The Fungal Root Endophyte Serendipita indica (Piriformospora indica) Enhances Bread and Durum Wheat Performance under Boron Toxicity at Both Vegetative and Generative Stages of Development through Mechanisms Unrelated to Mineral Homeostasis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Greenhouse and Growth Chamber Conditions
2.2. Plant Germination
2.3. S. indica Growth Condition and Soil Application
2.4. Quantification of Spore Density Using Hemocytometer
2.5. Experimental Design
2.6. Dry Weight Determination
2.7. Relative Electrolyte Leakage (REL)
2.8. Chlorophyll Determination
2.9. Lipid Peroxidation Assay
2.10. Acid Digestion and Mineral Analyses
2.11. Histochemical Analysis
2.12. Genomic DNA Isolation from Plant Roots and PCR Analysis
2.13. Calculations and Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Warrington, K. The effect of boric acid and borax on the broad bean and certain other plants. Ann. Bot. 1923, 37, 629–672. [Google Scholar] [CrossRef]
- Gupta, U.C. Boron nutrition in crops. Adv. Agron. 1979, 31, 273–307. [Google Scholar]
- Dunn, D.; Stevens, G.; Kendig, A. Boron fertilization of rice with soil and foliar applications. Crop Manag. 2005, 1, 1–7. [Google Scholar]
- Shelp, B.J.; Marentes, E.; Kitheka, A.M.; Vivekanandan, P. Boron mobility in plants. Physiol. Plant. 1995, 94, 356–361. [Google Scholar] [CrossRef]
- Shorrocks, V.M. The occurrence and correction of boron deficiency. Plant Soil 1997, 193, 121–148. [Google Scholar] [CrossRef]
- Archana, N.P.; Verma, P. Boron deficiency and toxicity and their tolerance in plants: A review. J. Glob. Biosci. 2017, 6, 4958–4965. [Google Scholar]
- Yau, S.K.; Nachit, M.M.; Ryan, J.; Hamblin, J. Phenotypic variation in boron toxicity tolerance at seedling stage in durum wheat (Triticum durum). Euphytica 1995, 83, 185–191. [Google Scholar] [CrossRef]
- Tanaka, M.; Fujiwara, T. Physiological roles and transport mechanisms of boron: Perspectives from plants. Pflug. Arch. Eur. J. Physiol. 2008, 456, 671–677. [Google Scholar] [CrossRef]
- Princi, M.; Lupini, A.; Araniti, F.; Longo, C.; Mauceri, A.; Sunseri, F.; Abenavoli, R.M. Chapter 5: Boron toxicity and tolerance in plants: Recent advances and future perspective. In Plant Metal Interaction; Ahmad, P., Ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2016; pp. 115–147. ISBN 978-0-12-803158-2. [Google Scholar]
- Brdar-Jokanović, M. Boron toxicity and deficiency in agricultural plants. Int. J. Mol. Sci. 2020, 21, 1424. [Google Scholar] [CrossRef] [Green Version]
- Sillanpää, M. Micronutrients and the Nutrient Status of Soils: A Global Study; FAO Soils Bulletin: Rome, Italy, 1982; ISBN 92-5-101193-1. [Google Scholar]
- Hosseini, S.M.; Maftoun, M.; Karimian, N.; Ronaghi, A.; Emam, Y. Effect of zinc boron interaction on plant growth and tissue nutrient concentration of corn. J. Plant Nutr. 2007, 30, 773–781. [Google Scholar] [CrossRef]
- Yau, S.K.; Ryan, J. Boron toxicity tolerance in crops: A viable alternative to soil amelioration. Crop Sci. 2008, 48, 854–865. [Google Scholar] [CrossRef] [Green Version]
- Nable, R.O.; Bañuelos, G.S.; Paull, J.G. Boron toxicity. Plant Soil 1997, 193, 181–198. [Google Scholar] [CrossRef]
