. Neuroendocrinol. 1998, 10, 611–616. [Google Scholar] [CrossRef]
- Matsuda, K.; Maruyama, K.; Miura, T.; Uchiyama, M.; Shioda, S. Anorexigenic action of pituitary adenylate cyclase-activating polypeptide (PACAP) in the goldfish: Feeding-induced changes in the expression of mRNAs for PACAP and its receptors in the brain, and locomotor response to central injection. Neurosci. Lett. 2005, 386, 9–13. [Google Scholar] [CrossRef]
- Matsuda, K.; Maruyama, K.; Nakamachi, T.; Miura, T.; Shioda, S. Effects of pituitary adenylate cyclase-activating polypeptide and vasoactive intestinal polypeptide on food intake and locomotor activity in the goldfish, Carassius auratus. Ann. N. Y. Acad. Sci. 2006, 1070, 417–421. [Google Scholar] [CrossRef]
- Morley, J.E.; Horowitz, M.; Morley, P.M.; Flood, J.F. Pituitary adenylate cyclase activating polypeptide (PACAP) reduces food intake in mice. Peptides 1992, 13, 1133–1135. [Google Scholar] [CrossRef] [PubMed]
- Tachibana, T.; Saito, S.; Tomonaga, S.; Takagi, T.; Saito, E.-S.; Boswell, T.; Furuse, M. Intracerebroventricular injection of vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibits feeding in chicks. Neurosci. Lett. 2003, 339, 203–206. [Google Scholar] [CrossRef] [PubMed]
- Tachibana, T.; Tomonaga, S.; Oikawa, D.; Saito, S.; Takagi, T.; Saito, E.S.; Boswell, T.; Furuse, M. Pituitary adenylate cyclase activating polypeptide and vasoactive intestinal peptide inhibit feeding in the chick brain by different mechanisms. Neurosci. Lett. 2003, 348, 25–28. [Google Scholar] [CrossRef] [PubMed]
- Martins, A.B.; Brownlow, M.L.; Araújo. B.B.; Garnica-Siqueira, M.C.; Morozin Zaia, D.A.; Cristiane Zaia, V.; Uchoa, E.T. Arcuate nucleus of the hypothalamus contributes to the hypophagic effect and plasma metabolic changes induced by VIP and PACAP. Neurochem. Int. 2022, 155, 105300. [Google Scholar] [CrossRef]
- Hannibal, J. Pituitary adenylate cyclase-activating peptide in the rat central nervous system: An immunohistochemical and in situ hybridization study. J. Comp. Neurol. 2002, 453, 389–417. [Google Scholar] [CrossRef]
- Hashimoto, H.; Nogi, H.; Mori, K.; Ohishi, H.; Shigemoto, R.; Yamamoto, K.; Matsuda, T.; Mizuno, N.; Nagata, S.; Baba, A. Distribution of the mRNA for a pituitary adenylate cyclase-activating polypeptide receptor in the rat brain: An in situ hybridization study. J. Comp. Neurol. 1996, 371, 567–577. [Google Scholar] [CrossRef]
- Mounien, L.; Bizet, P.; Boutelet, I.; Gourcerol, G.; Basille, M.; Gonzalez, B.; Vaudry, H.; Jegou, S. Expression of PACAP receptor mRNAs by neuropeptide Y neurons in the rat arcuate nucleus. Ann. N. Y. Acad. Sci. 2006, 1070, 457–461. [Google Scholar] [CrossRef]
- Mounien, L.; Rego, J.-C.D.; Bizet, P.; Boutelet, I.; Gourcerol, G.; Fournier, A.; Brabet, P.; Costentin, J.; Vaudry, H.; Jégou, S. Pituitary adenylate cyclase-activating polypeptide inhibits food intake in mice through activation of the hypothalamic melanocortin system. Neuropsychopharmacology 2009, 34, 424–435. [Google Scholar] [CrossRef] [Green Version]
- Krashes, M.J.; Shah, B.P.; Madara, J.C.; Olson, D.P.; Strochlic, D.E.; Garfield, A.S.; Vong, L.; Pei, H.; Watabe-Uchida, M.; Uchida, N.; et al. An excitatory paraventricular nucleus to AgRP neuron circuit that drives hunger. Nature 2014, 507, 238–242. [Google Scholar] [CrossRef] [Green Version]
