Protein Kinase C at the Crossroad of Mutations, Cancer, Targeted Therapy and Immune Response
Abstract
:Simple Summary
Abstract
1. Introduction
2. Levels of PKC and Mutations Sustaining Cancer
3. The Challenging Task of Targeting PKC for Cancer Therapy
3.1. Staurosporine
3.2. UCN-01
3.3. Midostaurin
3.4. Sotrastaurin
3.5. Enzastaurin
3.6. Bryostatin
3.7. Antisense Oligonucleotides
4. PKC Isoforms in Anticancer Immune Responses: The Bad and the Good Guys in the Family
4.1. Impact of PKC on T Cell Responses and B Cell Development
4.1.1. PKCθ
4.1.2. PKCα
4.1.3. PKCδ
4.1.4. PKCε
4.1.5. PKCη
4.1.6. PKCζ and PKCι
4.2. Potential Impact of PKC on TME Features and Immunotherapies
4.2.1. Impact of PKC on Intra-Tumor Macrophage Polarization
4.2.2. Impact of PKC on Tumor-Infiltrating T Cells
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Takai, Y.; Yamamoto, M.; Inoue, M.; Kishimoto, A.; Nishizuka, Y.A. Proenzyme of Cyclic Nucleotide-Independent Protein Kinase and Its Activation by Calcium-Dependent Neutral Protease from Rat Liver. Biochem. Biophys. Res. Commun. 1977, 77, 542–550. [Google Scholar] [CrossRef] [PubMed]
- Mellor, H.; Parker, P.J. The Extended Protein Kinase C Superfamily. Biochem. J. 1998, 332, 281–292. [Google Scholar] [CrossRef] [PubMed]
- Stahelin, R.V.; Digman, M.A.; Medkova, M.; Ananthanarayanan, B.; Rafter, J.D.; Melowic, H.R.; Cho, W. Mechanism of diacylglycerol-induced membrane targeting and activation of protein kinase Cdelta. J. Biol. Chem. 2004, 279, 29501–29512. [Google Scholar] [CrossRef] [Green Version]
- Nishizuka, Y.; Nakamura, S. Lipid Mediators and Protein Kinase C For Intracellular Signalling. Clin. Exp. Pharmacol. Physiol. Suppl. 1995, 22, S202–S203. [Google Scholar] [CrossRef]
- Newton, A.C. Protein kinase C: Structural and spatial regulation by phosphorylation, cofactors, and macromolecular interactions. Chem. Rev. 2001, 101, 2353–2364. [Google Scholar] [CrossRef]
- Kajimoto, T.; Caliman, A.D.; Tobias, I.S.; Okada, T.; Pilo, C.A.; Van, A.-A.N.; Andrew McCammon, J.; Nakamura, S.; Newton, A.C. Activation of Atypical Protein Kinase C by Sphingosine 1-Phosphate Revealed by an aPKC-Specific Activity Reporter. Sci. Signal 2019, 12, aat6662. [Google Scholar] [CrossRef] [Green Version]
- Velnati, S.; Centonze, S.; Girivetto, F.; Capello, D.; Biondi, R.M.; Bertoni, A.; Cantello, R.; Ragnoli, B.; Malerba, M.; Graziani, A.; et al. Identification of Key Phospholipids That Bind and Activate Atypical PKCs. Biomedicines 2021, 9, 45. [Google Scholar] [CrossRef]
- Reyland, M.E. Protein Kinase C Isoforms: Multi-Functional Regulators of Cell Life and Death. Front. Biosci. 2009, 14, 2386–2399. [Google Scholar] [CrossRef] [Green Version]
- He, S.; Li, Q.; Huang, Q.; Cheng, J. Targeting Protein Kinase C for Cancer Therapy. Cancers 2022, 14, 1104. [Google Scholar] [CrossRef] [PubMed]
- Newton, A.C. Protein Kinase C: Perfectly Balanced. Crit. Rev. Biochem. Mol. 2018, 53, 208–230. [Google Scholar] [CrossRef] [Green Version]
- Baffi, T.R.; Van, A.-A.N.; Zhao, W.; Mills, G.B.; Newton, A.C. Protein Kinase C Quality Control by Phosphatase PHLPP1 Unveils Loss-of-Function Mechanism in Cancer. Mol. Cell 2019, 74, 378–392.e5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castagna, M.; Takai, Y.; Kaibuchi, K.; Sano, K.; Kikkawa, U.; Nishizuka, Y. Direct Activation of Calcium-Activated, Phospholipid-Dependent Protein Kinase by Tumor-Promoting Phorbol Esters. J. Biol. Chem. 1982, 257, 7847–7851. [Google Scholar] [CrossRef] [PubMed]
- De Vries, D.J.; Herald, C.L.; Pettit, G.R.; Blumberg, P.M. Demonstration of Sub-Nanomolar Affinity of Bryostatin 1 for the Phorbol Ester Receptor in Rat Brain. Biochem. Pharmacol. 1988, 37, 4069–4073. [Google Scholar] [CrossRef] [PubMed]
- Abb, J.; Bayliss, G.J.; Deinhardt, F. Lymphocyte Activation by the Tumor-Promoting Agent 12-O-Tetradecanoylphorbol-13-Acetate (TPA). J. Immunol. 1979, 122, 1639–1642. [Google Scholar] [CrossRef]
- Kawano, T.; Inokuchi, J.; Eto, M.; Murata, M.; Kang, J.-H. Activators and Inhibitors of Protein Kinase C (PKC): Their Applications in Clinical Trials. Pharmaceutics 2021, 13, 1748. [Google Scholar] [CrossRef]
- Parker, P.J.; Brown, S.J.; Calleja, V.; Chakravarty, P.; Cobbaut, M.; Linch, M.; Marshall, J.J.T.; Martini, S.; McDonald, N.Q.; Soliman, T.; et al. Equivocal, Explicit and Emergent Actions of PKC Isoforms in Cancer. Nat. Rev. Cancer 2021, 21, 51–63. [Google Scholar] [CrossRef]
- Newton, A.C.; Brognard, J. Reversing the Paradigm: Protein Kinase C as a Tumor Suppressor. Trends Pharmacol. Sci. 2017, 38, 438–447. [Google Scholar] [CrossRef] [Green Version]
- Garg, R.; Benedetti, L.G.; Abera, M.B.; Wang, H.; Abba, M.; Kazanietz, M.G. Protein kinase C and cancer: What we know and what we do not. Oncogene 2014, 33, 5225–5237. [Google Scholar] [CrossRef] [Green Version]
- Regala, R.P.; Weems, C.; Jamieson, L.; Khoor, A.; Edell, E.S.; Lohse, C.M.; Fields, A.P. Atypical Protein Kinase Cι Is an Oncogene in Human Non–Small Cell Lung Cancer. Cancer Res. 2005, 65, 8905–8911. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Huang, J.; Yang, N.; Liang, S.; Barchetti, A.; Giannakakis, A.; Cadungog, M.G.; O’Brien-Jenkins, A.; Massobrio, M.; Roby, K.F.; et al. Integrative Genomic Analysis of Protein Kinase C (PKC) Family Identifies PKCι as a Biomarker and Potential Oncogene in Ovarian Carcinoma. Cancer Res. 2006, 66, 4627–4635. [Google Scholar] [CrossRef] [Green Version]
- Cacace, A.M.; Guadagno, S.N.; Krauss, R.S.; Fabbro, D.; Weinstein, I.B. The epsilon isoform of protein kinase C is an oncogene when overexpressed in rat fibroblasts. Oncogene 1993, 8, 2095–2104. [Google Scholar] [PubMed]
- Reyland, M.E. Protein kinase Cdelta and apoptosis. Biochem. Soc. Trans. 2007, 35, 1001–1004. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Tao, Y.; Duran, A.; Llado, V.; Galvez, A.; Barger, J.F.; Castilla, E.A.; Chen, J.; Yajima, T.; Porollo, A.; et al. Control of Nutrient Stress-Induced Metabolic Reprogramming by PKCζ in Tumorigenesis. Cell 2013, 152, 599–611. [Google Scholar] [CrossRef] [Green Version]
- Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.; Larsson, E.; et al. The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012, 2, 401–404. [Google Scholar] [CrossRef] [Green Version]
- Antal, C.E.; Hudson, A.M.; Kang, E.; Zanca, C.; Wirth, C.; Stephenson, N.L.; Trotter, E.W.; Gallegos, L.L.; Miller, C.J.; Furnari, F.B.; et al. Cancer-Associated Protein Kinase C Mutations Reveal Kinase’s Role as Tumor Suppressor. Cell 2015, 160, 489–502. [Google Scholar] [CrossRef] [Green Version]
- Prévostel, C.; Alvaro, V.; de Boisvilliers, F.; Martin, A.; Jaffiol, C.; Joubert, D. The natural protein kinase C alpha mutant is present in human thyroid neoplasms. Oncogene 1995, 11, 669–674. [Google Scholar]
- Zhu, Y.; Dong, Q.; Tan, B.J.; Lim, W.G.; Zhou, S.; Duan, W. The PKCalpha-D294G mutant found in pituitary and thyroid tumors fails to transduce extracellular signals. Cancer Res. 2005, 65, 4520–4524. [Google Scholar] [CrossRef] [Green Version]
- Assert, R.; Kötter, R.; Schiemann, U.; Goretzki, P.; Pfeiffer, A.F. Effects of the putatively oncogenic protein kinase Calpha D294G mutation on enzymatic activity and cell growth and its occurrence in human thyroid neoplasias. Horm. Metabol. Res. 2022, 34, 311–317. [Google Scholar] [CrossRef]
- Goode, B.; Mondal, G.; Hyun, M.; Ruiz, D.G.; Lin, Y.H.; Van Ziffle, J.; Joseph, N.M.; Onodera, C.; Talevich, E.; Grenert, J.P.; et al. A recurrent kinase domain mutation in PRKCA defines chordoid glioma of the third ventricle. Nat. Commun. 2018, 9, 810–818. [Google Scholar] [CrossRef] [Green Version]
- Rosenberg, S.; Simeonova, I.; Bielle, F.; Verreault, M.; Bance, B.; Le Roux, I.; Daniau, M.; Nadaradjane, A.; Gleize, V.; Paris, S.; et al. A recurrent point mutation in PRKCA is a hallmark of chordoid gliomas. Nat. Commun. 2018, 9, 2371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Callender, J.A.; Yang, Y.; Lordén, G.; Stephenson, N.L.; Jones, A.C.; Brognard, J.; Newton, A.C. Protein kinase Cα gain-of-function variant in Alzheimer’s disease displays enhanced catalysis by a mechanism that evades down-regulation. Proc. Natl. Acad. Sci. USA 2018, 115, E5497–E5505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bridge, J.A.; Liu, X.Q.; Sumegi, J.; Nelson, M.; Reyes, C.; Bruch, L.A.; Rosenblum, M.; Puccioni, M.J.; Bowdino, B.S.; McComb, R.D. Identification of a novel, recurrent SLC44A1-PRKCA fusion in papillary glioneuronal tumor. Brain Pathol. 2013, 23, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Lordén, G.; Wozniak, J.M.; Doré, K.; Dozier, L.E.; Cates-Gatto, C.; Patrick, G.N.; Gonzalez, D.J.; Roberts, A.J.; Tanzi, R.E.; Newton, A.C. Enhanced activity of Alzheimer disease-associated variant of protein kinase Cα drives cognitive decline in a mouse model. Nat. Commun. 2022, 13, 7200. [Google Scholar] [CrossRef]
- Płaszczyca, A.; Nilsson, J.; Magnusson, L.; Brosjö, O.; Larsson, O.; Vult von Steyern, F.; Domanski, H.A.; Lilljebjörn, H.; Fioretos, T.; Tayebwa, J.; et al. Fusions involving protein kinase C and membrane-associated proteins in benign fibrous histiocytoma. Int. J. Biochem. Cell Biol. 2014, 53, 475–481. [Google Scholar] [CrossRef] [PubMed]
- Pavlovic, Z.; Zhu, L.; Pereira, L.; Singh, R.K.; Cornell, R.B.; Bakovic, M. Isoform-specific and protein kinase C-mediated regulation of CTP: Phosphoethanolamine cytidylyltransferase phosphorylation. J. Biol. Chem. 2014, 289, 9053–9064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.H.; Chen, T.; Zhou, J.; Hofmann, J.; Bepler, G. Protein kinase C-beta gene variants, pathway activation, and enzastaurin activity in lung cancer. Clin. Lung Cancer 2010, 1, 169–175. [Google Scholar] [CrossRef] [Green Version]
- Voris, J.P.; Sitailo, L.A.; Rahn, H.R.; Defnet, A.; Gerds, A.T.; Sprague, R.; Yadav, V.; Caroline Le Poole, I.; Denning, M.F. Functional alterations in protein kinase C beta II expression in melanoma. Pigment. Cell Melanoma Res. 2010, 23, 216–224. [Google Scholar] [CrossRef]
- Lintas, C.; Sacco, R.; Garbett, K.; Mirnics, K.; Militerni, R.; Bravaccio, C.; Curatolo, P.; Manzi, B.; Schneider, C.; Melmed, R.; et al. Involvement of the PRKCB1 gene in autistic disorder: Significant genetic association and reduced neocortical gene expression. Mol. Psychiatry 2009, 14, 705–718. [Google Scholar] [CrossRef] [Green Version]
- Gould, C.M.; Kannan, N.; Taylor, S.S.; Newton, A.C. The Chaperones Hsp90 and Cdc37 Mediate the Maturation and Stabilization of Protein Kinase C through a Conserved PXXP Motif in the C-Terminal Tail. J. Biol. Chem. 2009, 284, 4921–4935. [Google Scholar] [CrossRef] [Green Version]
- Mouradov, D.; Sloggett, C.; Jorissen, R.N.; Love, C.G.; Li, S.; Burgess, A.W.; Arango, D.; Strausberg, R.L.; Buchanan, D.; Wormald, S.; et al. Colorectal cancer cell lines are representative models of the main molecular subtypes of primary cancer. Cancer Res. 2014, 74, 3238–3247. [Google Scholar] [CrossRef] [Green Version]
- Abaan, O.D.; Polley, E.C.; Davis, S.R.; Zhu, Y.J.; Bilke, S.; Walker, R.L.; Pineda, M.; Gindin, Y.; Jiang, Y.; Reinhold, W.; et al. The exomes of the NCI-60 panel: A genomic resource for cancer biology and systems pharmacology. Cancer Res. 2013, 73, 4372–4382. [Google Scholar] [CrossRef] [Green Version]
- Kataoka, K.; Nagata, Y.; Kitanaka, A.; Shiraishi, Y.; Shimamura, T.; Yasunaga, J.; Totoki, Y.; Chiba, K.; Sato-Otsubo, A.; Nagae, G. Integrated molecular analysis of adult T cell leukemia/lymphoma. Nat. Genet. 2015, 47, 1304–1315. [Google Scholar] [CrossRef] [PubMed]
- Lacy, S.E.; Barrans, S.L.; Beer, P.A.; Painter, D.; Smith, A.G.; Roman, E.; Cooke, S.L.; Ruiz, C.; Glover, P.; Van Hoppe, S.J.L.; et al. Targeted sequencing in DLBCL, molecular subtypes, and outcomes: A Haematological Malignancy Research Network report. Blood 2020, 135, 1759–1771. [Google Scholar] [CrossRef] [PubMed]
- Yamagishi, M.; Kubokawa, M.; Kuze, Y.; Suzuki, A.; Yokomizo, A.; Kobayashi, S.; Nakashima, M.; Makiyama, J.; Iwanaga, M.; Fukuda, T.; et al. Chronological genome and single-cell transcriptome integration characterizes the evolutionary process of adult T cell leukemia-lymphoma. Nat. Commun. 2021, 12, 4821. [Google Scholar] [CrossRef]
- Sakihama, S.; Morichika, K.; Saito, R.; Miyara, M.; Miyagi, T.; Hayashi, M.; Uchihara, J.; Tomoyose, T.; Ohshiro, K.; Nakayama, S.; et al. Genetic profile of adult T-cell leukemia/lymphoma in Okinawa: Association with prognosis, ethnicity, and HTLV-1 strains. Cancer Sci. 2021, 112, 1300–1309. [Google Scholar] [CrossRef]