- Ghanati, F.; Morita, A.; Yokota, H. Deposition of suberin in roots of soybean induced by excess boron. Plant Sci. 2005, 168, 397–405. [Google Scholar] [CrossRef]
- Reid, R. Identification of boron transporter genes likely to be responsible for tolerance to boron toxicity in wheat and barley. Plant Cell Physiol. 2007, 48, 1673–1678. [Google Scholar] [CrossRef]
- Hajiboland, R.; Bastani, S.; Bahrami-Rad, S.; Poschenrieder, C. Interactions between aluminum and boron in tea (Camellia sinensis) plants. Acta Physiol. Plant. 2015, 37, 1–13. [Google Scholar] [CrossRef]
- Nable, R.O.; Lance, R.C.M.; Cartwright, B. Uptake of boron and silicon by barley genotypes with differing susceptibilities to boron toxicity. Ann. Bot. 1990, 66, 83–90. [Google Scholar] [CrossRef]
- Roessner, U.; Patterson, J.H.; Forbes, M.G.; Fincher, G.B.; Langridge, P.; Bacic, A. An investigation of boron toxicity in barley using metabolomics. Plant Physiol. 2006, 142, 1087–1101. [Google Scholar] [CrossRef] [Green Version]
- Marschner, H. Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Marschner, P., Ed.; Elsevier/Academic Press: Amsterdam, The Netherlands, 2011; ISBN 978-0-12-384905-2. [Google Scholar]
- Rehman, A.U.; Farooq, M.; Rashid, A.; Nadeem, F.; Stuerz, S.; Asch, F.; Bell, R.W.; Siddique, K.H. Boron nutrition of rice in different production systems. A review. Agron. Sustain. Dev. 2018, 38, 25. [Google Scholar] [CrossRef] [Green Version]
- Molassiotis, A.; Sotiropoulos, T.; Tanou, G.; Diamantidis, G.; Therios, I. Boron-induced oxidative damage and antioxidant and nucleolytic responses in shoot tips culture of the apple rootstock EM 9 (Malus domestica Borkh). Environ. Exp. Bot. 2006, 56, 54–62. [Google Scholar] [CrossRef]
- Cervilla, L.M.; Blasco, B.; Ríos, J.J.; Romero, L.; Ruiz, J.M. Oxidative stress and antioxidants in tomato (Solanum lycopersicum) plants subjected to boron toxicity. Ann. Bot. 2007, 100, 747–756. [Google Scholar] [CrossRef] [Green Version]
- Gunes, A.; Soylemezoglu, G.; Inal, A.; Bagci, E.G.; Coban, S.; Sahin, O. Antioxidant and stomatal responses of grapevine (Vitis vinifera L.) to boron toxicity. Sci. Hortic. 2006, 110, 279–284. [Google Scholar] [CrossRef]
- Ardıc, M.; Sekmen, A.H.; Tokur, S.; Ozdemir, F.; Turkan, I. Antioxidant responses of chickpea plants subjected to boron toxicity. Plant Biol. 2009, 11, 328–338. [Google Scholar] [CrossRef] [PubMed]
- Kaya, C.; Akram, N.A.; Ashraf, M. Kinetin and indole acetic acid promote antioxidant defense system and reduce oxidative stress in maize (Zea mays L.) plants grown at boron toxicity. J. Plant Growth Regul. 2018, 37, 1258–1266. [Google Scholar] [CrossRef]
- Oliveira, K.R.; Junior, J.P.S.; Bennett, S.J.; Checchio, M.V.; de Cássia Alves, R.; Felisberto, G.; de Mello Prado, R.; Gratao, P.L. Exogenous silicon and salicylic acid applications improve tolerance to boron toxicity in field pea cultivars by intensifying antioxidant defence systems. Ecotoxicol. Environ. Saf. 2020, 201, 110778. [Google Scholar] [CrossRef] [PubMed]
- Eser, A.; Aydemir, T. The effect of kinetin on wheat seedlings exposed to boron. Plant Physiol. Biochem. 2016, 108, 158–164. [Google Scholar] [CrossRef]