- Yu, R.; Yi, T.; Xie, S.; Hong, A. Long-term administration of maxadilan improves glucose tolerance and insulin sensitivity in mice. Peptides 2008, 29, 1347–1353. [Google Scholar] [CrossRef]
- Resch, J.M.; Boisvert, J.P.; Hourigan, A.E.; Mueller, C.R.; Yi, S.S.; Choi, S. Stimulation of the hypothalamic ventromedial nuclei by pituitary adenylate cyclase-activating polypeptide induces hypophagia and thermogenesis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011, 301, R1625–R1634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Resch, J.M.; Maunze, B.; Gerhardt, A.K.; Magnuson, S.K.; Phillips, K.A.; Choi, S.; Vu, J.P.; Goyal, D.; Luong, L.; Oh, S.; et al. Intrahypothalamic pituitary adenylate cyclase-activating polypeptide regulates energy balance via site-specific actions on feeding and metabolism. Am. J. Physiol. Endocrinol. Metab. 2013, 305, E1452–E1463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hawke, Z.; Ivanov, T.R.; Bechtold, D.A.; Dhillon, H.; Lowell, B.B.; Luckman, S.M. PACAP neurons in the hypothalamic ventromedial nucleus are targets of central leptin signaling. J. Neurosci. 2009, 29, 14828–14835. [Google Scholar] [CrossRef]
- Kocho-Schellenberg, M.; Lezak, K.R.; Harris, O.M.; Roelke, E.; Gick, N.; Choi, I.; Edwards, S.; Wasserman, E.; Toufexis, D.J.; Braas, K.M.; et al. PACAP in the BNST produces anorexia and weight loss in male and female rats. Neuropsychopharmacology 2014, 39, 1614–1623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, N.; Athmann, C.; Kang, T.; Lyu, R.M.; Walsh, J.H.; Ohning, G.V.; Sachs, G.; Pisegna, J.R. PACAP type I receptor activation regulates ECL cells and gastric acid secretion. J. Clin. Investig. 1999, 104, 1383–1391. [Google Scholar] [CrossRef] [Green Version]
- Kojima, M.; Hosoda, H.; Date, Y.; Nakazato, M.; Matsuo, H.; Kangawa, K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 1999, 402, 656–660. [Google Scholar] [CrossRef]
- Yang, J.; Brown, M.S.; Liang, G.; Grishin, N.V.; Goldstein, J.L. Identification of the acyltransferase that octanoylates ghrelin, an appetite-stimulating peptide hormone. Cell 2008, 132, 387–396. [Google Scholar] [CrossRef] [Green Version]
- Vu, J.P.; Wang, H.S.; Germano, P.M.; Pisegna, J.R. Ghrelin in neuroendocrine tumors. Peptides 2011, 32, 2340–2347. [Google Scholar] [CrossRef]
- Srivastava, A.; Kamath, A.; Barry, S.A.; Dayal, Y. Ghrelin expression in hyperplastic and neoplastic proliferations of the enterochromaffin-like (ECL) cells. Endocr. Pathol. 2004, 15, 47–54. [Google Scholar] [CrossRef]
- Piqueras, L.; Taché, Y.; Martínez, V. Peripheral PACAP inhibits gastric acid secretion through somatostatin release in mice. Br. J. Pharmacol. 2004, 142, 67–78. [Google Scholar] [CrossRef]
- Yokota, C.; Kawai, K.; Ohashi, S.; Watanabe, Y.; Suzuki, S.; Yamashita, K. Stimulatory effects of pituitary adenylate cyclase-activating polypeptide (PACAP) on insulin and glucagon release from the isolated perfused rat pancreas. Acta Endocrinol. 1993, 129, 473–479. [Google Scholar] [CrossRef] [PubMed]