- Wang, L.; Ni, X.; Covington, K.R.; Yang, B.Y.; Shiu, J.; Zhang, X.; Xi, L.; Meng, Q.; Langridge, T.; Drummond, J.; et al. Genomic profiling of Sézary syndrome identifies alterations of key T cell signaling and differentiation genes. Nat. Genet. 2015, 47, 1426–1434. [Google Scholar] [CrossRef] [Green Version]
- Kan, Z.; Jaiswal, B.S.; Stinson, J.; Janakiraman, V.; Bhatt, D.; Stern, H.M.; Yue, P.; Haverty, P.M.; Bourgon, R.; Zheng, J.; et al. Diverse Somatic Mutation Patterns and Pathway Alterations in Human Cancers. Nature 2010, 466, 869–873. [Google Scholar] [CrossRef] [Green Version]
- Creixell, P.; Schoof, E.M.; Simpson, C.D.; Longden, J.; Miller, C.J.; Lou, H.J.; Perryman, L.; Cox, T.R.; Zivanovic, N.; Palmeri, A.; et al. Kinome-Wide Decoding of Network-Attacking Mutations Rewiring Cancer Signaling. Cell 2015, 163, 202–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Y.; Li, W.; Qian, M.; Jiang, T.; Guo, P.; Du, Q.; Lin, N.; Xie, X.; Wu, Z.; Lin, D.; et al. D-4F Ameliorates Contrast Media-Induced Oxidative Injuries in Endothelial Cells via the AMPK/PKC Pathway. Front. Pharmacol. 2021, 11, 556074–556089. [Google Scholar] [CrossRef]
- Guo, X. Studying potential PKCδ loss of function mutation and its downstream effects in gastric cancer progression. In Proceedings of the 2nd International Academic Conference on Energy Conservation, Environmental Protection and Energy Science (ICEPE 2021), E3S Web of Conferences, Dali, China, 11–12 November 2021; Volume 271. [Google Scholar] [CrossRef]
- Ghosh, P.M.; Bedolla, R.; Mikhailova, M.; Kreisberg, J.I. RhoA-dependent murine prostate cancer cell proliferation and apoptosis: Role of protein kinase Czeta. Cancer Res. 2002, 62, 2630–2636. [Google Scholar] [PubMed]
- Whyte, J.; Thornton, L.; McNally, S.; McCarthy, S.; Lanigan, F.; Gallagher, W.M.; Stein, T.; Martin, F. PKCzeta regulates cell polarisation and proliferation restriction during mammary acinus formation. J. Cell Sci. 2010, 123, 3316–3328. [Google Scholar] [CrossRef] [Green Version]
- Lakshmipathi, J.; Alvarez-Perez, J.C.; Rosselot, C.; Casinelli, G.P.; Stamateris, R.E.; Rausell-Palamos, F.; O’Donnell, C.P.; Vasavada, R.C.; Scott, D.K.; Alonso, L.C.; et al. PKCζ Is Essential for Pancreatic β-Cell Replication During Insulin Resistance by Regulating mTOR and Cyclin-D2. Diabetes 2016, 65, 1283–1296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bensen, R.; Brognard, J. New Therapeutic Opportunities for the Treatment of Squamous Cell Carcinomas: A Focus on Novel Driver Kinases. Int. J. Mol. Sci. 2021, 22, 2831. [Google Scholar] [CrossRef]
- Rudin, C.M.; Durinck, S.; Stawiski, E.W.; Poirier, J.T.; Modrusan, Z.; Shames, D.S.; Bergbower, E.A.; Guan, Y.; Shin, J.; Guillory, J.; et al. Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer. Nat. Genet. 2012, 44, 1111–1116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reina-Campos, M.; Diaz-Meco, M.T.; Moscat, J. The Dual Roles of the Atypical Protein Kinase Cs in Cancer. Cancer Cell 2019, 36, 218–235. [Google Scholar] [CrossRef] [PubMed]
- Linch, M.; Sanz-Garcia, M.; Soriano, E.; Zhang, Y.; Riou, P.; Rosse, C.; Cameron, A.; Knowles, P.; Purkiss, A.; Kjaer, S.; et al. A Cancer-Associated Mutation in Atypical Protein Kinase Cι Occurs in a Substrate-Specific Recruitment Motif. Sci. Signal 2013, 6, ra82. [Google Scholar] [CrossRef]
- Gwak, J.; Jung, S.-J.; Kang, D.-I.; Kim, E.-Y.; Don Kim, D.-E.; Chung, Y.-H.; Shin, J.-G.; Oh, S. Stimulation of Protein Kinase C-alpha Suppresses Colon Cancer Cell Proliferation by Down-Regulation of beta-Catenin. J. Cell Mol. Med. 2009, 13, 2171–2180. [Google Scholar] [CrossRef]
- Oster, H.; Leitges, M. Protein Kinase C α but Not PKCζ Suppresses Intestinal Tumor Formation in ApcMin/+ Mice. Cancer Res. 2006, 66, 6955–6963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hill, K.S.; Erdogan, E.; Khoor, A.; Walsh, M.P.; Leitges, M.; Murray, N.R.; Fields, A.P. Protein Kinase Cα Suppresses Kras-Mediated Lung Tumor Formation through Activation of a P38 MAPK-TGFβ Signaling Axis. Oncogene 2013, 33, 2134–2144. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.C.; Chen, W.Y.; Lin, K.Y.; Chen, S.H.; Chang, C.C.; Lin, S.E.; Fang, C.L. Clinicopathological correlation and prognostic significance of protein kinase cα overexpression in human gastric carcinoma. PLoS ONE 2013, 8, e56675. [Google Scholar] [CrossRef] [Green Version]
- Kong, C.; Zhu, Y.; Liu, D.; Yu, M.; Li, S.; Li, Z.; Sun, Z.; Liu, G. Role of protein kinase C-alpha in superficial bladder carcinoma recurrence. Urology 2005, 65, 1228–1232. [Google Scholar] [CrossRef] [PubMed]
- Haughian, J.M.; Bradford, A.P. Protein kinase C alpha (PKCalpha) regulates growth and invasion of endometrial cancer cells. J. Cell Physiol. 2009, 220, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Frankel, L.B.; Lykkesfeldt, A.E.; Hansen, J.B.; Stenvang, J. Protein Kinase C alpha is a marker for antiestrogen resistance and is involved in the growth of tamoxifen resistant human breast cancer cells. Breast Cancer Res. Treat. 2007, 104, 165–179. [Google Scholar] [CrossRef] [PubMed]
- Tam, W.L.; Lu, H.; Buikhuisen, J.; Soh, B.S.; Lim, E.; Reinhardt, F.; Wu, Z.J.; Krall, J.A.; Bierie, B.; Guo, W.; et al. Protein Kinase C α Is a Central Signaling Node and Therapeutic Target for Breast Cancer Stem Cells. Cancer Cell 2013, 24, 347–364. [Google Scholar] [CrossRef] [Green Version]
- Tonetti, D.A.; Chisamore, M.J.; Grdina, W.; Schurz, H.; Jordan, V.C. Stable Transfection of Protein Kinase C Alpha cDNA in Hormone-Dependent Breast Cancer Cell Lines. Br. J. Cancer 2000, 83, 782–791. [Google Scholar] [CrossRef] [Green Version]
- Chisamore, M.J.; Ahmed, Y.; Bentrem, D.J.; Jordan, V.C.; Tonetti, D.A. Novel antitumor effect of estradiol in athymic mice injected with a T47D breast cancer cell line overexpressing protein kinase Calpha. Clinical Cancer Res. 2001, 7, 3156–3165. [Google Scholar]
- Yun, J.; Pannuti, A.; Espinoza, I.; Zhu, H.; Hicks, C.; Zhu, X.; Caskey, M.; Rizzo, P.; D’Souza, G.; Backus, K.; et al. Crosstalk between PKCα and Notch-4 in Endocrine-Resistant Breast Cancer Cells. Oncogenesis 2013, 2, e60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Assender, J.W.; Gee, J.M.W.; Lewis, I.; Ellis, I.O.; Robertson, J.F.R.; Nicholson, R.I. Protein Kinase C Isoform Expression as a Predictor of Disease Outcome on Endocrine Therapy in Breast Cancer. J. Clin. Pathol. 2007, 60, 1216–1221. [Google Scholar] [CrossRef]
- Tonetti, D.A.; Morrow, M.; Kidwai, N.; Gupta, A.; Badve, S. Elevated Protein Kinase C Alpha Expression May Be Predictive of Tamoxifen Treatment Failure. Br. J. Cancer 2003, 88, 1400–1402. [Google Scholar] [CrossRef] [Green Version]
- Tan, M.; Li, P.; Sun, M.; Yin, G.; Yu, D. Upregulation and Activation of PKCα by ErbB2 through Src Promotes Breast Cancer Cell Invasion That Can Be Blocked by Combined Treatment with PKCα and Src Inhibitors. Oncogene 2006, 25, 3286–3295. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Han, J.; Lee, S.K.; Choi, M.-Y.; Kim, J.; Lee, J.; Jung, S.P.; Kim, J.S.; Kim, J.-H.; Choe, J.-H.; et al. Berberine Suppresses the TPA-Induced MMP-1 and MMP-9 Expressions Through the Inhibition of PKC-α in Breast Cancer Cells. J. Surg. Res. 2012, 176, e21–e29. [Google Scholar] [CrossRef] [PubMed]
- Baltuch, G.H.; Dooley, N.P.; Rostworowski, K.M.; Villemure, J.-G.; Yong, V.W. Protein Kinase C Isoform? Overexpression in C6 Glioma Cells and Its Role in Cell Proliferation. J. Neuro-Oncol. 1995, 24, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Mut, M.; Amos, S.; Hussaini, I.M. Pkc Alpha Phosphorylates Cytosolic Nf-Kappab/P65 and Pkc Delta Delays Nuclear Translocation of Nf-Kappab/P65 in U1242 Glioblastoma Cells. Turk. Neurosurg. 2010, 20, 277–285. [Google Scholar] [CrossRef] [Green Version]
- Cameron, A.J.; Procyk, K.J.; Leitges, M.; Parker, P.J. PKC Alpha Protein but Not Kinase Activity Is Critical for Glioma Cell Proliferation and Survival. Int. J. Cancer 2008, 123, 769–779. [Google Scholar] [CrossRef] [PubMed]
- Davidson, L.A.; Aymond, C.M.; Jiang, Y.H.; Turner, N.D.; Lupton, J.R.; Chapkin, R.S. Non-invasive detection of fecal protein kinase C betaII and zeta messenger RNA: Putative biomarkers for colon cancer. Carcinogenesis 1998, 19, 253–257. [Google Scholar] [CrossRef] [Green Version]
- Spindler, K.-L.G.; Lindebjerg, J.; Lahn, M.; Kjaer-Frifeldt, S.; Jakobsen, A. Protein Kinase C-Beta II (PKC-βII) Expression in Patients with Colorectal Cancer. Int. J. Colorectal Dis. 2009, 24, 641–645. [Google Scholar] [CrossRef]
- Murray, N.R.; Davidson, L.A.; Chapkin, R.S.; Clay Gustafson, W.; Schattenberg, D.G.; Fields, A.P. Overexpression of Protein Kinase C βII Induces Colonic Hyperproliferation and Increased Sensitivity to Colon Carcinogenesis. J. Cell Biol. 1999, 145, 699–711. [Google Scholar] [CrossRef]
- Yu, W.; Murray, N.R.; Weems, C.; Chen, L.; Guo, H.; Ethridge, R.; Ceci, J.D.; Evers, B.M.; Thompson, E.A.; Fields, A.P. Role of Cyclooxygenase 2 in Protein Kinase C βII-Mediated Colon Carcinogenesis. J. Biol. Chem. 2003, 278, 11167–11174. [Google Scholar] [CrossRef] [Green Version]
- Calcagno, S.R.; Li, S.; Colon, M.; Kreinest, P.A.; Thompson, E.A.; Fields, A.P.; Murray, N.R. OncogenicK-Ras Promotes Early Carcinogenesis in the Mouse Proximal Colon. Int. J. Cancer 2008, 122, 2462–2470. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Anastasiadis, P.Z.; Liu, Y.; Thompson, E.A.; Fields, A.P. Protein Kinase C (PKC) βII Induces Cell Invasion through a Ras/Mek-, PKCι/Rac 1-Dependent Signaling Pathway. J. Biol. Chem. 2004, 279, 22118–22123. [Google Scholar] [CrossRef] [Green Version]
- Garczarczyk, D.; Szeker, K.; Galfi, P.; Csordas, A.; Hofmann, J. Protein kinase Cgamma in colon cancer cells: Expression, Thr514 phosphorylation and sensitivity to butyrate-mediated upregulation as related to the degree of differentiation. Chem. Biol. Interact. 2010, 185, 25–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alothaim, T.; Charbonneau, M.; Tang, X. HDAC6 inhibitors sensitize non-mesenchymal triple-negative breast cancer cells to cysteine deprivation. Sci. Rep. 2021, 11, 10956. [Google Scholar] [CrossRef] [PubMed]
- Barretina, J.; Caponigro, G.; Stransky, N.; Venkatesan, K.; Margolin, A.A.; Kim, S.; Wilson, C.J.; Lehár, J.; Kryukov, G.V.; Sonkin, D.; et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 2012, 483, 603–607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nussinov, R.; Tsai, C.J.; Jang, H. Autoinhibition can identify rare driver mutations and advise pharmacology. FASEB 2020, 34, 16–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parsons, M.; Adams, J.C. Rac regulates the interaction of fascin with protein kinase C in cell migration. J. Cell Sci. 2008, 121, 2805–2813. [Google Scholar] [CrossRef] [Green Version]
- Mazzoni, E.; Adam, A.; Bal de Kier Joffe, E.; Aguirre-Ghiso, J.A. Immortalized mammary epithelial cells overexpressing protein kinase C gamma acquire a malignant phenotype and become tumorigenic in vivo. Mol. Cancer Res. 2003, 1, 776–787. [Google Scholar]
- Belot, A.; Kasher, P.R.; Trotter, E.W.; Foray, A.-P.; Debaud, A.-L.; Rice, G.I.; Szynkiewicz, M.; Zabot, M.-T.; Rouvet, I.; Bhaskar, S.S.; et al. Protein Kinase Cδ Deficiency Causes Mendelian Systemic Lupus Erythematosus with B Cell-Defective Apoptosis and Hyperproliferation. Arthritis Rheum. 2013, 65, 2161–2171. [Google Scholar] [CrossRef] [Green Version]
- Martiny-Baron, G.; Kazanietz, M.G.; Mischak, H.; Blumberg, P.M.; Kochs, G.; Hug, H.; Marmé, D.; Schächtele, C. Selective Inhibition of Protein Kinase C Isozymes by the Indolocarbazole Gö 6976. J. Biol. Chem. 1993, 268, 9194–9197. [Google Scholar] [CrossRef]
- Villar, J.; Arenas, M.I.; MacCarthy, C.M.; Blánquez, M.J.; Tirado, O.M.; Notario, V. PCPH/ENTPD5 Expression Enhances the Invasiveness of Human Prostate Cancer Cells by a Protein Kinase Cδ–Dependent Mechanism. Cancer Res. 2007, 67, 10859–10868. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Koyanagi, T.; Mochly-Rosen, D. PKCδ Activation Mediates Angiogenesis via NADPH Oxidase Activity in PC-3 Prostate Cancer Cells. Prostate 2011, 71, 946–954. [Google Scholar] [CrossRef] [Green Version]
- McKiernan, E.; O’Brien, K.; Grebenchtchikov, N.; Geurts-Moespot, A.; Sieuwerts, A.M.; Martens, J.W.M.; Magdolen, V.; Evoy, D.; McDermott, E.; Crown, J.; et al. Protein Kinase Cδ Expression in Breast Cancer as Measured by Real-Time PCR, Western Blotting and ELISA. Br. J. Cancer 2008, 99, 1644–1650. [Google Scholar] [CrossRef]
- Grossoni, V.C.; Falbo, K.B.; Kazanietz, M.G.; de Kier Joffé, E.D.B.; Urtreger, A.J. Protein Kinase C δ Enhances Proliferation and Survival of Murine Mammary Cells. Mol. Carcinog. 2007, 46, 381–390. [Google Scholar] [CrossRef]