- Karabal, E.; Yücel, M.; Öktem, H.A. Antioxidant responses of tolerant and sensitive barley cultivars to boron toxicity. Plant Sci. 2003, 164, 925–933. [Google Scholar] [CrossRef]
- Cartwright, B.; Zarcinas, B.A.; Mayfield, A.H. Toxic concentrations of boron in a red-brown earth at Gladstone, South Australia. Aust. J. Soil Res. 1984, 22, 261–272. [Google Scholar] [CrossRef]
- Paull, J.G.; Cartwright, B.; Rathjen, A.J. Responses of wheat and barley genotypes to toxic concentrations of soil boron. Euphytica 1988, 39, 137–144. [Google Scholar] [CrossRef]
- Paull, J.G.; Rathjen, A.J.; Cartwright, B.; Nable, R.O. Selection Parameters for Assessing the Tolerance of Wheat to High Concentrations of Boron. In Genetic Aspects of Plant Mineral Nutrition; El Bassam, N., Dambroth, M., Loughman, B.C., Eds.; Springer: Dordrecht, The Netherlands, 1990; Volume 42, pp. 361–369. ISBN 978-94-009-2053-8. [Google Scholar]
- Yau, S.K.; Saxena, M.C. Variation in growth, development, and yield of durum wheat in response to high soil boron. I. Average effects. Aust. J. Agric. Res. 1997, 48, 945–949. [Google Scholar] [CrossRef]
- Yau, S.K.; Nachit, M.; Ryan, J. Variation in growth, development, and yield of durum wheat in response to high soil boron. II. Differences between genotypes. Aust. J. Agric. Res. 1997, 48, 951–958. [Google Scholar] [CrossRef]
- Das, B. Genetic diversity, variability and correlation studies of spike characters in bread wheat under boron deficient soil condition. Electron. J. Plant Breed. 2014, 5, 77–81. [Google Scholar]
- Ben-Gal, A.; Shani, U. Yield, transpiration and growth of tomatoes under combined excess boron and salinity stress. Plant Soil 2002, 247, 211–221. [Google Scholar] [CrossRef]
- Tlili, A.; Dridi, I.; Attaya, R.; Gueddari, M. Boron characterization, distribution in particle-size fractions, and its adsorption-desorption process in a semiarid Tunisian soil. J. Chem. 2019, 3, 2019. [Google Scholar] [CrossRef] [Green Version]
- Moraga, N.B.; Amoroso, M.J.; Rajal, V.B. Strategies to Ameliorate Soils Contaminated with Boron Compounds. In Bioremediation in Latin America; Alvarez, A., Polti, M.A., Eds.; Springer: Cham, Switzerland, 2014; pp. 41–51. ISBN 978-3-319-05737-8. [Google Scholar]
- Verma, S.; Varma, A.; Rexer, K.H.; Hassel, A.; Kost, G.; Sarbhoy, A.; Bisen, P.; Bütehorn, B.; Franken, P. Piriformospora indica, gen. et sp. nov., a new root-colonizing fungus. Mycologia 1998, 90, 896–903. [Google Scholar] [CrossRef]
- Weiss, M.; Selosse, M.A.; Rexer, K.H.; Urban, A.; Oberwinkler, F. Sebacinales: A hitherto overlooked cosm of heterobasidiomycetes with a broad mycorrhizal potential. Mycol. Res. 2004, 108, 1003–1010. [Google Scholar] [CrossRef] [Green Version]
- Hibbett, D.S.; Binder, M.; Bischoff, J.F.; Blackwell, M.; Cannon, P.F.; Eriksson, O.E.; Huhndorf, S.; James, T.; Kirk, P.M.; Lücking, R.; et al. A higher-level phylogenetic classification of the Fungi. Mycol. Res. 2007, 111, 509–547. [Google Scholar] [CrossRef]
- Johnson, J.M.; Sherameti, I.; Nongbri, P.L.; Oelmüller, R. Standardized Conditions to Study Beneficial and Nonbeneficial Traits in The Piriformospora indica/Arabidopsis thaliana Interaction. In Piriformospora indica; Varma, A., Kost, G., Oelmüller, R., Eds.; Soil Biology; Springer: Berlin/Heidelberg, Germany, 2013; pp. 325–343. ISBN 978-3-642-33801-4. [Google Scholar]