- Filipsson, K.; Sundler, F.; Hannibal, J.; Ahrén, B. PACAP and PACAP receptors in insulin producing tissues: Localization and effects. Regul. Pept. 1998, 74, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Nussdorfer, G.G.; Malendowicz, L.K. Role of VIP, PACAP, and related peptides in the regulation of the hypothalamo-pituitary-adrenal axis. Peptides 1998, 19, 1443–1467. [Google Scholar] [CrossRef] [PubMed]
- Hamelink, C.; Tjurmina, O.; Damadzic, R.; Young, W.S.; Weihe, E.; Lee, H.W.; Eiden, L.E. Pituitary adenylate cyclase-activating polypeptide is a sympathoadrenal neurotransmitter involved in catecholamine regulation and glucohomeostasis. Proc. Natl. Acad. Sci. USA 2002, 99, 461–466. [Google Scholar] [CrossRef] [PubMed]
- Raufman, J.-P.; Malhotra, R.; Singh, L. PACAP-38, a novel peptide from ovine hypothalamus, is a potent modulator of amylase release from dispersed acini from rat pancreas. Regul. Pept. 1991, 36, 121–129. [Google Scholar] [CrossRef]
- Jamen, F.; Persson, K.; Bertrand, G.; Rodriguez-Henche, N.; Puech, R.; Bockaert, J.; Ahrén, B.; Brabet, P. PAC1 receptor-deficient mice display impaired insulinotropic response to glucose and reduced glucose tolerance. J. Clin. Investig. 2000, 105, 1307–1315. [Google Scholar] [CrossRef] [Green Version]
- Borboni, P.; Porzio, O.; Pierucci, D.; Cicconi, S.; Magnaterra, R.; Federici, M.; Sesti, G.; Lauro, D.; D’Agata, V.; Cavallaro, S.; et al. Molecular and functional characterization of pituitary adenylate cyclase-activating polypeptide (PACAP-38)/vasoactive intestinal polypeptide receptors in pancreatic beta-cells and effects of PACAP-38 on components of the insulin secretory system. Endocrinology 1999, 140, 5530–5537. [Google Scholar] [CrossRef]
- Tanida, M.; Hayata, A.; Shintani, N.; Yamamoto, N.; Kurata, Y.; Shibamoto, T.; Morgan, D.; Rahmouni, K.; Hashimoto, H. Central PACAP mediates the sympathetic effects of leptin in a tissue-specific manner. Neuroscience 2013, 238, 297–304. [Google Scholar] [CrossRef] [Green Version]
- Gray, S.L.; Yamaguchi, N.; Vencová, P.; Sherwood, N.M. Temperature-sensitive phenotype in mice lacking pituitary adenylate cyclase-activating polypeptide. Endocrinology 2002, 143, 3946–3954. [Google Scholar] [CrossRef] [Green Version]
- Gray, S.L.; Cummings, K.J.; Jirik, F.R.; Sherwood, N.M. Targeted disruption of the pituitary adenylate cyclase-activating polypeptide gene results in early postnatal death associated with dysfunction of lipid and carbohydrate metabolism. Mol. Endocrinol. 2001, 15, 1739–1747. [Google Scholar] [CrossRef]
- Diané, A.; Nikolic, N.; Rudecki, A.P.; King, S.M.; Bowie, D.J.; Gray, S.L. PACAP is essential for the adaptive thermogenic response of brown adipose tissue to cold exposure. J. Endocrinol. 2014, 222, 327–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, B.A.; Gray, S.L.; Isaac, E.R.; Bianco, A.C.; Vidal-Puig, A.J.; Sherwood, N.M. Feeding and metabolism in mice lacking pituitary adenylate cyclase-activating polypeptide. Endocrinology 2008, 149, 1571–1580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arsenijevic, T.; Gregoire, F.; Chiadak, J.; Courtequisse, E.; Bolaky, N.; Perret, J.; Delporte, C. Pituitary adenylate cyclase activating peptide (PACAP) participates in adipogenesis by activating ERK signaling pathway. PLoS ONE 2013, 8, e72607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, W.; Dai, J.; Liu, J.; Huang, Y.; Zheng, Z.; Xu, P.; Ma, Y. PACAP attenuates hepatic lipid accumulation through the FAIM/AMPK/IRb axis during overnutrition. Mol. Metab. 2022, 65, 101584. [Google Scholar] [CrossRef] [PubMed]