- Nakagawa, M.; Oliva, J.L.; Kothapalli, D.; Fournier, A.; Assoian, R.K.; Kazanietz, M.G. Phorbol Ester-Induced G1 Phase Arrest Selectively Mediated by Protein Kinase Cδ-Dependent Induction of P21. J. Biol. Chem. 2005, 280, 33926–33934. [Google Scholar] [CrossRef] [Green Version]
- Santiago-Walker, A.E.; Fikaris, A.J.; Kao, G.D.; Brown, E.J.; Kazanietz, M.G.; Meinkoth, J.L. Protein Kinase C δ Stimulates Apoptosis by Initiating G1 Phase Cell Cycle Progression and S Phase Arrest. J. Biol. Chem. 2005, 280, 32107–32114. [Google Scholar] [CrossRef] [Green Version]
- Irie, K.; Yanagita, R.C.; Nakagawa, Y. Challenges to the Development of Bryostatin-Type Anticancer Drugs Based on the Activation Mechanism of Protein Kinase Cδ. Med. Res. Rev. 2012, 32, 518–535. [Google Scholar] [CrossRef]
- DeVries, T.A.; Neville, M.C.; Reyland, M.E. Nuclear Import of PKCδ Is Required for Apoptosis: Identification of a Novel Nuclear Import Sequence. EMBO J. 2002, 21, 6050–6060. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, Y.; Gavrielides, M.V.; Mitsuuchi, Y.; Fujii, T.; Kazanietz, M.G. Protein Kinase C Promotes Apoptosis in LNCaP Prostate Cancer Cells through Activation of P38 MAPK and Inhibition of the Akt Survival Pathway. J. Biol. Chem. 2004, 278, 33753–33762. [Google Scholar] [CrossRef] [Green Version]
- Xiao, L.; Eto, M.; Kazanietz, M.G. ROCK Mediates Phorbol Ester-Induced Apoptosis in Prostate Cancer Cells via p21Cip1 Up-Regulation and JNK. J. Biol. Chem. 2009, 284, 29365–29375. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Guerrico, A.M.; Kazanietz, M.G. Phorbol ester-induced apoptosis in prostate cancer cells via autocrine activation of the extrinsic apoptotic cascade: A key role for protein kinase C delta. J. Biol. Chem. 2005, 280, 38982–38991. [Google Scholar] [CrossRef] [Green Version]
- Xiao, L.; Caino, M.C.; von Burstin, V.A.; Oliva, J.L.; Kazanietz, M.G. Phorbol ester-induced apoptosis and senescence in cancer cell models. Methods Enzymol. 2008, 446, 123–139. [Google Scholar] [CrossRef]
- Xiao, L.; Gonzalez-Guerrico, A.; Kazanietz, M.G. PKC-Mediated Secretion of Death Factors in LNCaP Prostate Cancer Cells Is Regulated by Androgens. Mol. Carcinog. 2009, 48, 187–195. [Google Scholar] [CrossRef] [Green Version]
- Cacace, A.M.; Ueffing, M.; Philipp, A.; Han, E.K.; Kolch, W.; Weinstein, I.B. PKC epsilon functions as an oncogene by enhancing activation of the Raf kinase. Oncogene 1996, 13, 2517–2526. [Google Scholar]
- Hamilton, M.; Liao, J.; Cathcart, M.K.; Wolfman, A. Constitutive Association of C-N-Ras with c-Raf-1 and Protein Kinase Cε in Latent Signaling Modules. J. Biol. Chem. 2001, 276, 29079–29090. [Google Scholar] [CrossRef] [Green Version]
- Cacace, A.M.; Ueffing, M.; Han, E.K.; Marmè, D.; Weinstein, I.B. Overexpression of PKCepsilon in R6 fibroblasts causes increased production of active TGFbeta. J. Cell Physiol. 1998, 175, 314–322. [Google Scholar] [CrossRef]
- Pan, Q.; Bao, L.W.; Kleer, C.G.; Sabel, M.S.; Griffith, K.A.; Teknos, T.N.; Merajver, S.D. Protein kinase C epsilon is a predictive biomarker of aggressive breast cancer and a validated target for RNA interference anticancer therapy. Cancer Res. 2005, 65, 8366–8371. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Rho, O.; Wilker, E.; Beltran, L.; Digiovanni, J. Activation of epidermal akt by diverse mouse skin tumor promoters. Mol. Cancer Res. 2007, 5, 1342–1352. [Google Scholar] [CrossRef] [Green Version]
- Bae, K.M.; Wang, H.; Jiang, G.; Chen, M.G.; Lu, L.; Xiao, L. Protein kinase C epsilon is overexpressed in primary human non-small cell lung cancers and functionally required for proliferation of non-small cell lung cancer cells in a p21/Cip1-dependent manner. Cancer Res. 2007, 67, 6053–6063. [Google Scholar] [CrossRef] [Green Version]
- Aziz, M.H.; Manoharan, H.T.; Church, D.R.; Dreckschmidt, N.E.; Zhong, W.; Oberley, T.D.; Wilding, G.; Verma, A.K. Protein kinase Cepsilon interacts with signal transducers and activators of transcription 3 (Stat3), phosphorylates Stat3Ser727, and regulates its constitutive activation in prostate cancer. Cancer Res. 2007, 67, 8828–8838. [Google Scholar] [CrossRef] [Green Version]
- Basu, A.; Sivaprasad, U. Protein kinase Cepsilon makes the life and death decision. Cell Signal. 2007, 19, 1633–1642. [Google Scholar] [CrossRef] [Green Version]
- Meshki, J.; Caino, M.C.; von Burstin, V.A.; Griner, E.; Kazanietz, M.G. Regulation of prostate cancer cell survival by protein kinase Cepsilon involves bad phosphorylation and modulation of the TNFalpha/JNK pathway. J. Biol. Chem. 2010, 285, 26033–26040. [Google Scholar] [CrossRef] [Green Version]
- Pan, Q.; Bao, L.W.; Teknos, T.N.; Merajver, S.D. Targeted disruption of protein kinase C epsilon reduces cell invasion and motility through inactivation of RhoA and RhoC GTPases in head and neck squamous cell carcinoma. Cancer Res. 2006, 66, 9379–9384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McJilton, M.A.; Van Sikes, C.; Wescott, G.G.; Wu, D.; Foreman, T.L.; Gregory, C.W.; Weidner, D.A.; Harris Ford, O.; Morgan Lasater, A.; Mohler, J.L.; et al. Protein kinase Cepsilon interacts with Bax and promotes survival of human prostate cancer cells. Oncogene 2003, 22, 7958–7968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, D.; Thakore, C.U.; Wescott, G.G.; McCubrey, J.A.; Terrian, D.M. Integrin Signaling Links Protein Kinase Cɛ to the Protein Kinase B/Akt Survival Pathway in Recurrent Prostate Cancer Cells. Oncogene 2004, 23, 8659–8672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hafeez, B.B.; Zhong, W.; Weichert, J.; Dreckschmidt, N.E.; Jamal, M.S.; Verma, A.K. Genetic ablation of PKC epsilon inhibits prostate cancer development and metastasis in transgenic mouse model of prostate adenocarcinoma. Cancer Res. 2011, 71, 2318–2327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Besson, A.; Davy, A.; Robbins, S.M.; Yong, V.W. Differential Activation of ERKs to Focal Adhesions by PKC ε Is Required for PMA-Induced Adhesion and Migration of Human Glioma Cells. Oncogene 2001, 20, 7398–7407. [Google Scholar] [CrossRef] [Green Version]
- Caino, M.C.; Lopez-Haber, C.; Kissil, J.L.; Kazanietz, M.G. Non-Small Cell Lung Carcinoma Cell Motility, Rac Activation and Metastatic Dissemination Are Mediated by Protein Kinase C Epsilon. PLoS ONE 2012, 7, e31714. [Google Scholar] [CrossRef] [Green Version]
- Selbie, L.A.; Schmitz-Peiffer, C.; Sheng, Y.; Biden, T.J. Molecular Cloning and Characterization of PKC Iota, an Atypical Isoform of Protein Kinase C Derived from Insulin-Secreting Cells. J. Biol. Chem. 1993, 268, 24296–24302. [Google Scholar] [CrossRef]
- Ono, Y.; Fujii, T.; Ogita, K.; Kikkawa, U.; Igarashi, K.; Nishizuka, Y. Protein Kinase C Zeta Subspecies from Rat Brain: Its Structure, Expression, and Properties. Proc. Natl. Acad. Sci. USA 1989, 86, 3099–3103. [Google Scholar] [CrossRef] [PubMed]
- Mustafi, R.; Cerda, S.; Chumsangsri, A.; Fichera, A.; Bissonnette, M. Protein Kinase-ζ Inhibits Collagen I–Dependent and Anchorage-Independent Growth and Enhances Apoptosis of Human Caco-2 Cells. Mol. Cancer Res. 2006, 4, 683–694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nazarenko, I.; Jenny, M.; Keil, J.; Gieseler, C.; Weisshaupt, K.; Sehouli, J.; Legewie, S.; Herbst, L.; Weichert, W.; Darb-Esfahani, S.; et al. Atypical Protein Kinase C ζ Exhibits a Proapoptotic Function in Ovarian Cancer. Mol. Cancer Res. 2010, 8, 919–934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galvez, A.S.; Duran, A.; Linares, J.F.; Pathrose, P.; Castilla, E.A.; Abu-Baker, S.; Leitges, M.; Diaz-Meco, M.T.; Moscat, J. Protein Kinase Cζ Represses the Interleukin-6 Promoter and Impairs Tumorigenesis In Vivo. Mol. Cell Biol. 2009, 29, 104–115. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Valencia, T.; Abu-Baker, S.; Linares, J.; Lee, S.J.; Yajima, T.; Chen, J.; Eroshkin, A.; Castilla, E.A.; Brill, L.M.; et al. C-Myc Phosphorylation by PKCζ Represses Prostate Tumorigenesis. Proc. Natl. Acad. Sci. USA 2013, 110, 6418–6423. [Google Scholar] [CrossRef] [PubMed]
- Murray, N.R.; Jamieson, L.; Yu, W.; Zhang, J.; Gökmen-Polar, Y.; Sier, D.; Anastasiadis, P.; Gatalica, Z.; Thompson, E.A.; Fields, A.P. Protein Kinase Cι Is Required for Ras Transformation and Colon Carcinogenesis in Vivo. J. Cell Biol. 2004, 164, 797–802. [Google Scholar] [CrossRef]
- Murray, N.R.; Kalari, K.R.; Fields, A.P. Protein kinase Cι expression and oncogenic signaling mechanisms in cancer. J. Cell. Physiol. 2011, 226, 879–887. [Google Scholar] [CrossRef] [Green Version]
- Eder, A.M.; Sui, X.; Rosen, D.G.; Nolden, L.K.; Cheng, K.W.; Lahad, J.P.; Kango-Singh, M.; Lu, K.H.; Warneke, C.L.; Atkinson, E.N.; et al. Atypical PKCι Contributes to Poor Prognosis through Loss of Apical-Basal Polarity and Cyclin E Overexpression in Ovarian Cancer. Proc. Natl. Acad. Sci. USA 2005, 102, 12519–12524. [Google Scholar] [CrossRef] [PubMed]
- Nanjundan, M.; Nakayama, Y.; Cheng, K.W.; Lahad, J.; Liu, J.; Lu, K.; Kuo, W.-L.; Smith-McCune, K.; Fishman, D.; Gray, J.W.; et al. Amplification of MDS1/EVI1 and EVI1, Located in the 3q26.2 Amplicon, Is Associated with Favorable Patient Prognosis in Ovarian Cancer. Cancer Res. 2007, 67, 3074–3084. [Google Scholar] [CrossRef] [Green Version]
- Justilien, V.; Jameison, L.; Der, C.J.; Rossman, K.L.; Fields, A.P. Oncogenic Activity of Ect2 Is Regulated through Protein Kinase Cι-Mediated Phosphorylation. J. Biol. Chem. 2011, 286, 8149–8157. [Google Scholar] [CrossRef] [Green Version]
- Win, H.Y.; Acevedo-Duncan, M. Atypical Protein Kinase C Phosphorylates IKKαβ in Transformed Non-Malignant and Malignant Prostate Cell Survival. Cancer Lett. 2008, 270, 302–311. [Google Scholar] [CrossRef]
- Ishiguro, H.; Akimoto, K.; Nagashima, Y.; Kojima, Y.; Sasaki, T.; Ishiguro-Imagawa, Y.; Nakaigawa, N.; Ohno, S.; Kubota, Y.; Uemura, H. aPKCλ/ι Promotes Growth of Prostate Cancer Cells in an Autocrine Manner through Transcriptional Activation of Interleukin-6. Proc. Natl. Acad. Sci. USA 2009, 106, 16369–16374. [Google Scholar] [CrossRef]
- Abdelatty, A.; Fang, D.; Wei, G.; Wu, F.; Zhang, C.; Xu, H.; Yao, C.; Wang, Y.; Xia, H. PKCι Is a Promising Prognosis Biomarker and Therapeutic Target for Pancreatic Cancer. Pathobiology 2022, 89, 370–381. [Google Scholar] [CrossRef]
- Scotti, M.L.; Bamlet, W.R.; Smyrk, T.C.; Fields, A.P.; Murray, N.R. Protein kinase Ciota is required for pancreatic cancer cell transformed growth and tumorigenesis. Cancer Res. 2010, 70, 2064–2074. [Google Scholar] [CrossRef] [Green Version]
- Kawano, T.; Inokuchi, J.; Eto, M.; Murata, M.; Kang, J.-H. Protein Kinase C (PKC) Isozymes as Diagnostic and Prognostic Biomarkers and Therapeutic Targets for Cancer. Cancers 2022, 14, 5425. [Google Scholar] [CrossRef] [PubMed]
- Tamaoki, T.; Nomoto, H.; Takahashi, I.; Kato, Y.; Morimoto, M.; Tomita, F. Staurosporine, a potent inhibitor of phospholipid/Ca++ dependent protein kinase. Biochem. Bioph Res. Commun. 1986, 135, 397–402. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, I.; Kobayashi, E.; Nakano, H.; Murakata, C.; Saitoh, H.; Suzuki, K.; Tamaoki, T. Potent selective inhibition of 7-O-methyl UCN-01 against protein kinase C. J. Pharmacol. Exp. Ther. 1990, 255, 1218–1221. [Google Scholar] [PubMed]
- Mizuno, K.; Noda, K.; Ueda, Y.; Hanaki, H.; Saido, T.C.; Ikuta, T.; Kuroki, T.; Tamaoki, T.; Hirai, S.; Osada, S.; et al. UCN-01, an anti-tumor drug, is a selective inhibitor of the conventional PKC subfamily. FEBS Lett. 1995, 359, 259–261. [Google Scholar] [CrossRef] [Green Version]
- Seynaeve, C.M.; Stetler-Stevenson, M.; Sebers, S.; Kaur, G.; Sausville, E.A.; Worland, P.J. Cell cycle arrest and growth inhibition by the protein kinase antagonist UCN-01 in human breast carcinoma cells. Cancer Res. 1993, 53, 2081–2086. [Google Scholar]
- Husain, A.; Yan, X.J.; Rosales, N.; Aghajanian, C.; Schwartz, G.K.; Spriggs, D.R. UCN-01 in Ovary cancer cells: Effective as a single agent and in combination with cis- diamminedichloroplatinum(II)independent of p53 status. Clin. Cancer Res. 1997, 3, 2089–2097. [Google Scholar]
- Kortmansky, J.; Shah, M.A.; Kaubisch, A.; Weyerbacher, A.; Yi, S.; Tong, W.; Sowers, R.; Gonen, M.; O’Reilly, E.; Kemeny, N.; et al. Phase I Trial of the Cyclin-Dependent Kinase Inhibitor and Protein Kinase C Inhibitor 7-Hydroxystaurosporine in Combination with Fluorouracil in Patients with Advanced Solid Tumors. J. Clin. Oncol. 2005, 23, 1875–1884. [Google Scholar] [CrossRef]