- Ghaffari, M.R.; Ghabooli, M.; Khatabi, B.; Hajirezaei, M.R.; Schweizer, P.; Salekdeh, G.H. Metabolic and transcriptional response of central metabolism affected by root endophytic fungus Piriformospora indica under salinity in barley. Plant Mol. Biol. 2016, 90, 699–717. [Google Scholar] [CrossRef]
- Varma, A.; Verma, S.; Sudha; Sahay, N.; Bütehorn, B.; Franken, P. Piriformospora indica, a cultivable plant-growth-promoting root endophyte. Appl. Environ. Microbiol. 1999, 65, 2741–2744. [Google Scholar] [CrossRef]
- Varma, A.; Bakshi, M.; Lou, B.; Hartmann, A.; Oelmueller, R. Piriformospora indica: A Novel Plant Growth-Promoting Mycorrhizal Fungus. Agric. Res. 2012, 1, 117–131. [Google Scholar] [CrossRef]
- Zuccaro, A.; Lahrmann, U.; Güldener, U.; Langen, G.; Pfiffi, S.; Biedenkopf, D.; Wong, P.; Samans, B.; Grimm, C.; Basiewicz, M.; et al. Endophytic life strategies decoded by genome and transcriptome analyses of the mutualistic root symbiont Piriformospora indica. PLoS Pathog. 2011, 7, e1002290. [Google Scholar] [CrossRef] [Green Version]
- Dabral, S.; Varma, A.; Choudhary, D.K.; Bahuguna, R.N.; Nath, M. Biopriming with Piriformospora indica ameliorates cadmium stress in rice by lowering oxidative stress and cell death in root cells. Ecotoxicol. Environ. Saf. 2019, 186, 109741. [Google Scholar] [CrossRef]
- Azizi, M.; Fard, E.M.; Ghabooli, M. Piriformospora indica affect drought tolerance by regulation of genes expression and some morphophysiological parameters in tomato (Solanum lycopersicum L.). Sci. Hortic. 2021, 287, 110260. [Google Scholar] [CrossRef]
- Lanza, M.; Haro, R.; Conchillo, L.B.; Benito, B. The endophyte Serendipita indica reduces the sodium content of Arabidopsis plants exposed to salt stress: Fungal ENA ATPases are expressed and regulated at high pH and during plant co-cultivation in salinity. Environ. Microbiol. 2019, 21, 3364–3378. [Google Scholar] [CrossRef] [PubMed]
- Kundu, A.; Vadassery, J. Molecular mechanisms of Piriformospora indica mediated growth promotion in plants. Plant Signal. Behav. 2022, 17, 2096785. [Google Scholar] [CrossRef] [PubMed]
- Goh, C.; Vallejos, D.F.V.; Nicotra, A.B.; Mathesius, U. The impact of beneficial plant-associated microbes on plant phenotypic plasticity. J. Chem. Ecol. 2013, 39, 826–839. [Google Scholar] [CrossRef] [Green Version]
- Ahmadvand, G.; Hajinia, S. Effect of endophytic fungus Piriformospora indica on yield and some physiological traits of millet (Panicum miliaceum) under water stress. Crop Pasture Sci. 2018, 69, 594–605. [Google Scholar] [CrossRef]
- Oelmuller, R.; Sherameti, I.; Tripathi, S.; Varma, A. Piriformospora indica, a cultivable root endophyte with multiple biotechnological applications. Symbiosis 2009, 49, 1–17. [Google Scholar] [CrossRef]
- Ghorbani, A.; Razavi, S.M.; Ghasemi Omran, V.O.; Pirdashti, H. Piriformospora indica inoculation alleviates the adverse effect of NaCl stress on growth, gas exchange and chlorophyll fluorescence in tomato (Solanum lycopersicum L.). Plant Biol. 2018, 20, 729–736. [Google Scholar] [CrossRef]