- Usdin, T.B.; Bonner, T.I.; Mezey, E. Two receptors for vasoactive intestinal polypeptide with similar specificity and complementary distributions. Endocrinology 1994, 135, 2662–2680. [Google Scholar] [CrossRef] [PubMed]
- Sreedharan, S.P.; Huang, J.X.; Cheung, M.C.; Goetzl, E.J. Structure, expression, and chromosomal localization of the type I human vasoactive intestinal peptide receptor gene. Proc. Natl. Acad. Sci. USA 1995, 92, 2939–2943. [Google Scholar] [CrossRef]
- Adamou, J.E.; Aiyar, N.; Van Horn, S.; Elshourbagy, N.A. Cloning and functional characterization of the human vasoactive intestinal peptide (VIP)-2 receptor. Biochem. Biophys. Res. Commun. 1995, 209, 385–392. [Google Scholar] [CrossRef]
- Harmar, A.J.; Sheward, W.J.; Morrison, C.F.; Waser, B.; Gugger, M.; Reubi, J.C. Distribution of the VPAC2 receptor in peripheral tissues of the mouse. Endocrinology 2004, 145, 1203–1210. [Google Scholar] [CrossRef]
- Lelievre, V.; Favrais, G.; Abad, C.; Adle-Biassette, H.; Lu, Y.; Germano, P.M.; Cheung-Lau, G.; Pisegna, J.R.; Gressens, P.; Lawson, G.; et al. Gastrointestinal dysfunction in mice with a targeted mutation in the gene encoding vasoactive intestinal polypeptide: A model for the study of intestinal ileus and Hirschsprung’s disease. Peptides 2007, 28, 1688–1699. [Google Scholar] [CrossRef] [Green Version]
- Talbot, J.; Hahn, P.; Kroehling, L.; Nguyen, H.; Li, D.; Littman, D.R. Feeding-dependent VIP neuron-ILC3 circuit regulates the intestinal barrier. Nature 2020, 579, 575–580. [Google Scholar] [CrossRef]
- Jia, T.; Zhao, N. Expression and function of vasoactive intestinal peptide receptors in human lower esophageal sphincter. Ann. Palliat. Med. 2021, 10, 3067–3077. [Google Scholar] [CrossRef] [PubMed]
- Conlin, V.S.; Wu, X.; Nguyen, C.; Dai, C.; Vallance, B.A.; Buchan, A.M.J.; Boyer, L.; Jacobson, K. Vasoactive intestinal peptide ameliorates intestinal barrier disruption associated with Citrobacter rodentium-induced colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 2009, 297, G735–G750. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Conlin, V.S.; Morampudi, V.; Ryz, N.R.; Nasser, Y.; Bhinder, G.; Bergstrom, K.S.; Yu, H.B.; Waterhouse, C.C.M.; Buchan, A.; et al. Vasoactive Intestinal Polypeptide Promotes Intestinal Barrier Homeostasis and Protection Against Colitis in Mice. PLoS ONE 2015, 10, e0125225. [Google Scholar] [CrossRef] [PubMed]
- Voice, J.K.; Dorsam, G.; Chan, R.C.; Grinninger, C.; Kong, Y.; Goetzl, E.J. Immunoeffector and immunoregulatory activities of VIP. Regul. Pept. 2002, 109, 199–208. [Google Scholar] [CrossRef]
- Delgado, M.; Ganea, D. Vasoactive intestinal peptide: A neuropeptide with pleiotropic immune functions. Amino Acids 2013, 45, 25–39. [Google Scholar] [CrossRef] [PubMed]