- Lara, P.N.; Mack, P.C.; Synold, T.; Frankel, P.; Longmate, J.; Gumerlock, P.H.; Doroshow, J.H.; Gandara, D.R. The Cyclin-Dependent Kinase Inhibitor UCN-01 Plus Cisplatin in Advanced Solid Tumors: A California Cancer Consortium Phase I Pharmacokinetic and Molecular Correlative Trial. Clin. Cancer Res. 2005, 11, 4444–4450. [Google Scholar] [CrossRef] [Green Version]
- Sausville, E.A.; Arbuck, S.G.; Messmann, R.; Headlee, D.; Bauer, K.S.; Lush, R.M.; Murgo, A.; Figg, W.D.; Lahusen, T.; Jaken, S.; et al. Phase I Trial of 72-Hour Continuous Infusion UCN-01 in Patients with Refractory Neoplasms. J. Clin. Oncol. 2001, 19, 2319–2333. [Google Scholar] [CrossRef]
- Welch, S.; Hirte, H.W.; Carey, M.S.; Hotte, S.J.; Tsao, M.S.; Brown, S.; Pond, G.R.; Dancey, J.E.; Oza, A.M. UCN-01 in combination with topotecan in patients with advanced recurrent ovarian cancer: A study of the Princess Margaret Hospital Phase II consortium. Gynecol. Oncol. 2007, 106, 305–310. [Google Scholar] [CrossRef] [PubMed]
- Edelman, M.J.; Bauer, K.S., Jr.; Wu, S.; Smith, R.; Bisacia, S.; Dancey, J. Phase I and pharmacokinetic study of 7-hydroxystaurosporine and carboplatin in advanced solid tumors. Clin. Cancer Res. 2007, 13, 2667–2674. [Google Scholar] [CrossRef] [Green Version]
- Fracasso, P.M.; Williams, K.J.; Chen, R.C.; Picus, J.; Ma, C.X.; Ellis, M.J.; Tan, B.R.; Pluard, T.J.; Adkins, D.R.; Naughton, M.J.; et al. A phase 1 study of UCN-01 in combination with irinotecan in patients with resistant solid tumor malignancies. Cancer Chemoth. Pharm. 2011, 67, 1225–1237. [Google Scholar] [CrossRef]
- Ma, C.X.; Ellis, M.J.; Petroni, G.R.; Guo, Z.; Cai, S.R.; Ryan, C.E.; Craig Lockhart, A.; Naughton, M.J.; Pluard, T.J.; Brenin, C.M.; et al. A phase II study of UCN-01 in combination with irinotecan in patients with metastatic triple negative breast cancer. Breast Cancer Res. Treat. 2013, 137, 483–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kummar, S.; Gutierrez, M.E.; Gardner, E.R.; Figg, W.D.; Melillo, G.; Dancey, J.; Sausville, E.A.; Conley, B.A.; Murgo, A.J.; Doroshow, J.H. A phase I trial of UCN-01 and prednisone in patients with refractory solid tumors and lymphomas. Cancer Chemoth. Pharm. 2010, 65, 383–389. [Google Scholar] [CrossRef] [Green Version]
- Gojo, I.; Perl, A.; Luger, S.; Baer, M.R.; Norsworthy, K.J.; Bauer, K.S.; Tidwell, M.; Fleckinger, S.; Carroll, M.; Sausville, E.A. Phase I study of UCN-01 and perifosine in patients with relapsed and refractory acute leukemias and high-risk myelodysplastic syndrome. Investig. New Drug 2013, 31, 1217–1227. [Google Scholar] [CrossRef] [Green Version]
- Marti, G.E.; Stetler-Stevenson, M.; Grant, N.D.; White, T.; Figg, W.D.; Tohnya, T.; Jaffe, E.S.; Dunleavy, K.; Janik, J.E.; Steinberg, S.M.; et al. Phase I trial of 7-hydroxystaurosporine and fludararbine phosphate: In vivo evidence of 7-hydroxystaurosporineinduced apoptosis in chronic lymphocytic leukemia. Leuk. Lymphoma 2011, 52, 2284–2292. [Google Scholar] [CrossRef] [PubMed]
- Weisberg, E.; Boulton, C.; Kelly, L.M.; Manley, P.; Fabbro, D.; Meyer, T.; Gilliland, D.G.; Griffin, J.D. Inhibition of mutant FLT3 receptors in leukemia cells by the small molecule tyrosine kinase inhibitor PKC412. Cancer Cell 2002, 1, 433–443. [Google Scholar] [CrossRef] [Green Version]
- Utz, I.; Hofer, S.; Regenass, U.; Hilbe, W.; Thaler, J.; Grunicke, H.; Hofmann, J. The protein kinase C inhibitor CGP 41251, a staurosporine derivative with antitumor activity, reverses multidrug resistance. Int. J. Cancer 1994, 57, 104–110. [Google Scholar] [CrossRef]
- Ikegami, Y.; Yano, S.; Nakao, K. Antitumor Effect of CGP41251, a New Selective Protein Kinase C Inhibitor, on Human Non-Small Cell Lung Cancer Cells. Jpn. J. Pharmacol. 1996, 70, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Yoshikawa, N.; Nakamura, K.; Yamaguchi, Y.; Kagota, S.; Shinozuka, K.; Kunitomo, M. Effect of PKC412, a Selective Inhibitor of Protein Kinase C, on Lung Metastasis in Mice Injected with B16 Melanoma Cells. Life Sci. 2003, 72, 1377–1387. [Google Scholar] [CrossRef] [PubMed]
- Fabbro, D.; Ruetz, S.; Bodis, S.; Pruschy, M.; Csermak, K.; Man, A.; Campochiaro, P.; Wood, J.; O’Reilly, T.; Meyer, T. PKC412-a protein kinase inhibitor with a broad therapeutic potential. Anti-Cancer Drug Des. 2000, 15, 17–28. [Google Scholar]
- Ge, X.; Chen, J.; Li, L.; Ding, P.; Wang, Q.; Zhang, W.; Li, L.; Lv, X.; Zhou, D.; Jiang, Z.; et al. Midostaurin potentiates rituximab antitumor activity in Burkitt’s lymphoma by inducing apoptosis. Cell Death Dis. 2018, 10, 8–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallogly, M.M.; Lazarus, H.M. Midostaurin: An emerging treatment for acute myeloid leukemia patients. J. Blood Med. 2016, 7, 73–83. [Google Scholar] [CrossRef] [Green Version]
- Millward, M.J.; House, C.; Bowtell, D.; Webster, L.; Olver, I.N.; Gore, M.; Copeman, M.; Lynch, K.; Yap, A.; Wang, Y.; et al. The multikinase inhibitor midostaurin (PKC412A) lacks activity in metastatic melanoma: A phase IIA clinical and biologic study. Br. J. Cancer 2006, 95, 829–834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daver, N.; Schlenk, R.F.; Russell, N.H.; Levis, M.J. Targeting FLT3 mutations in AML: Review of current knowledge and evidence. Leukemia 2019, 33, 299–312. [Google Scholar] [CrossRef] [Green Version]
- Gueta, I.; Marcu-Malina, V.; Avigdor, A.; Shimoni, A.; Loebstein, R.; Canaani, J. Real-World Efficacy Outcomes of FLT3-ITD Acute Myeloid Leukemia Patients Treated with Midostaurin in Combination with Intensive Induction. Clin. Lymph. Myelom Leuk. 2023, 23, 154–157. [Google Scholar] [CrossRef]
- Weinbergerová, B.; Čerňan, M.; Kabut, T.; Semerád, L.; Podstavková, N.; Szotkowski, T.; Ježíšková, I.; Mayer, J. Gemtuzumab Ozogamicin plus Midostaurin in Conjunction with Standard Intensive Therapy for FLT3-Mutated Acute Myeloid Leukemia Patients—Czech Center Experience. Haematologica 2023. [Google Scholar] [CrossRef]
- DeAngelo, D.J.; George, T.I.; Linder, A.; Langford, C.; Perkins, C.; Ma, J.; Westervelt, P.; Merker, J.D.; Berube, C.; Coutre, S.; et al. Efficacy and Safety of Midostaurin in Patients with Advanced Systemic Mastocytosis: 10-Year Median Follow-up of a Phase II Trial. Leukemia 2018, 32, 470–478. [Google Scholar] [CrossRef]
- Wagner, J.; von Matt, P.; Sedrani, R.; Albert, R.; Cooke, N.; Ehrhardt, C.; Geiser, M.; Rummel, G.; Stark, W.; Strauss, A.; et al. Discovery of 3-(1H-Indol-3-Yl)-4-[2-(4-Methylpiperazin-1-Yl)Quinazolin-4-Yl]Pyrrole-2,5-Dione (AEB071), a Potent and Selective Inhibitor of Protein Kinase C Isotypes. J. Med. Chem. 2009, 52, 6193–6196. [Google Scholar] [CrossRef]
- Wu, X.; Li, J.; Zhu, M.; Fletcher, J.A.; Hodi, F.S. Protein Kinase C Inhibitor AEB071 Targets Ocular Melanoma Harboring GNAQ Mutations via Effects on the PKC/Erk1/2 and PKC/NF-κB Pathways. Mol. Cancer Ther. 2012, 11, 1905–1914. [Google Scholar] [CrossRef] [Green Version]
- Musi, E.; Ambrosini, G.; de Stanchina, E.; Schwartz, G.K. The Phosphoinositide 3-Kinase α Selective Inhibitor BYL719 Enhances the Effect of the Protein Kinase C Inhibitor AEB071 in GNAQ/GNA11-Mutant Uveal Melanoma Cells. Mol. Cancer Ther. 2014, 13, 1044–1053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Raamsdonk, C.D.; Griewank, K.G.; Crosby, M.B.; Garrido, M.C.; Vemula, S.; Wiesner, T.; Obenauf, A.C.; Wackernagel, W.; Green, G.; Bouvier, N.; et al. Mutations in GNA11 in uveal melanoma. N. Engl. J. Med. 2010, 363, 2191–2199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva-Rodríguez, P.; Fernández-Díaz, D.; Bande, M.; Pardo, M.; Loidi, L.; Blanco-Teijeiro, M.J. GNAQ and GNA11 Genes: A Comprehensive Review on Oncogenesis, Prognosis and Therapeutic Opportunities in Uveal Melanoma. Cancers 2022, 14, 3066. [Google Scholar] [CrossRef] [PubMed]
- Piperno-Neumann, S.; Larkin, J.; Carvajal, R.D.; Luke, J.J.; Schwartz, G.K.; Hodi, F.S.; Sablin, M.P.; Shoushtari, A.N.; Szpakowski, S.; Chowdhury, N.R.; et al. Genomic profiling of metastatic uveal melanoma and clinical results of a phase I study of the protein kinase C inhibitor AEB071. Mol. Cancer Ther. 2020, 19, 1031–1039. [Google Scholar] [CrossRef]
- Shoushtari, A.N.; Khan, S.; Komatsubara, K.; Feun, L.; Acquavella, N.; Singh-Kandah, S.; Negri, T.; Nesson, A.; Abbate, K.; Cremers, S.; et al. A Phase Ib Study of Sotrastaurin, a PKC Inhibitor, and Alpelisib, a PI3Kα Inhibitor, in Patients with Metastatic Uveal Melanoma. Cancers 2021, 13, 5504. [Google Scholar] [CrossRef] [PubMed]
- Piperno-Neumann, S.; Carlino, M.S.; Boni, V.; Loirat, D.; Speetjens, F.M.; Park, J.J.; Calvo, E.; Carvajal, R.D.; Nyakas, M.; Gonzalez-Maffe, J.; et al. A Phase I Trial of LXS196, a Protein Kinase C (PKC) Inhibitor, for Metastatic Uveal Melanoma. Br. J. Cancer 2023, 128, 1040–1051. [Google Scholar] [CrossRef] [PubMed]
- Graff, J.R.; McNulty, A.M.; Hanna, K.R.; Konicek, B.W.; Lynch, R.L.; Bailey, S.N.; Banks, C.; Capen, A.; Goode, R.; Lewis, J.E.; et al. The Protein Kinase Cβ–Selective Inhibitor, Enzastaurin (LY317615.HCl), Suppresses Signaling through the AKT Pathway, Induces Apoptosis, and Suppresses Growth of Human Colon Cancer and Glioblastoma Xenografts. Cancer Res. 2005, 65, 7462–7469. [Google Scholar] [CrossRef] [Green Version]
- Mukohara, T.; Nagai, S.; Koshiji, M.; Yoshizawa, K.; Minami, H. Phase I Dose Escalation and Pharmacokinetic Study of Oral Enzastaurin (LY317615) in Advanced Solid Tumors. Cancer Sci. 2010, 101, 2193–2199. [Google Scholar] [CrossRef]
- Clément-Duchêne, C.; Natale, R.B.; Jahan, T.; Krupitskaya, Y.; Osarogiagbon, R.; Sanborn, R.E.; Bernstein, E.D.; Dudek, A.Z.; Latz, J.E.; Shi, P.; et al. A phase II study of enzastaurin in combination with erlotinib in patients with previously treated advanced non-small cell lung cancer. Lung Cancer 2012, 78, 57–62. [Google Scholar] [CrossRef] [Green Version]
- Chiappori, A.; Bepler, G.; Barlesi, F.; Soria, J.C.; Reck, M.; Bearz, A.; Barata, F.; Scagliotti, G.; Park, K.; Wagle, A.; et al. Phase II, double-blinded, randomized study of enzastaurin plus pemetrexed as second-line therapy in patients with advanced non-small cell lung cancer. J. Thorac. Oncol. 2010, 5, 369–375. [Google Scholar] [CrossRef] [Green Version]
- Odia, Y.; Iwamoto, F.M.; Moustakas, A.; Fraum, T.J.; Salgado, C.A.; Li, A.; Kreisl, T.N.; Sul, J.; Butman, J.A.; Fine, H.A. A phase II trial of enzastaurin (LY317615) in combination with bevacizumab in adults with recurrent malignant gliomas. J. Neuro-Oncol. 2016, 127, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Butowski, N.; Chang, S.M.; Lamborn, K.R.; Polley, M.Y.; Pieper, R.; Costello, J.F.; Vandenberg, S.; Parvataneni, R.; Nicole, A.; Sneed, P.K.; et al. Phase II and pharmacogenomics study of enzastaurin plus temozolomide during and following radiation therapy in patients with newly diagnosed glioblastoma multiforme and gliosarcoma. Neuro-Oncolology 2011, 13, 1331–1338. [Google Scholar] [CrossRef] [PubMed]
- Dreicer, R.; Garcia, J.; Rini, B.; Vogelzang, N.; Srinivas, S.; Somer, B.; Shi, P.; Kania, M.; Raghavan, D. A randomized, double-blind, placebo-controlled, Phase II study with and without enzastaurin in combination with docetaxel-based chemotherapy in patients with castration-resistant metastatic prostate cancer. Investig. New Drug 2013, 31, 1044–1050. [Google Scholar] [CrossRef] [PubMed]
- Vergote, I.B.; Chekerov, R.; Amant, F.; Harter, P.; Casado, A.; Emerich, J.; Bauknecht, T.; Mansouri, K.; Myrand, S.P.; Nguyen, T.S.; et al. Randomized, phase II, placebo-controlled, double-blind study with and without enzastaurin in combination with paclitaxel and carboplatin as first-line treatment followed by maintenance treatment in advanced ovarian cancer. J. Clin. Oncol. 2013, 31, 3127–3132. [Google Scholar] [CrossRef] [PubMed]
- Jourdan, E.; Leblond, V.; Maisonneuve, H.; Benhadji, K.A.; Hossain, A.M.; Nguyen, T.S.; Wooldridge, J.E.; Moreau, P. A multicenter phase II study of single-agent enzastaurin in previously treated multiple myeloma. Leuk. Lymphoma 2014, 55, 2013–2017. [Google Scholar] [CrossRef]
- Grønberg, B.H.; Ciuleanu, T.; Fløtten, Ø.; Knuuttila, A.; Abel, E.; Langer, S.W.; Krejcy, K.; Liepa, A.M.; Munoz, M.; HahkaKemppinen, M.; et al. A placebo-controlled, randomized phase II study of maintenance enzastaurin following whole brain radiation therapy in the treatment of brain metastases from lung cancer. Lung Cancer 2012, 78, 63–69. [Google Scholar] [CrossRef]
- Usha, L.; Sill, M.W.; Darcy, K.M.; Benbrook, D.M.; Hurteau, J.A.; Michelin, D.P.; Mannel, R.S.; Hanjani, P.; De Geest, K.; Godwin, A.K. A Gynecologic Oncology Group phase II trial of the protein kinase C-β inhibitor, enzastaurin and evaluation of markers with potential predictive and prognostic value in persistent or recurrent epithelial ovarian and primary peritoneal malignancies. Gynecol. Oncol. 2011, 121, 455–461. [Google Scholar] [CrossRef] [Green Version]
- Morschhauser, F.; Seymour, J.F.; Kluin-Nelemans, H.C.; Grigg, A.; Wolf, M.; Pfreundschuh, M.; Tilly, H.; Raemaekers, J.; van’t Veer, M.B.; Milpied, N.; et al. A phase II study of enzastaurin, a protein kinase C β inhibitor, in patients with relapsed or refractory mantle cell lymphoma. Ann. Oncol. 2008, 19, 247–253. [Google Scholar] [CrossRef]
- Mina, L.; Krop, I.; Zon, R.T.; Isakoff, S.J.; Schneider, C.J.; Yu, M.; Johnson, C.; Vaughn, L.G.; Wang, Y.; Hristova-Kazmierski, M.; et al. A phase II study of oral enzastaurin in patients with metastatic breast cancer previously treated with an anthracycline and a taxane containing regimen. Investig. New Drug 2009, 27, 565–570. [Google Scholar] [CrossRef]
- Querfeld, C.; Kuzel, T.M.; Kim, Y.H.; Porcu, P.; Duvic, M.; Musiek, A.; Rook, A.H.; Mark, L.A.; Pinter-Brown, L.; Hamid, O.; et al. Multicenter phase II trial of enzastaurin in patients with relapsed or refractory advanced cutaneous T-cell lymphoma. Leuk. Lymphoma 2011, 52, 1474–1480. [Google Scholar] [CrossRef]
- Nowakowski, G.S.; Zhu, J.; Zhang, Q.; Brody, J.; Sun, X.; Maly, J.; Song, Y.; Rizvi, S.; Song, Y.; Lansigan, F.; et al. ENGINE: A Phase III Randomized Placebo Controlled Study of Enzastaurin/R-CHOP as Frontline Therapy in High-Risk Diffuse Large B-Cell Lymphoma Patients with the Genomic Biomarker DGM1. Future Oncol. 2020, 16, 991–999. [Google Scholar] [CrossRef] [PubMed]
- Kazanietz, M.G.; Lewin, N.E.; Gao, F.; Pettit, G.R.; Blumberg, P.M. Binding of [26-3H]bryostatin 1 and analogs to calcium dependent and calcium-independent protein kinase C isozymes. Mol. Pharmacol. 1994, 46, 374–379. [Google Scholar]
- Schaar, D.; Goodell, L.; Aisner, J.; Cui, X.X.; Han, Z.T.; Chang, R.; Martin, J.; Grospe, S.; Dudek, L.; Riley, J.; et al. A phase I clinical trial of 12-O-tetradecanoylphorbol-13-acetate for patients with relapsed/refractory malignancies. Cancer Chemoth. Pharm. 2006, 57, 789–795. [Google Scholar] [CrossRef] [PubMed]
- Tozer, R.G.; Burdette-Radoux, S.; Berlanger, K.; Davis, M.L.; Lohmann, R.C.; Rusthoven, J.R.; Wainman, N.; Zee, B.; Seymour, L.; National Cancer Institute of Canada Clinical Trials Group. A randomized phase II study of two schedules of bryostatin-1 (NSC339555) in patients with advanced malignant melanoma: A National Cancer Institute of Canada Clinical Trials Group Study. Investig. New Drug 2002, 20, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Peterson, A.C.; Harlin, H.; Karrison, T.; Vogelzang, N.J.; Knost, J.A.; Kugler, J.W.; Lester, E.; Vokes, E.; Gajewski, T.F.; Stadler, W.M.; et al. A randomized phase II trial of interleukin-2 in combination with four different doses of bryostatin-1 in patients with renal cell carcinoma. Investig. New Drug 2006, 24, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Zonder, J.A.; Shields, A.F.; Zalupski, M.; Chaplen, R.; Heilbrun, L.K.; Arlauskas, P.; Philip, P.A. A phase II trial of bryostatin 1 in the treatment of metastatic colorectal cancer. Clin. Cancer Res. 2001, 7, 38–42. [Google Scholar]
- Blackhall, F.H.; Ranson, M.; Radford, J.A.; Hancock, B.W.; Soukop, M.; McGown, A.T.; Robbins, A.; Halbert, G.; Jayson, G.C.; Cancer Research Campaign Phase I/II Committee. A phase II trial of bryostatin 1 in patients with non-Hodgkin’s lymphoma. Br. J. Cancer 2001, 84, 465–469. [Google Scholar] [CrossRef] [Green Version]
- Varterasian, M.L.; Pemberton, P.A.; Hulburd, K.; Rodriguez, D.H.; Murgo, A.; Al-Katib, A.M. Phase II study of bryostatin 1 in patients with relapsed multiple myeloma. Investig. New Drug 2001, 19, 245–247. [Google Scholar] [CrossRef]
- Pfister, D.G.; McCaffrey, J.; Zahalsky, A.J.; Schwartz, G.K.; Lis, E.; Gerald, W.; Huvos, A.; Shah, J.; Kraus, D.; Shaha, A.; et al. A phase II trial of bryostatin-1 in patients with metastatic or recurrent squamous cell carcinoma of the head and neck. Investig. New Drug 2002, 20, 123–127. [Google Scholar] [CrossRef]
- Nezhat, F.; Wadler, S.; Muggia, F.; Mandeli, J.; Goldberg, G.; Rahaman, J.; Runowicz, C.; Murgo, A.J.; Gardner, G.J. Phase II trial of the combination of bryostatin-1 and cisplatin in advanced or recurrent carcinoma of the cervix: A New York Gynecologic Oncology Group study. Gynecol. Oncol. 2004, 93, 144–148. [Google Scholar] [CrossRef]
- Morgan, R.J.; Leong, L.; Chow, W.; Gandara, D.; Frankel, P.; Garcia, A.; Lenz, H.J.; Doroshow, J.H. Phase II trial of bryostatin-1 in combination with cisplatin in patients with recurrent or persistentepithelial ovarian cancer: A California cancer consortium study. Investig. New Drug 2012, 30, 723–728. [Google Scholar] [CrossRef] [Green Version]
- Lam, A.P.; Sparano, J.A.; Vinciguerra, V.; Ocean, A.J.; Christos, P.; Hochster, H.; Camacho, F.; Goel, S.; Mani, S.; Kaubisch, A. Phase II study of paclitaxel plus the protein kinase C inhibitor bryostatin-1 in advanced pancreatic carcinoma. Am. J. Clin. Oncol. 2010, 33, 121–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winegarden, J.D.; Mauer, A.M.; Gajewski, T.F.; Hoffman, P.C.; Krauss, S.; Rudin, C.M.; Vokes, E.E. A phase II study of bryostatin-1 and paclitaxel in patients with advanced non-small cell lung cancer. Lung Cancer 2003, 39, 191–196. [Google Scholar] [CrossRef]
- Ajani, J.A.; Jiang, Y.; Faust, J.; Chang, B.B.; Ho, L.; Yao, J.C.; Rousey, S.; Dakhil, S.; Cherny, R.C.; Craig, C.; et al. A multicenter phase II study of sequential paclitaxel and bryostatin-1 (NSC 339555) in patients with untreated, advanced gastric or gastroesophageal junction adenocarcinoma. Investig. New Drug 2006, 24, 353–357. [Google Scholar] [CrossRef]
- Ku, G.Y.; Ilson, D.H.; Schwartz, L.H.; Capanu, M.; O’Reilly, E.; Shah, M.A.; Kelsen, D.P.; Schwartz, G.K. Phase II trial of sequential paclitaxel and 1 h infusion of bryostatin-1 in patients with advanced esophageal cancer. Cancer Chemoth. Pharm. 2008, 62, 875–880. [Google Scholar] [CrossRef] [PubMed]
- Barr, P.M.; Lazarus, H.M.; Cooper, B.W.; Schluchter, M.D.; Panneerselvam, A.; Jacobberger, J.W.; Hsu, J.W.; Janakiraman, N.; Simic, A.; Dowlati, A.; et al. Phase II study of bryostatin 1 and vincristine for aggressive non-Hodgkin lymphoma relapsing after an autologous stem cell transplant. Am. J. Hematol. 2009, 84, 484–487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castanotto, D.; Stein, C.A. Antisense oligonucleotides in cancer. Curr. Opin. Oncol. 2014, 26, 584–589. [Google Scholar] [CrossRef] [PubMed]
- Black, A.R.; Black, J.D. The complexities of PKCα signaling in cancer. Adv. Biol. Regul. 2021, 80, 100769–100823. [Google Scholar] [CrossRef] [PubMed]
- Lahn, M.; Sundell, K.; Moore, S. Targeting protein kinase C-alpha (PKC-α) in cancer with the phosphorothioate antisense oligonucleotide aprinocarsen. Ann. N. Y. Acad. Sci. 2003, 1002, 263–270. [Google Scholar] [CrossRef]
- Grossman, S.A.; Alavi, J.B.; Supko, J.G.; Carson, K.A.; Priet, R.; Dorr, F.A.; Grundy, J.S.; Holmlund, J.T. Efficacy and toxicity of the antisense oligonucleotide aprinocarsen directed against protein kinase C-α delivered as a 21-day continuous intravenous infusion in patients with recurrent high-grade astrocytomas. Neuro-Oncol. 2005, 7, 32–40. [Google Scholar] [CrossRef] [Green Version]
- Paz-Ares, L.; Douillard, J.Y.; Koralewski, P.; Manegold, C.; Smit, E.F.; Reyes, J.M.; Chang, G.C.; John, W.J.; Peterson, P.M.; Obasaju, C.K.; et al. Phase III study of gemcitabine and cisplatin with or without aprinocarsen, a protein kinase C-alpha antisense oligonucleotide, in patients with advanced-stage non-small-cell lung cancer. J. Clin. Oncol. 2006, 24, 1428–1434. [Google Scholar] [CrossRef]
- Advani, R.; Peethambaram, P.; Lum, B.L.; Fisher, G.A.; Hartmann, L.; Long, H.J.; Halsey, J.; Holmlund, J.T.; Dorr, A.; Sikic, B.I. A Phase II trial of aprinocarsen, an antisense oligonucleotide inhibitor of protein kinase C α, administered as a 21-day infusion to patients with advanced ovarian carcinoma. Cancer 2004, 100, 321–326. [Google Scholar] [CrossRef]
- Tolcher, A.W.; Reyno, L.; Venner, P.M.; Ernst, S.D.; Moore, M.; Geary, R.S.; Chi, K.; Hall, S.; Walsh, W.; Dorr, A.; et al. A randomized phase II and pharmacokinetic study of the antisense oligonucleotides ISIS 3521 and ISIS 5132 in patients with hormone-refractory prostate cancer. Clin. Cancer Res. 2002, 8, 2530–2535. [Google Scholar] [PubMed]
- Roychowdhury, D.; Lahn, M. Antisense therapy directed to protein kinase C-alpha (Affinitak, LY900003/ISIS 3521): Potential role in breast cancer. Semin. Oncol. 2003, 30, 30–33. [Google Scholar] [CrossRef]
- Marshall, J.L.; Eisenberg, S.G.; Johnson, M.D.; Hanfelt, J.; Dorr, F.A.; El-Ashry, D.; Oberst, M.; Fuxman, Y.; Holmlund, J.; Malik, S. A phase II trial of ISIS 3521 in patients with metastatic colorectal cancer. Clin. Clin. Color. Cancer 2004, 4, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.; Watkins, D.; Cunningham, D.; Dunlop, D.; Johnson, P.; Selby, P.; Hancock, B.W.; Fegan, C.; Culligan, D.; Schey, S.; et al. Phase II study of ISIS 3521, an antisense oligodeoxynucleotide to protein kinase C alpha, in patients with previously treated low-grade non-Hodgkin’s lymphoma. Ann. Oncol. 2004, 15, 1413–1418. [Google Scholar] [CrossRef] [PubMed]
- Kelland, L. Discontinued drugs in 2005: Oncology drugs. Expert Opin. Investig. Drugs 2006, 15, 1309–1318. [Google Scholar] [CrossRef]
- Pfeifhofer-Obermair, C.; Thuille, N.; Baier, G. Involvement of Distinct PKC Gene Products in T Cell Functions. Front. Immunol. 2012, 3, 220–232. [Google Scholar] [CrossRef] [Green Version]
- Shiravand, Y.; Khodadadi, F.; Kashani, S.M.A.; Hosseini-Fard, S.R.; Hosseini, S.; Sadeghirad, H.; Ladwa, R.; O’Byrne, K.; Kulasinghe, A. Immune Checkpoint Inhibitors in Cancer Therapy. Curr. Oncol. 2022, 29, 3044–3060. [Google Scholar] [CrossRef]
- Zhang, E.Y.; Kong, K.-F.; Altman, A. The Yin and Yang of Protein Kinase C-Theta (PKCθ). Adv. Pharmacol. 2013, 267–312. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; You, Y.; Case, S.M.; McAllister-Lucas, L.M.; Wang, L.; DiStefano, P.S.; Nuñez, G.; Bertin, J.; Lin, X. A Requirement for CARMA1 in TCR-Induced NF-κB Activation. Nat. Immunol. 2002, 3, 830–835. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Karin, M. Missing pieces in the NF-κB puzzle. Cell 2002, 109, S81–S96. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Witte, S.; Liu, Y.-C.; Doyle, M.; Elly, C.; Altman, A. Regulation of Protein Kinase Cθ Function during T Cell Activation by Lck-Mediated Tyrosine Phosphorylation. J. Biol. Chem. 2000, 275, 3603–3609. [Google Scholar] [CrossRef] [Green Version]
- Letschka, T.; Kollmann, V.; Pfeifhofer-Obermair, C.; Lutz-Nicoladoni, C.; Obermair, G.J.; Fresser, F.; Leitges, M.; Hermann-Kleiter, N.; Kaminski, S.; Baier, G. PKC-θ Selectively Controls the Adhesion-Stimulating Molecule Rap1. Blood 2008, 112, 4617–4627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thuille, N.; Lutz-Nicoladoni, C.; Letschka, T.; Hermann-Kleiter, N.; Heit, I.; Baier, G. PKCθ and Itk Functionally Interact during Primary Mouse CD3+ T Cell Activation. Immunol. Lett. 2009, 126, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Gruber, T.; Hermann-Kleiter, N.; Hinterleitner, R.; Fresser, F.; Schneider, R.; Gastl, G.; Penninger, J.M.; Baier, G. PKC-θ Modulates the Strength of T Cell Responses by Targeting Cbl-b for Ubiquitination and Degradation. Sci. Signal. 2009, 2, ra30. [Google Scholar] [CrossRef]
- Fang, D.; Liu, Y.-C. Proteolysis-Independent Regulation of PI3K by Cbl-b–Mediated Ubiquitination in T Cells. Nat. Immunol. 2001, 2, 870–875. [Google Scholar] [CrossRef]
- Yanguas, A.; Garasa, S.; Teijeira, Á.; Aubá, C.; Melero, I.; Rouzaut, A. ICAM-1-LFA-1 Dependent CD8+ T-Lymphocyte Aggregation in Tumor Tissue Prevents Recirculation to Draining Lymph Nodes. Front. Immunol. 2018, 9, 2084–2098. [Google Scholar] [CrossRef]
- Kong, K.-F.; Yokosuka, T.; Canonigo-Balancio, A.J.; Isakov, N.; Saito, T.; Altman, A. A Motif in the V3 Domain of the Kinase PKC-θ Determines Its Localization in the Immunological Synapse and Functions in T Cells via Association with CD28. Nat. Immunol. 2011, 12, 1105–1112. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Lo, P.-F.; Żal, T.; Gascoigne, N.R.J.; Smith, B.A.; Levin, S.D.; Grey, H.M. CD28 Plays a Critical Role in the Segregation of PKCθ within the Immunologic Synapse. Proc. Natl. Acad. Sci. USA 2002, 99, 9369–9373. [Google Scholar] [CrossRef] [PubMed]