- Seillet, C.; Luong, K.; Tellier, J.; Jacquelot, N.; Shen, R.D.; Hickey, P.; Wimmer, V.C.; Whitehead, L.; Rogers, K.L.; Smyth, G.K.; et al. The neuropeptide VIP confers anticipatory mucosal immunity by regulating ILC3 activity. Nat. Immunol. 2020, 21, 168–177. [Google Scholar] [CrossRef]
- Sheward, W.J.; Maywood, E.S.; French, K.L.; Horn, J.M.; Hastings, M.H.; Seckl, J.R.; Holmes, M.C.; Harmar, A.J. Entrainment to feeding but not to light: Circadian phenotype of VPAC2 receptor-null mice. J. Neurosci. 2007, 27, 4351–4358. [Google Scholar] [CrossRef]
- Sanford, D.; Luong, L.; Vu, J.P.; Oh, S.; Gabalski, A.; Lewis, M.; Pisegna, J.R.; Germano, P. The VIP/VPAC1R Pathway Regulates Energy and Glucose Homeostasis by Modulating GLP-1, Glucagon, Leptin and PYY Levels in Mice. Biology 2022, 11, 431. [Google Scholar] [CrossRef]
- Yu, R.J.; Zhang, L.; Yi, T.H.; Xie, S.S.; Dai, Y. In vivo anti-obesity effect of the agonist for receptor VPAC1. Sheng Li Xue Bao 2008, 60, 751–758. [Google Scholar]
- Alexander, L.D.; Evans, K.; Sander, L.D. A possible involvement of VIP in feeding-induced secretion of ACTH and corticosterone in the rat. Physiol. Behav. 1995, 58, 409–413. [Google Scholar] [CrossRef]
- Colwell, C.S.; Michel, S.; Itri, J.; Rodriguez, W.; Tam, J.; Lelievre, V.; Hu, Z.; Liu, X.; Waschek, J.A. Disrupted circadian rhythms in VIP- and PHI-deficient mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2003, 285, R939–R949. [Google Scholar] [CrossRef] [PubMed]
- Patton, A.P.; Edwards, M.D.; Smyllie, N.J.; Hamnett, R.; Chesham, J.E.; Brancaccio, M.; Maywood, E.S.; Hastings, M.H. The VIP-VPAC2 neuropeptidergic axis is a cellular pacemaking hub of the suprachiasmatic nucleus circadian circuit. Nat. Commun. 2020, 11, 3394. [Google Scholar] [CrossRef] [PubMed]
- Bass, J.; Takahashi, J.S. Circadian integration of metabolism and energetics. Science 2010, 330, 1349–1354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Green, C.B.; Douris, N.; Kojima, S.; Strayer, C.A.; Fogerty, J.; Lourim, D.; Keller, S.R.; Besharse, J.C. Loss of Nocturnin, a circadian deadenylase, confers resistance to hepatic steatosis and diet-induced obesity. Proc. Natl. Acad. Sci. USA 2007, 104, 9888–9893. [Google Scholar] [CrossRef] [PubMed]
- Shimba, S.; Ishii, N.; Ohta, Y.; Ohno, T.; Watabe, Y.; Hayashi, M.; Wada, T.; Aoyagi, T.; Tezuka, M. Brain and muscle Arnt-like protein-1 (BMAL1), a component of the molecular clock, regulates adipogenesis. Proc. Natl. Acad. Sci. USA 2005, 102, 12071–12076. [Google Scholar] [CrossRef]
- Liu, Y.-J.; Guo, Y.-F.; Zhang, L.-S.; Pei, Y.-F.; Yu, N.; Yu, P.; Papasian, C.J.; Deng, H.-W. Biological pathway-based genome-wide association analysis identified the vasoactive intestinal peptide (VIP) pathway important for obesity. Obesity 2010, 18, 2339–2346. [Google Scholar] [CrossRef] [Green Version]
- Gressens, P.; Hill, J.M.; Paindaveine, B.; Gozes, I.; Fridkin, M.; Brenneman, D.E. Severe microcephaly induced by blockade of vasoactive intestinal peptide function in the primitive neuroepithelium of the mouse. J. Clin. Investig. 1994, 94, 2020–2027. [Google Scholar] [CrossRef]
- Hill, J.M.; Mervis, R.F.; Politi, J.; McCUNE, S.K.; Gozes, I.; Fridkin, M.; Brenneman, D.E. Blockade of VIP during neonatal development induces neuronal damage and increases VIP and VIP receptors in brain. Ann. N. Y. Acad. Sci. 1994, 739, 211–225. [Google Scholar] [CrossRef]