- Dustin, M.L. The Cellular Context of T Cell Signaling. Immunity 2009, 30, 482–492. [Google Scholar] [CrossRef] [Green Version]
- Hui, E.; Cheung, J.; Zhu, J.; Su, X.; Taylor, M.J.; Wallweber, H.A.; Sasmal, D.K.; Huang, J.; Kim, J.M.; Mellman, I.; et al. T Cell Costimulatory Receptor CD28 Is a Primary Target for PD-1–Mediated Inhibition. Science 2017, 355, 1428–1433. [Google Scholar] [CrossRef] [PubMed]
- Kamphorst, A.O.; Wieland, A.; Nasti, T.; Yang, S.; Zhang, R.; Barber, D.L.; Konieczny, B.T.; Daugherty, C.Z.; Koenig, L.; Yu, K.; et al. Rescue of Exhausted CD8 T Cells by PD-1–Targeted Therapies Is CD28-Dependent. Science 2017, 355, 1423–1427. [Google Scholar] [CrossRef] [Green Version]
- Villalba, M.; Bi, K.; Hu, J.; Altman, Y.; Bushway, P.; Reits, E.; Neefjes, J.; Baier, G.; Abraham, R.T.; Altman, A. Translocation of PKCθ in T Cells Is Mediated by a Nonconventional, PI3-K– and Vav-Dependent Pathway, but Does Not Absolutely Require Phospholipase C. J. Cell Biol. 2002, 157, 253–263. [Google Scholar] [CrossRef]
- Sheppard, K.-A.; Fitz, L.J.; Lee, J.M.; Benander, C.; George, J.A.; Wooters, J.; Qiu, Y.; Jussif, J.M.; Carter, L.L.; Wood, C.R.; et al. PD-1 Inhibits T-Cell Receptor Induced Phosphorylation of the ZAP70/CD3ζ Signalosome and Downstream Signaling to PKCθ. FEBS Lett. 2004, 574, 37–41. [Google Scholar] [CrossRef] [Green Version]
- Patsoukis, N.; Bardhan, K.; Chatterjee, P.; Sari, D.; Liu, B.; Bell, L.N.; Karoly, E.D.; Freeman, G.J.; Petkova, V.; Seth, P.; et al. PD-1 Alters T-Cell Metabolic Reprogramming by Inhibiting Glycolysis and Promoting Lipolysis and Fatty Acid Oxidation. Nat. Commun. 2015, 6, 6692–6705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chuang, H.-C.; Lan, J.-L.; Chen, D.-Y.; Yang, C.-Y.; Chen, Y.-M.; Li, J.-P.; Huang, C.-Y.; Liu, P.-E.; Wang, X.; Tan, T.-H. The Kinase GLK Controls Autoimmunity and NF-κB Signaling by Activating the Kinase PKC-θ in T Cells. Nat. Immunol. 2011, 12, 1113–1118. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Arendt, C.W.; Ellmeier, W.; Schaeffer, E.M.; Sunshine, M.J.; Gandhi, L.M.; Annes, J.; Petrzilka, D.; Kupfer, A.; Schwartzberg, P.L.; et al. PKC-theta is required for TCR-induced NF-kappaB activation in mature but not immature T lymphocytes. Nature 2000, 404, 402–407. [Google Scholar] [CrossRef] [PubMed]
- Prinz, P.U.; Mendler, A.N.; Masouris, I.; Durner, L.; Oberneder, R.; Noessner, E. High DGK-α and Disabled MAPK Pathways Cause Dysfunction of Human Tumor-Infiltrating CD8+ T Cells That Is Reversible by Pharmacologic Intervention. J. Immunol. 2012, 188, 5990–6000. [Google Scholar] [CrossRef] [Green Version]
- Han, Q.; Bagheri, N.; Bradshaw, E.M.; Hafler, D.A.; Lauffenburger, D.A.; Love, J.C. Polyfunctional Responses by Human T Cells Result from Sequential Release of Cytokines. Proc. Natl. Acad. Sci. USA 2012, 109, 1607–1612. [Google Scholar] [CrossRef] [PubMed]
- Salerno, F.; Paolini, N.A.; Stark, R.; von Lindern, M.; Wolkers, M.C. Distinct PKC-Mediated Posttranscriptional Events Set Cytokine Production Kinetics in CD8 + T Cells. Proc. Natl. Acad. Sci. USA 2017, 114, 9677–9682. [Google Scholar] [CrossRef]
- Marsland, B.J.; Soos, T.J.; Späth, G.; Littman, D.R.; Kopf, M. Protein Kinase C θ Is Critical for the Development of In Vivo T Helper (Th)2 Cell but Not Th1 Cell Responses. J. Exp. Med. 2004, 200, 181–189. [Google Scholar] [CrossRef]
- Mowen, K.A.; Glimcher, L.H. Signaling Pathways in Th2 Development. Immunol. Rev. 2004, 202, 203–222. [Google Scholar] [CrossRef]
- Ben-Shmuel, A.; Sabag, B.; Puthenveetil, A.; Biber, G.; Levy, M.; Jubany, T.; Awwad, F.; Roy, R.K.; Joseph, N.; Matalon, O.; et al. Inhibition of SHP-1 Activity by PKC-θ Regulates NK Cell Activation Threshold and Cytotoxicity. eLife 2022, 11, e73282. [Google Scholar] [CrossRef]
- Celis-Gutierrez, J.; Blattmann, P.; Zhai, Y.; Jarmuzynski, N.; Ruminski, K.; Grégoire, C.; Ounoughene, Y.; Fiore, F.; Aebersold, R.; Roncagalli, R.; et al. Quantitative Interactomics in Primary T Cells Provides a Rationale for Concomitant PD-1 and BTLA Coinhibitor Blockade in Cancer Immunotherapy. Cell Rep. 2019, 27, 3315–3330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watanabe, N.; Gavrieli, M.; Sedy, J.R.; Yang, J.; Fallarino, F.; Loftin, S.K.; Hurchla, M.A.; Zimmerman, N.; Sim, J.; Zang, X.; et al. BTLA Is a Lymphocyte Inhibitory Receptor with Similarities to CTLA-4 and PD-1. Nat. Immunol. 2003, 4, 670–679. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Hou, B.; Fulzele, A.; Masubuchi, T.; Zhao, Y.; Wu, Z.; Hu, Y.; Jiang, Y.; Ma, Y.; Wang, H.; et al. PD-1 and BTLA Regulate T Cell Signaling Differentially and Only Partially through SHP1 and SHP2. J. Cell Biol. 2020, 219, e201905085. [Google Scholar] [CrossRef]
- Valenzuela, H.F.; Effros, R.B. Divergent Telomerase and CD28 Expression Patterns in Human CD4 and CD8 T Cells Following Repeated Encounters with the Same Antigenic Stimulus. Clin. Immunol. 2002, 105, 117–125. [Google Scholar] [CrossRef]
- Comandini, A.; Naro, C.; Adamo, R.; Akbar, A.N.; Lanna, A.; Bonmassar, E.; Franzese, O. Molecular Mechanisms Involved in HIV-1-Tat Mediated Inhibition of Telomerase Activity in Human CD4+ T Lymphocytes. Mol. Immunol. 2013, 54, 181–192. [Google Scholar] [CrossRef]
- Greider, C.W. Telomere Length Regulation. Annu. Rev. Biochem. 1996, 65, 337–365. [Google Scholar] [CrossRef]
- Weng, N.; Hathcock, K.S.; Hodes, R.J. Regulation of Telomere Length and Telomerase in T and B Cells. Immunity 1998, 9, 151–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reed, J.C.; Alpers, J.D.; Nowell, P.C.; Hoover, R.G. Sequential Expression of Protooncogenes during Lectin-Stimulated Mitogenesis of Normal Human Lymphocytes. Proc. Natl. Acad. Sci. USA 1986, 83, 3982–3986. [Google Scholar] [CrossRef] [PubMed]
- Sheng, W.-Y.; Chen, Y.-R.; Wang, T.-C.V. A Major Role of PKCθand NFκB in the Regulation of hTERT in Human T Lymphocytes. FEBS Lett. 2006, 580, 6819–6824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfeifhofer-Obermair, C.; Albrecht-Schgoer, K.; Peer, S.; Nairz, M.; Siegmund, K.; Klepsch, V.; Haschka, D.; Thuille, N.; Hermann-Kleiter, N.; Gruber, T.; et al. Role of PKCtheta in Macrophage-Mediated Immune Response to Salmonella Typhimurium Infection in Mice. Cell Commun. Signal 2016, 14, 14–22. [Google Scholar] [CrossRef] [Green Version]
- Sakaguchi, S.; Yamaguchi, T.; Nomura, T.; Ono, M. Regulatory T Cells and Immune Tolerance. Cell 2008, 133, 775–787. [Google Scholar] [CrossRef] [Green Version]
- Sumoza-Toledo, A.; Eaton, A.D.; Sarukhan, A. Regulatory T Cells Inhibit Protein Kinase Cθ Recruitment to the Immune Synapse of Naive T Cells with the Same Antigen Specificity. J. Immunol. 2006, 176, 5779–5787. [Google Scholar] [CrossRef] [Green Version]
- Roybal, K.T.; Wülfing, C. Inhibiting the Inhibitor of the Inhibitor: Blocking PKC-θ to Enhance Regulatory T Cell Function. Sci. Signal. 2010, 3, pe24. [Google Scholar] [CrossRef]
- Ma, J.; Ding, Y.; Fang, X.; Wang, R.; Sun, Z. Protein Kinase C-θ Inhibits Inducible Regulatory T Cell Differentiation via an AKT-Foxo1/3a–Dependent Pathway. J. Immunol. 2012, 188, 5337–5347. [Google Scholar] [CrossRef] [Green Version]
- Ozay, E.I.; Shanthalingam, S.; Sherman, H.L.; Torres, J.A.; Osborne, B.A.; Tew, G.N.; Minter, L.M. Cell-Penetrating Anti-Protein Kinase C Theta Antibodies Act Intracellularly to Generate Stable, Highly Suppressive Regulatory T Cells. Mol. Ther. 2020, 28, 1987–2006. [Google Scholar] [CrossRef]
- Gupta, S.; Manicassamy, S.; Vasu, C.; Kumar, A.; Shang, W.; Sun, Z. Differential Requirement of PKC-θ in the Development and Function of Natural Regulatory T Cells. Mol. Immunol. 2008, 46, 213–224. [Google Scholar] [CrossRef] [Green Version]
- Shin, D.S.; Jordan, A.; Basu, S.; Thomas, R.M.; Bandyopadhyay, S.; de Zoeten, E.F.; Wells, A.D.; Macian, F. Regulatory T Cells Suppress CD 4 + T Cells through NFAT -dependent Transcriptional Mechanisms. EMBO Rep. 2014, 15, 991–999. [Google Scholar] [CrossRef] [Green Version]
- Britton, G.J.; Mitchell, R.E.; Burton, B.R.; Wraith, D.C. Protein Kinase C Theta Is Required for Efficient Induction of IL-10-Secreting T Cells. PLoS ONE 2017, 12, e0171547. [Google Scholar] [CrossRef] [Green Version]
- Henson, S.M.; Macaulay, R.; Franzese, O.; Akbar, A.N. Reversal of Functional Defects in Highly Differentiated Young and Old CD8 T Cells by PDL Blockade. Immunology 2012, 135, 355–363. [Google Scholar] [CrossRef]
- Franzese, O.; Torino, F.; Fuggetta, M.P.; Aquino, A.; Roselli, M.; Bonmassar, E.; Giuliani, A.; D’Atri, S. Tumor Immunotherapy: Drug-Induced Neoantigens (Xenogenization) and Immune Checkpoint Inhibitors. Oncotarget 2017, 8, 41641–41669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franzese, O.; Palermo, B.; Di Donna, C.; Sperduti, I.; Ferraresi, V.; Stabile, H.; Gismondi, A.; Santoni, A.; Nisticò, P. Polyfunctional Melan-A-Specific Tumor-Reactive CD8+T Cells Elicited by Dacarbazine Treatment before Peptide-Vaccination Depends on AKT Activation Sustained by ICOS. OncoImmunology 2016, 5, e1114203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trushin, S.A.; Pennington, K.N.; Carmona, E.M.; Asin, S.; Savoy, D.N.; Billadeau, D.D.; Paya, C.V. Protein Kinase Cα (PKCα) Acts Upstream of PKCθ To Activate IκB Kinase and NF-κB in T Lymphocytes. Mol. Cell Biol. 2003, 23, 7068–7081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gharbi, S.I.; Avila-Flores, A.; Soutar, D.; Orive, A.; Koretzky, G.A.; Albar, J.P.; Mérida, I. Transient PKCα Shuttling to the Immunological Synapse Is Governed by (DGK)ζ and Regulates L-Selectin Shedding. J. Cell Sci. 2013, 126, 2176–2186. [Google Scholar] [CrossRef] [Green Version]
- Galkina, E.; Tanousis, K.; Preece, G.; Tolaini, M.; Kioussis, D.; Florey, O.; Haskard, D.O.; Tedder, T.F.; Ager, A. L-Selectin Shedding Does Not Regulate Constitutive T Cell Trafficking but Controls the Migration Pathways of Antigen-Activated T Lymphocytes. J. Exp. Med. 2003, 198, 1323–1335. [Google Scholar] [CrossRef]
- Gruber, T.; Hermann-Kleiter, N.; Pfeifhofer-Obermair, C.; Lutz-Nicoladoni, C.; Thuille, N.; Letschka, T.; Barsig, J.; Baudler, M.; Li, J.; Metzler, B.; et al. PKCθ Cooperates with PKCα in Alloimmune Responses of T Cells in Vivo. Mol. Immunol. 2009, 46, 2071–2079. [Google Scholar] [CrossRef]
- Baier, G.; Wagner, J. PKC Inhibitors: Potential in T Cell-Dependent Immune Diseases. Curr. Opin. Cell Biol. 2009, 21, 262–267. [Google Scholar] [CrossRef]
- Mecklenbräuker, I.; Saijo, K.; Zheng, N.-Y.; Leitges, M.; Tarakhovsky, A. Protein Kinase Cδ Controls Self-Antigen-Induced B-Cell Tolerance. Nature 2002, 416, 860–865. [Google Scholar] [CrossRef]
- Gruber, T.; Barsig, J.; Pfeifhofer, C.; Ghaffari-Tabrizi, N.; Tinhofer, I.; Leitges, M.; Baier, G. PKCδ Is Involved in Signal Attenuation in CD3+ T Cells. Immunol. Lett. 2005, 96, 291–293. [Google Scholar] [CrossRef]
- Liu, Y.; Song, R.; Gao, Y.; Li, Y.; Wang, S.; Liu, H.-Y.; Wang, Y.; Hu, Y.-H.; Shu, H.-B. Protein Kinase C-δ Negatively Regulates T Cell Receptor-Induced NF-κB Activation by Inhibiting the Assembly of CARMA1 Signalosome. J. Biol. Chem. 2012, 287, 20081–20087. [Google Scholar] [CrossRef] [Green Version]
- Scheel-Toellner, D.; Pilling, D.; Akbar, A.N.; Hardie, D.; Lombardi, G.; Salmon, M.; Lord, J.M. Inhibition of T Cell Apoptosis by IFN-β Rapidly Reverses Nuclear Translocation of Protein Kinase C-δ. Eur. J. Immunol. 1999, 29, 2603–2612. [Google Scholar] [CrossRef]
- DeVries-Seimon, T.A.; Ohm, A.M.; Humphries, M.J.; Reyland, M.E. Induction of Apoptosis Is Driven by Nuclear Retention of Protein Kinase Cδ. J. Biol. Chem. 2007, 282, 22307–22314. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.S.Y.; Monu, N.; Shen, D.T.; Mecklenbräuker, I.; Radoja, N.; Haydar, T.F.; Leitges, M.; Frey, A.B.; Vukmanović, S.; Radoja, S. Protein Kinase Cδ Regulates Antigen Receptor-Induced Lytic Granule Polarization in Mouse CD8+ CTL. J. Immunol. 2007, 178, 7814–7821. [Google Scholar] [CrossRef] [PubMed]
- Bello-Gamboa, A.; Velasco, M.; Moreno, S.; Herranz, G.; Ilie, R.; Huetos, S.; Dávila, S.; Sánchez, A.; Bernardino De La Serna, J.; Calvo, V.; et al. Actin Reorganization at the Centrosomal Area and the Immune Synapse Regulates Polarized Secretory Traffic of Multivesicular Bodies in T Lymphocytes. J. Extracell. Vesicles 2020, 9, 1759926–1759947. [Google Scholar] [CrossRef] [PubMed]