- Girard, B.A.; Lelievre, V.; Braas, K.M.; Razinia, T.; Vizzard, M.A.; Ioffe, Y.; El Meskini, R.; Ronnett, G.V.; Waschek, J.A.; May, V. Noncompensation in peptide/receptor gene expression and distinct behavioral phenotypes in VIP- and PACAP-deficient mice. J. Neurochem. 2006, 99, 499–513. [Google Scholar] [CrossRef]
- Lim, M.A.; Stack, C.M.; Cuasay, K.; Stone, M.M.; McFarlane, H.G.; Waschek, J.A.; Hill, J.M. Regardless of genotype, offspring of VIP-deficient female mice exhibit developmental delays and deficits in social behavior. Int. J. Dev. Neurosci. 2008, 26, 423–434. [Google Scholar] [CrossRef] [Green Version]
- Wei, Y.; Mojsov, S. Tissue specific expression of different human receptor types for pituitary adenylate cyclase activating polypeptide and vasoactive intestinal polypeptide: Implications for their role in human physiology. J. Neuroendocrinol. 1996, 8, 811–817. [Google Scholar] [CrossRef] [PubMed]
- Akesson, L.; Ahren, B.; Edgren, G.; Degerman, E. VPAC2-R mediates the lipolytic effects of pituitary adenylate cyclase-activating polypeptide/vasoactive intestinal polypeptide in primary rat adipocytes. Endocrinology 2005, 146, 744–750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bataille, D.; Freychet, P.; Rosselin, G. Interactions of glucagon, gut glucagon, vasoactive intestinal polypeptide and secretin with liver and fat cell plasma membranes: Binding to specific sites and stimulation of adenylate cyclase. Endocrinology 1974, 95, 713–721. [Google Scholar] [CrossRef] [PubMed]
- Richter, W.O.; Robl, H.; Schwandt, P. Human glucagon and vasoactive intestinal polypeptide (VIP) stimulate free fatty acid release from human adipose tissue in vitro. Peptides 1989, 10, 333–335. [Google Scholar] [CrossRef] [PubMed]
- Asnicar, M.A.; Köster, A.; Heiman, M.L.; Tinsley, F.; Smith, D.P.; Galbreath, E.; Fox, N.; Ma, Y.L.; Blum, W.F.; Hsiung, H.M. Vasoactive intestinal polypeptide/pituitary adenylate cyclase-activating peptide receptor 2 deficiency in mice results in growth retardation and increased basal metabolic rate. Endocrinology 2002, 143, 3994–4006. [Google Scholar] [CrossRef]
- Fabricius, D.; Karacay, B.; Shutt, D.; Leverich, W.; Schafer, B.; Takle, E.; Thedens, D.; Khanna, G.; Raikwar, S.; Yang, B.; et al. Characterization of intestinal and pancreatic dysfunction in VPAC1-null mutant mouse. Pancreas 2011, 40, 861–871. [Google Scholar] [CrossRef]
- Lijnen, H.R.; Freson, K.; Hoylaerts, M.F. Effect of VPAC1 Blockade on Adipose Tissue Formation and Composition in Mouse Models of Nutritionally Induced Obesity. J. Obes. 2010, 2010, 359527. [Google Scholar] [CrossRef] [Green Version]
- Boeckxstaens, G.E.; A Pelckmans, P.; De Man, J.G.; Bult, H.; Herman, A.G.; Van Maercke, Y.M. Evidence for a differential release of nitric oxide and vasoactive intestinal polypeptide by nonadrenergic noncholinergic nerves in the rat gastric fundus. Arch. Int. Pharmacodyn. Ther. 1992, 318, 107–115. [Google Scholar]
- D’Amato, M.; Currò, D.; Montuschi, P.; Ciabattoni, G.; Ragazzoni, E.; Lefebvre, R.A. Release of vasoactive intestinal polypeptide from the rat gastric fundus. Br. J. Pharmacol. 1992, 105, 691–695. [Google Scholar] [CrossRef] [Green Version]
- Pedersen-Bjergaard, U.; Høt, U.; Kelbæk, H.; Schifter, S.; Rehfeld, J.F.; Faber, J.; Christensen, N.J. Influence of meal composition on postprandial peripheral plasma concentrations of vasoactive peptides in man. Scand. J. Clin. Lab. Investig. 1996, 56, 497–503. [Google Scholar] [CrossRef]
- Martin, B.; Shin, Y.K.; White, C.M.; Ji, S.; Kim, W.; Carlson, O.D.; Napora, J.K.; Chadwick, W.; Chapter, M.; Waschek, J.A.; et al. Vasoactive intestinal peptide-null mice demonstrate enhanced sweet taste preference, dysglycemia, and reduced taste bud leptin receptor expression. Diabetes 2010, 59, 1143–1152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bilal, A.; Pratley, R.E. Newer Glucose-Lowering Therapies in Older Adults with Type 2 Diabetes. Endocrinol. Metab. Clin. N. Am. 2023, 52, 355–375. [Google Scholar] [CrossRef] [PubMed]
- Ballantyne, G.H.; Goldenring, J.R.; Savoca, P.E.; Kranz, H.K.; Adrian, T.E.; Bilchik, A.J.; Modlin, I.M. Cyclic AMP-mediated release of peptide YY (PYY) from the isolated perfused rabbit distal colon. Regul. Pept. 1993, 47, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Yamauchi, T.; Kamon, J.; Waki, H.; Terauchi, Y.; Kubota, N.; Hara, K.; Mori, Y.; Ide, T.; Murakami, K.; Tsuboyama-Kasaoka, N.; et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat. Med. 2001, 7, 941–946. [Google Scholar] [CrossRef]
- Ahrén, B.; Lundquist, I. Effects of vasoactive intestinal polypeptide (VIP), secretin and gastrin on insulin secretion in the mouse. Diabetologia 1981, 20, 54–59. [Google Scholar] [CrossRef]
- Straub, S.G.; Sharp, G.W.G. Mechanisms of action of VIP and PACAP in the stimulation of insulin release. Ann. N. Y. Acad. Sci. 1996, 805, 607–612. [Google Scholar] [CrossRef]
- Adeghate, E.; Ponery, A.S.; Köves, K. Distribution of vasoactive intestinal polypeptide and its effect on glucagon secretion from normal and diabetic pancreatic tissue fragments in rat. Ann. N. Y. Acad. Sci. 2000, 921, 434–437. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vu, J.P.; Luong, L.; Sanford, D.; Oh, S.; Kuc, A.; Pisegna, R.; Lewis, M.; Pisegna, J.R.; Germano, P.M. PACAP and VIP Neuropeptides’ and Receptors’ Effects on Appetite, Satiety and Metabolism. Biology 2023, 12, 1013. https://doi.org/10.3390/biology12071013
Vu JP, Luong L, Sanford D, Oh S, Kuc A, Pisegna R, Lewis M, Pisegna JR, Germano PM. PACAP and VIP Neuropeptides’ and Receptors’ Effects on Appetite, Satiety and Metabolism. Biology. 2023; 12(7):1013. https://doi.org/10.3390/biology12071013
Chicago/Turabian StyleVu, John P., Leon Luong, Daniel Sanford, Suwan Oh, Alma Kuc, Rita Pisegna, Michael Lewis, Joseph R. Pisegna, and Patrizia M. Germano. 2023. "PACAP and VIP Neuropeptides’ and Receptors’ Effects on Appetite, Satiety and Metabolism" Biology 12, no. 7: 1013. https://doi.org/10.3390/biology12071013
APA StyleVu, J. P., Luong, L., Sanford, D., Oh, S., Kuc, A., Pisegna, R., Lewis, M., Pisegna, J. R., & Germano, P. M. (2023). PACAP and VIP Neuropeptides’ and Receptors’ Effects on Appetite, Satiety and Metabolism. Biology, 12(7), 1013. https://doi.org/10.3390/biology12071013