- Lettau, M.; Armbrust, F.; Dohmen, K.; Drews, L.; Poch, T.; Dietz, M.; Kabelitz, D.; Janssen, O. Mechanistic Peculiarities of Activation-Induced Mobilization of Cytotoxic Effector Proteins in Human T Cells. Int. Immunol. 2018, 30, 215–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lettau, M.; Dietz, M.; Dohmen, K.; Leippe, M.; Kabelitz, D.; Janssen, O. Granulysin Species Segregate to Different Lysosome-Related Effector Vesicles (LREV) and Get Mobilized by Either Classical or Non-Classical Degranulation. Mol. Immunol. 2019, 107, 44–53. [Google Scholar] [CrossRef]
- Hatano, R.; Ohnuma, K.; Yamamoto, J.; Dang, N.H.; Morimoto, C. CD26-Mediated Co-Stimulation in Human CD8+T Cells Provokes Effector Function via pro-Inflammatory Cytokine Production. Immunology 2013, 138, 165–172. [Google Scholar] [CrossRef]
- Salzer, E.; Santos-Valente, E.; Keller, B.; Warnatz, K.; Boztug, K. Protein Kinase C δ: A Gatekeeper of Immune Homeostasis. J. Clin. Immunol. 2016, 36, 631–640. [Google Scholar] [CrossRef] [Green Version]
- Gorelik, G.; Sawalha, A.H.; Patel, D.; Johnson, K.; Richardson, B. T Cell PKCδ Kinase Inactivation Induces Lupus-like Autoimmunity in Mice. Clin. Immunol. 2015, 158, 193–203. [Google Scholar] [CrossRef] [Green Version]
- Bertolotto, C.; Maulon, L.; Filippa, N.; Baier, G.; Auberger, P. Protein Kinase C θ and ε Promote T-Cell Survival by a Rsk-Dependent Phosphorylation and Inactivation of BAD. J. Biol. Chem. 2000, 275, 37246–37250. [Google Scholar] [CrossRef] [Green Version]
- Quann, E.J.; Liu, X.; Altan-Bonnet, G.; Huse, M. A Cascade of Protein Kinase C Isozymes Promotes Cytoskeletal Polarization in T Cells. Nat. Immunol. 2011, 12, 647–654. [Google Scholar] [CrossRef]
- Mirandola, P.; Gobbi, G.; Masselli, E.; Micheloni, C.; Di Marcantonio, D.; Queirolo, V.; Chiodera, P.; Meschi, T.; Vitale, M. Protein Kinase Cε Regulates Proliferation and Cell Sensitivity to TGF-1β of CD4+ T Lymphocytes: Implications for Hashimoto Thyroiditis. J. Immunol. 2011, 187, 4721–4732. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Jin, W.; Hardegen, N.; Lei, K.; Li, L.; Marinos, N.; McGrady, G.; Wahl, S.M. Conversion of Peripheral CD4+CD25− Naive T Cells to CD4+CD25+ Regulatory T Cells by TGF-β Induction of Transcription Factor Foxp3. J. Exp. Med. 2003, 198, 1875–1886. [Google Scholar] [CrossRef]
- Zhang, N.; Bevan, M.J. Transforming Growth Factor-β Signaling Controls the Formation and Maintenance of Gut-Resident Memory T Cells by Regulating Migration and Retention. Immunity 2013, 39, 687–696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, Z.; Chu, T.H.; Sheridan, B.S. TGF-β: Many Paths to CD103+ CD8 T Cell Residency. Cells 2021, 10, 989. [Google Scholar] [CrossRef] [PubMed]
- Banchereau, R.; Chitre, A.S.; Scherl, A.; Wu, T.D.; Patil, N.S.; de Almeida, P.; Kadel, E.E., III; Madireddi, S.; Au-Yeung, A.; Takahashi, C.; et al. Intratumoral CD103+ CD8+ T Cells Predict Response to PD-L1 Blockade. J. Immunother. Cancer 2021, 9, e002231. [Google Scholar] [CrossRef] [PubMed]
- Corgnac, S.; Boutet, M.; Kfoury, M.; Naltet, C.; Mami-Chouaib, F. The Emerging Role of CD8+ Tissue Resident Memory T (TRM) Cells in Antitumor Immunity: A Unique Functional Contribution of the CD103 Integrin. Front. Immunol. 2018, 9, 1904–1913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Floc’h, A.L.; Jalil, A.; Franciszkiewicz, K.; Validire, P.; Vergnon, I.; Mami-Chouaib, F. Minimal Engagement of CD103 on Cytotoxic T Lymphocytes with an E-Cadherin-Fc Molecule Triggers Lytic Granule Polarization via a Phospholipase Cγ–Dependent Pathway. Cancer Res. 2011, 71, 328–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, G.; Gascoigne, N.R.J. The Role of Protein Kinase Cη in T Cell Biology. Front. Immunol. 2012, 3, 177–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franzese, O.; Henson, S.M.; Naro, C.; Bonmassar, E. Defect in HSP90 Expression in Highly Differentiated Human CD8+ T Lymphocytes. Cell Death Dis. 2014, 5, e1294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, K.-F.; Fu, G.; Zhang, Y.; Yokosuka, T.; Casas, J.; Canonigo-Balancio, A.J.; Becart, S.; Kim, G.; Yates, J.R.; Kronenberg, M.; et al. Protein Kinase C-η Controls CTLA-4–Mediated Regulatory T Cell Function. Nat. Immunol. 2014, 15, 465–472. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.-Y.; Pedros, C.; Kong, K.-F.; Canonigo-Balancio, A.J.; Xue, W.; Altman, A. Leveraging the Treg-Intrinsic CTLA4–PKCη Signaling Pathway for Cancer Immunotherapy. J. Immunother. Cancer 2021, 9, e002792. [Google Scholar] [CrossRef]
- Martin, P.; Villares, R.; Rodriguez-Mascarenhas, S.; Zaballos, A.; Leitges, M.; Kovac, J.; Sizing, I.; Rennert, P.; Márquez, G.; Martínez-Alonso, C.; et al. Control of T Helper 2 Cell Function and Allergic Airway Inflammation by PKCζ. Proc. Natl. Acad. Sci. USA 2005, 102, 9866–9871. [Google Scholar] [CrossRef]
- San-Antonio, B.; Iñiguez, M.A.; Fresno, M. Protein kinase Czeta phosphorylates nuclear factor of activated T cells and regulates its transactivating activity. J. Biol. Chem. 2002, 277, 27073–27080. [Google Scholar] [CrossRef] [Green Version]
- Real, E.; Faure, S.; Donnadieu, E.; Delon, J. Cutting Edge: Atypical PKCs Regulate T Lymphocyte Polarity and Scanning Behavior. J. Immunol. 2007, 179, 5649–5652. [Google Scholar] [CrossRef] [Green Version]
- Sheng, W.-Y.; Chien, Y.-L.; Wang, T.-C.V. The Dual Role of Protein Kinase C in the Regulation of Telomerase Activity in Human Lymphocytes. FEBS Lett. 2003, 540, 91–95. [Google Scholar] [CrossRef] [Green Version]
- Mischak, H.; Kolch, W.; Goodnight, J.; Davidson, W.F.; Rapp, U.; Rose-John, S.; Mushinski, J.F. Expression of Protein Kinase C Genes in Hemopoietic Cells Is Cell-Type- and B Cell-Differentiation Stage Specific. J. Immunol. 1991, 147, 3981–3987. [Google Scholar] [CrossRef]
- Su, T.T.; Guo, B.; Kawakami, Y.; Sommer, K.; Chae, K.; Humphries, L.A.; Kato, R.M.; Kang, S.; Patrone, L.; Wall, R.; et al. PKC-β Controls IκB Kinase Lipid Raft Recruitment and Activation in Response to BCR Signaling. Nat. Immunol. 2002, 3, 780–786. [Google Scholar] [CrossRef] [PubMed]
- Saijo, K.; Mecklenbräuker, I.; Santana, A.; Leitger, M.; Schmedt, C.; Tarakhovsky, A. Protein Kinase C β Controls Nuclear Factor κB Activation in B Cells Through Selective Regulation of the IκB Kinase α. J. Exp. Med. 2002, 195, 1647–1652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Volkov, Y.; Long, A.; McGrath, S.; Eidhin, D.N.; Kelleher, D. Crucial Importance of PKC-β(I) in LFA-1–Mediated Locomotion of Activated T Cells. Nat. Immunol. 2001, 2, 508–514. [Google Scholar] [CrossRef]
- Dreikhausen, U.E. Protein Kinase C 1, a Major Regulator of TCR-CD28-Activated Signal Transduction Leading to IL-2 Gene Transcription and Secretion. Int. Immunol. 2003, 15, 1089–1098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walsh, D.A.; Borges da Silva, H.; Beura, L.K.; Peng, C.; Hamilton, S.E.; Masopust, D.; Jameson, S.C. The Functional Requirement for CD69 in Establishment of Resident Memory CD8+ T Cells Varies with Tissue Location. J. Immunol. 2019, 203, 946–955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cervino, M.C.; Lopez-Lago, M.A.; Vinuela, J.E.; Barja, P. Specific inhibition of protein kinase Cbeta expression by antisense RNA affects the activation of Jurkat T lymphoma cells. J. Biol. Regul. Homeost. Agents 2010, 24, 273–285. [Google Scholar]
- Xiong, X.; Liao, X.; Qiu, S.; Xu, H.; Zhang, S.; Wang, S.; Ai, J.; Yang, L. CXCL8 in Tumor Biology and Its Implications for Clinical Translation. Front. Mol. Biosci. 2022, 9, 723846–723859. [Google Scholar] [CrossRef]
- Korman, A.J.; Garrett-Thomson, S.C.; Lonberg, N. The Foundations of Immune Checkpoint Blockade and the Ipilimumab Approval Decennial. Nat. Rev. Drug Discov. 2022, 21, 509–528. [Google Scholar] [CrossRef]
- Morad, G.; Helmink, B.A.; Sharma, P.; Wargo, J.A. Hallmarks of Response, Resistance, and Toxicity to Immune Checkpoint Blockade. Cell 2022, 185, 576–593. [Google Scholar] [CrossRef]
- Gabrilovich, D.I. Myeloid-Derived Suppressor Cells. Cancer Immunol. Res. 2017, 5, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Chaib, M.; Holt, J.; Sipe, L.M.; Bohm, M.S.; Clarice, S.J.; Yarbro, J.R.; Tanveer, U.; Hollingsworth, T.J.; Wei, Q.; Thomas, P.G.; et al. Protein Kinase C Delta Regulates Mononuclear Phagocytes and Hinders Response to Immunotherapy in Cancer. bioRxiv 2022. [Google Scholar] [CrossRef]
- Wei, C.-Y.; Zhu, M.-X.; Zhang, P.-F.; Huang, X.-Y.; Wan, J.-K.; Yao, X.-Z.; Hu, Z.-T.; Chai, X.-Q.; Peng, R.; Yang, X.; et al. PKCα/ZFP64/CSF1 Axis Resets the Tumor Microenvironment and Fuels Anti-PD1 Resistance in Hepatocellular Carcinoma. J. Hepatol. 2022, 77, 163–176. [Google Scholar] [CrossRef] [PubMed]
- Chaib, M.; Sipe, L.M.; Yarbro, J.R.; Bohm, M.S.; Counts, B.R.; Tanveer, U.; Pingili, A.K.; Daria, D.; Marion, T.N.; Carson, J.A.; et al. PKC Agonism Restricts Innate Immune Suppression, Promotes Antigen Cross-Presentation and Synergizes with Agonistic CD40 Antibody Therapy to Activate CD8+ T Cells in Breast Cancer. Cancer Lett. 2022, 531, 98–108. [Google Scholar] [CrossRef] [PubMed]
- To, K.K.W.; Fong, W.; Cho, W.C.S. Immunotherapy in Treating EGFR-Mutant Lung Cancer: Current Challenges and New Strategies. Front. Oncol. 2021, 11, 635007–635024. [Google Scholar] [CrossRef]
- Gainor, J.F.; Shaw, A.T.; Sequist, L.V.; Fu, X.; Azzoli, C.G.; Piotrowska, Z.; Huynh, T.G.; Zhao, L.; Fulton, L.; Schultz, K.R.; et al. EGFR Mutations and ALK Rearrangements Are Associated with Low Response Rates to PD-1 Pathway Blockade in Non–Small Cell Lung Cancer: A Retrospective Analysis. Clin. Cancer Res. 2016, 22, 4585–4593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuo, Y.-H.; Gao, W.-N.; Xie, Y.-J.; Yang, S.-Y.; Zhou, J.-T.; Liang, H.-H.; Fan, X.-X. Tumor PKCδ Instigates Immune Exclusion in EGFR-Mutated Non–Small Cell Lung Cancer. BMC Med. 2022, 20, 470–484. [Google Scholar] [CrossRef] [PubMed]
- Sutcliffe, E.L.; Li, J.; Zafar, A.; Hardy, K.; Ghildyal, R.; McCuaig, R.; Norris, N.; Lim, P.S.; Milburn, P.J.; Casarotto, M.; et al. Chromatinized Protein Kinase C-θ: Can It Escape the Clutches of NF-κB? Front. Immunol. 2012, 3, 260. [Google Scholar] [CrossRef] [Green Version]
- Dunn, J.; McCuaig, R.D.; Tan, A.H.Y.; Tu, W.J.; Wu, F.; Wagstaff, K.M.; Zafar, A.; Ali, S.; Diwakar, H.; Dahlstrom, J.E.; et al. Selective Targeting of Protein Kinase C (PKC)-θ Nuclear Translocation Reduces Mesenchymal Gene Signatures and Reinvigorates Dysfunctional CD8+ T Cells in Immunotherapy-Resistant and Metastatic Cancers. Cancers 2022, 14, 1596. [Google Scholar] [CrossRef]
- Gao, Y.; Hu, S.; Li, R.; Jin, S.; Liu, F.; Liu, X.; Li, Y.; Yan, Y.; Liu, W.; Gong, J.; et al. Hyperprogression of Cutaneous T Cell Lymphoma after Anti–PD-1 Treatment. JCI Insight 2023, 8, e164793. [Google Scholar] [CrossRef]
- Triebel, F. LAG-3: A Regulator of T-Cell and DC Responses and Its Use in Therapeutic Vaccination. Trends Immunol. 2003, 24, 619–622. [Google Scholar] [CrossRef]
- Shi, A.-P.; Tang, X.-Y.; Xiong, Y.-L.; Zheng, K.-F.; Liu, Y.-J.; Shi, X.-G.; Lv, Y.; Jiang, T.; Ma, N.; Zhao, J.-B. Immune Checkpoint LAG3 and Its Ligand FGL1 in Cancer. Front. Immunol. 2021, 12, 785091–785102. [Google Scholar] [CrossRef]
- Maruhashi, T.; Sugiura, D.; Okazaki, I.; Okazaki, T. LAG-3: From Molecular Functions to Clinical Applications. J. Immunother. Cancer 2020, 8, e001014. [Google Scholar] [CrossRef]
- Bae, J.; Lee, S.J.; Park, C.-G.; Lee, Y.S.; Chun, T. Trafficking of LAG-3 to the Surface on Activated T Cells via Its Cytoplasmic Domain and Protein Kinase C Signaling. J. Immunol. 2014, 193, 3101–3112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sleckman, B.P.; Shin, J.; Igras, V.E.; Collins, T.L.; Strominger, J.L.; Burakoff, S.J. Disruption of the CD4-P56lck Complex Is Required for Rapid Internalization of CD4. Proc. Natl. Acad. Sci. USA 1992, 89, 7566–7570. [Google Scholar] [CrossRef] [PubMed]
- Sleckman, B.P.; Bigby, M.; Greenstein, J.L.; Burakoff, S.J.; Sy, M.S. Requirements for Modulation of the CD4 Molecule in Response to Phorbol Myristate Acetate. Role of the Cytoplasmic Domain. J. Immunol. 1989, 142, 1457–1462. [Google Scholar] [CrossRef]
- Cron, K.; Sivan, A.; Aquino-Michaels, K.; Higgs, E.; Fessler, J.; Lee, S.; Sweis, R.; Gajewski, T. 642 Decreased Host PKC-Delta Is Associated with the T Cell-Inflamed Tumor Microenvironment and Improves Anti-Tumor Immunity. J. Immunother. Cancer 2021, 9, A671. [Google Scholar] [CrossRef]
- Diaz-Meco, M.T.; Moscat, J. The Atypical PKCs in Inflammation: NF-κB and Beyond. Immunol. Rev. 2012, 246, 154–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pedros, C.; Canonigo-Balancio, A.J.; Kong, K.-F.; Altman, A. Requirement of Treg-Intrinsic CTLA4/PKCη Signaling Pathway for Suppressing Tumor Immunity. JCI Insight 2017, 2, e95692. [Google Scholar] [CrossRef] [Green Version]
- Abdelatty, A.; Sun, Q.; Hu, J.; Wu, F.; Wei, G.; Xu, H.; Zhou, G.; Wang, X.; Xia, H.; Lan, L. Pan-Cancer Study on Protein Kinase C Family as a Potential Biomarker for the Tumors Immune Landscape and the Response to Immunotherapy. Front. Cell Dev. Biol. 2022, 9, 798319–798336. [Google Scholar] [CrossRef]
- Sarkar, S.; Bristow, C.A.; Dey, P.; Rai, K.; Perets, R.; Ramirez-Cardenas, A.; Malasi, S.; Huang-Hobbs, E.; Haemmerle, M.; Wu, S.Y.; et al. PRKCI Promotes Immune Suppression in Ovarian Cancer. Genes. Dev. 2017, 31, 1109–1121. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Zhu, Y.; Wang, J.; Weng, S.; Zuo, F.; Li, C.; Zhu, T. PKCι Regulates the Expression of PDL1 through Multiple Pathways to Modulate Immune Suppression of Pancreatic Cancer Cells. Cell Signal. 2021, 86, 110115–110130. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Huang, Z.; Ge, J.; Yang, J.; Chen, J.; Xu, B.; Wu, S.; Zheng, X.; Chen, L.; Zhang, X.; et al. CD226 Identifies Functional CD8+T Cells in the Tumor Microenvironment and Predicts a Better Outcome for Human Gastric Cancer. Front. Immunol. 2023, 14, 1150803. [Google Scholar] [CrossRef]
- Shibuya, A.; Lanier, L.L.; Phillips, J.H. Protein Kinase C Is Involved in the Regulation of Both Signaling and Adhesion Mediated by DNAX Accessory Molecule-1 Receptor. J. Immunol. 1998, 161, 1671–1676. [Google Scholar] [CrossRef]
- Shirakawa, J. Requirement of the Serine at Residue 329 for Lipid Raft Recruitment of DNAM-1 (CD226). Int. Immunol. 2005, 17, 217–223. [Google Scholar] [CrossRef] [Green Version]
- Johnston, R.J.; Comps-Agrar, L.; Hackney, J.; Yu, X.; Huseni, M.; Yang, Y.; Park, S.; Javinal, V.; Chiu, H.; Irving, B.; et al. The Immunoreceptor TIGIT Regulates Antitumor and Antiviral CD8+ T Cell Effector Function. Cancer Cell 2014, 26, 923–937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, H.; Ko, M.; Choi, D.; Kim, J.H.; Lee, D.; Kang, S.-H.; Kim, I.; Lee, H.J.; Choi, E.K.; Kim, K.; et al. CD226hiCD8+ T Cells Are a Prerequisite for Anti-TIGIT Immunotherapy. Cancer Immunol. Res. 2020, 8, 912–925. [Google Scholar] [CrossRef] [Green Version]
- Arranz-Nicolás, J.; Martin-Salgado, M.; Rodríguez-Rodríguez, C.; Liébana, R.; Moreno-Ortiz, M.C.; Leitner, J.; Steinberger, P.; Ávila-Flores, A.; Merida, I. Diacylglycerol Kinase ζ Limits IL-2-Dependent Control of PD-1 Expression in Tumor-Infiltrating T Lymphocytes. J. Immunother. Cancer 2020, 8, e001521. [Google Scholar] [CrossRef] [PubMed]
- Kawamura, A.; Kawamura, T.; Riddell, M.; Hikita, T.; Yanagi, T.; Umemura, H.; Nakayama, M. Regulation of Programmed Cell Death Ligand 1 Expression by Atypical Protein Kinase C Lambda/Iota in Cutaneous Angiosarcoma. Cancer Sci. 2019, 110, 1780–1789. [Google Scholar] [CrossRef] [Green Version]
- Riddell, M.; Nakayama, A.; Hikita, T.; Mirzapourshafiyi, F.; Kawamura, T.; Pasha, A.; Li, M.; Masuzawa, M.; Looso, M.; Steinbacher, T.; et al. aPKC Controls Endothelial Growth by Modulating C-Myc via FoxO1 DNA-Binding Ability. Nat. Commun. 2018, 9, 5357–5370. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.L.; Cao, F.F.; Wang, Y.; Meng, F.L.; Zhang, Y.; Zhong, D.S.; Zhou, Q.H. The protein kinase C (PKC) inhibitors combined with chemotherapy in the treatment of advanced non-small cell lung cancer: Meta-analysis of randomized controlled trials. Clin. Transl. Oncol. 2015, 17, 371–377. [Google Scholar] [CrossRef] [PubMed]
- Tovell, H.; Newton, A.C. PHLPPing the balance: Restoration of protein kinase C in Cancer. Biochem. J. 2021, 478, 341–355. [Google Scholar] [CrossRef] [PubMed]
- Newton, A.C. Protein kinase C as a tumor suppressor. Semin. Cancer Biol. 2018, 48, 18–26. [Google Scholar] [CrossRef]
- Cooke, M.; Magimaidas, A.; Casado-Medrano, V.; Kazanietz, M.G. Protein kinase C in cancer: The top five unanswered questions. Mol. Carcinog. 2017, 56, 1531–1542. [Google Scholar] [CrossRef] [PubMed]
- Sapon-Cousineau, V.; Sapon-Cousineau, S.; Assouline, S. PI3K inhibitors and their role as novel agents for targeted therapy in lymphoma. Curr. Treat. Options Oncol. 2020, 21, 51. [Google Scholar] [CrossRef] [PubMed]
Isoenzyme | Mutation | Function | Type of Cancer/Pathologies |
---|---|---|---|
PKCα | D294G, located in the C2 domain | Kinase functional loss and inhibition of F-actin accumulation, thus interfering with the organization of cytoskeletal filaments at the cell–cell junctions [26] | Highly invasive pituitary and thyroid tumors [27]; adenomas (pituitary, follicular); thyroid carcinomas [28] |
PKCα | D463H, affecting only one allele, present in heterozygosity | Affecting the highly conserved Asp residue, fundamental for the kinase activity, and leading to a different distribution and a reduced lifetime of the protein, likely favoring its phosphorylation [29] | Chordoid gliomas [30], affecting the third ventricle [29] |
PKCα | M489V, coding SLC44A1-PKCα fusion protein | Gain-of-function is caused by the rearrangement between chromosomes 9 and 17, which generates a constitutive oncogenic and functional kinase [31,32] | Rare mixed neuronal-glial tumors known as PGNTs, difficult to diagnose, (e.g., papillary glioneuronal tumors) [32]; Alzheimer’s disease in mouse model [33] |
PKCα, PKCβ and PKCδ | Gene fusion | Interaction with membrane-associated proteins, including podoplanin, CD63 and LAMTOR1 [34] | Benign fibrous histiocytoma [34] |
PKCβII and PKCβI variants | Spliced isoforms with different C-terminal domain (V5 variants) | Specific maturation processing and distinctive cellular localization [35]; PKCβ loss correlates with melanin levels and oxidative stress response; decreased neocortical gene expression | Lung cancer cell lines [36]; melanoma [37]; autistic disorder [38] |
PKCβII | P616A and P619A mutations | Abolish its maturation [39], the protein results unphosphorylated | Investigated in COS7 cells [39] |
PKCβ | A509T mutation in heterozygosity affecting the C2 domain | Functional loss; hemizygous PKCβ has lower growth potential than when co-expressing A509T mutation; generation of dominant-negative with greater anchorage-independent cell proliferation [25] | Large intestine identified screening human colorectal cancer cell lines and a NCI-60 cell line panel [40,41]; |
PKCβ | D427N | Constitutively active open conformation able to increase NF-κB signaling [42] | Hematological malignancy [43]; T-cell leukemia-lymphoma [44] T-cell leukemia/lymphoma [45]; Sézary syndrome [46] |
PKCγ | M501I | Change of the selectivity for the phosphorylation target in favor of a Thr, leading to the preferential recognition of different substrates, thus deviating the canonical kinase networks [47,48] | Lung cancer (dataset: TGCA—Cosmic Cured COSU417 (https://cancer.sanger.ac.uk/cosmic, accessed on 15 July 2023) |
PKCδ | Changes in the DFG and APE motifs of the catalytic domain, such as the hinge region or in the Thr residue | Loss-of-function [49] with the inhibition of PKCδ, preventing the cleavage by caspase 3; this differently modulates their downstream targets, such as p53, leading to a decline of its transcription | Gastric cancer [50]; Autoimmune lymphoproliferative syndrome reported in https://www.ncbi.nlm.nih.gov/clinvar/ (accessed on 15 July 2023) with uncertain significance (NM_006254.4(PRKCD):c.1501G>A (p.Gly501Arg) and NM_006254.4(PRKCD):c.1501G>T (p.Gly501Trp)) |
PKCζ | K281W, dominant-negative PKCζ plasmid | In TRAMP-transfected cells, it reduces proliferation and enhances cell survival [51]; cell-polarizing deficit associated with multi-acinar structures and early luminal cell hyperproliferation [52] | Pancreatic islets and β-cells [53]; breast cancer [52] |
PKCζ | Myristoylated PKC | This modification constitutively activates the kinase, increases cell proliferation and promotes apoptotic cell death [51] | TRAMP cell lines expressing FLAG-PKCζ-myr [51] |
PKCι | Gene amplification, due to the association of PRKCI gene to the 3q26-29 amplicon, co-amplification with SOX2 | Phox and Bem1 (PB1) binding domain of the protein of the 3q amplicon makes PKCι a therapeutic target [54] | Small-cell lung cancer [55]; pathogenic from https://www.ncbi.nlm.nih.gov/clinvar/ (accessed on 15 July 2023) (GRCh38/hg38 3q26.1-29(chr3:166137209-198125115)x3) |
PKCι | R480C [56], previously mistakenly identified as R471C [57] | Arg471 is involved in the binding of lethal giant larvae 2; change of function: it modifies the recruitments of the corrected target substrates [57] | The most frequent mutation of PKCι in human cancer [56] |
PKC Modulator and Structure/Sequence (https://pubchem.ncbi.nlm.nih.gov/docs/compounds, accessed on 17 July 2023) | Specificity | Inhibition Mechanism | Tumor Type | Phase of Study | Clinical Outcome | Ref. |
---|---|---|---|---|---|---|
UGN-01 7-hydroxystaurosporine | cPKC nPKC | Competitive with ATP binding site | Solid tumors Lymphoma Leukemia | I | Not relevant | [139,140,141,142,143,144,145] [141,146] [147,148] |
Midostaurin (PKC412) N-benzoylstaurosporine | cPKC nPKC | Competitive with ATP binding site | Acute myeloid leukemia Melanoma Mutant FLT3-positive Acute Myeloid Leukemia | I, II, II IIA III | Survival benefit Favorable tolerability Not relevant Survival benefit Good tolerability | [155] [156] [158,159] |
Sotrastaurin (AEB071) | PKCα, β, θ, δ | Competitive with ATP binding site | Systemic mastocytosis Metastatic uveal melanoma | II I Ib | Survival benefit No unpredicted toxicities Favorable tolerability | [160] [166] [167] |
Darovasertib (LXS196) | PKCα, PKCθ | Competitive with ATP binding site | Metastatic uveal melanoma | I | Favorable tolerability Promising clinical activity | [168] |
Enzastaurin (LY317615) | PKCβ | Competitive with ATP binding site | Solid tumors NSCLC Glioma Prostate cancer Ovarian cancer Multiple myeloma Brain metastasis Ovarian, peritoneal cancer Mantle cell lymphoma Breast cancer Cutaneous T cell lymphoma B cell lymphoma | I II II II II II II II II II II III | Favorable tolerability Not relevant Not relevant Not relevant Not relevant Not relevant Not relevant Not relevant Not relevant Not relevant Not relevant Clinical benefit when DGM1+ | [170] [171,172] [173,174] [175] [176] [177] [178] [179] [180] [181] [182] [183] |
Bryostatin 1 | PKCα,ε,η | Competitive with phorbol ester binding site | Melanoma Renal carcinoma Colorectal cancer Non-Hodgkin’s lymphoma Multiple myeloma Head and neck cancer/sarcoma Cervical cancer Ovarian cancer Pancreatic cancer NSCLC Gastric/gastro- esophageal cancer Esophageal cancer Non-Hodgkin lymphoma | II II II II II II II II II II II II II | Not relevant Not relevant Not relevant Not relevant Not relevant Not relevant Not relevant Not relevant Not relevant Not relevant Clinical benefit Not relevant Clinical benefit in a subset of patients | [186] [187] [188] [189] [190] [191] [192] [193] [194] [195] [196] [197] [198] |
Aprinocarsen (ISIS-3521/LY900003) 5′-GTTCTCGCTGGTGAGTTTCA-3′ | PKCα | Antisense oligonucleotide binding to the 3′-UTR of human PKC-α mRNA | High-grade astrocytoma NSCLC Ovarian cancer Prostate cancer Breast cancer Colorectal cancer Non-Hodgkin’s Lymphoma | II III, II II II II II II | Not relevant clinical benefit Favorable tolerability Not relevant clinical benefit Favorable tolerability Not relevant clinical benefit Favorable tolerability Not relevant clinical benefit Favorable tolerability Not relevant clinical benefit Favorable tolerability Not relevant clinical benefit Favorable tolerability Not relevant clinical benefit Favorable tolerability | [202] [203] [204] [205] [206] [207] [208] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aquino, A.; Bianchi, N.; Terrazzan, A.; Franzese, O. Protein Kinase C at the Crossroad of Mutations, Cancer, Targeted Therapy and Immune Response. Biology 2023, 12, 1047. https://doi.org/10.3390/biology12081047
Aquino A, Bianchi N, Terrazzan A, Franzese O. Protein Kinase C at the Crossroad of Mutations, Cancer, Targeted Therapy and Immune Response. Biology. 2023; 12(8):1047. https://doi.org/10.3390/biology12081047
Chicago/Turabian StyleAquino, Angelo, Nicoletta Bianchi, Anna Terrazzan, and Ornella Franzese. 2023. "Protein Kinase C at the Crossroad of Mutations, Cancer, Targeted Therapy and Immune Response" Biology 12, no. 8: 1047. https://doi.org/10.3390/biology12081047
APA StyleAquino, A., Bianchi, N., Terrazzan, A., & Franzese, O. (2023). Protein Kinase C at the Crossroad of Mutations, Cancer, Targeted Therapy and Immune Response. Biology, 12(8), 1047. https://doi.org/10.3390/biology12081047