- Rawoof, A.; Ramchiary, N.; Abdin, M.Z. A high-throughput RNA-Seq approach to elucidate the transcriptional response of Piriformospora indica to high salt stress. Sci. Rep. 2021, 11, 4129. [Google Scholar]
- Li, Q.; Kuo, Y.W.; Lin, K.H.; Huang, W.; Deng, C.; Yeh, K.W.; Chen, S.P. Piriformospora indica colonization increases the growth, development, and herbivory resistance of sweet potato (Ipomoea batatas L.). Plant Cell Rep. 2021, 40, 339–350. [Google Scholar] [CrossRef]
- Serfling, A.; Wirsel, S.G.R.; Lind, V.; Deising, H.B. Performance of the biocontrol fungus Piriformospora indica on wheat under greenhouse and field conditions. Phytopathology 2007, 97, 523–531. [Google Scholar] [CrossRef] [Green Version]
- Abadi, V.A.J.M.; Sepehri, M. Effect of Piriformospora indica and Azotobacter chroococcum on mitigation of zinc deficiency stress in wheat (Triticum aestivum L.). Symbiosis 2016, 69, 9–19. [Google Scholar] [CrossRef]
- Hosseini, F.; Mosaddeghi, M.R.; Dexter, A.R. Effect of the fungus Piriformospora indica on physiological characteristics and root morphology of wheat under combined drought and mechanical stresses. Plant Physiol. Biochem. 2017, 118, 107–120. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, J.; Xu, L.; Wang, A.; Huang, L.; Du, H.; Qiu, L.; Oelmüller, R. Drought stress responses in maize are diminished by Piriformospora indica. Plant Signal. Behav. 2018, 13, e1414121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, H.J.; Shao, K.H.; Chan, M.T.; Cheng, C.P.; Yeh, K.W.; Oelmüller, R.; Wang, S.J. Piriformospora indica symbiosis improves water stress tolerance of rice through regulating stomata behavior and ROS scavenging systems. Plant Signal. Behav. 2020, 15, 1722447. [Google Scholar] [CrossRef] [PubMed]
- Ghaffari, M.R.; Mirzaei, M.; Ghabooli, M.; Khatabi, B.; Wu, Y.; Zabet-Moghaddam, M.; Mohammadi-Nejad, G.; Haynes, P.A.; Hajirezaei, M.R.; Sepehri, M.; et al. Root endophytic fungus Piriformospora indica improves drought stress adaptation in barley by metabolic and proteomic reprogramming. Environ. Exp. Bot. 2019, 157, 197–210. [Google Scholar] [CrossRef]
- Jogawat, A.; Saha, S.; Bakshi, M.; Dayaman, V.; Kumar, M.; Dua, M.; Varma, A.; Oelmüller, R.; Tuteja, N.; Johri, A.K. Piriformospora indica rescues growth diminution of rice seedlings during high salt stress. Plant Signal. Behav. 2013, 8, e26891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cruz, C.; Fegghi, Z.; Martins-Loução, M.A.; Varma, A. Plant Nitrogen Use Efficiency May Be Improved Through Symbiosis with Piriformospora indica. In Piriformospora indica; Varma, A., Kost, G., Oelmüller, R., Eds.; Soil Biology; Springer: Berlin/Heidelberg, Germany, 2013; Volume 33, pp. 285–293. ISBN 978-3-642-33801-4. [Google Scholar]
- Padash, A.; Shahabivand, S.; Behtash, F.; Aghaee, A.A. Practicable method for zinc enrichment in lettuce leaves by the endophyte fungus Piriformospora indica under increasing zinc supply. Sci. Hortic. 2016, 213, 367–372. [Google Scholar] [CrossRef]
- Taghinasab, M.; Imani, J.; Steffens, D.; Glaeser, S.P.; Kogel, K.H. The root endophytes Trametes versicolor and Piriformospora indica increase grain yield and P content in wheat. Plant Soil 2018, 426, 339–348. [Google Scholar] [CrossRef]
- Aslam, M.M.; Karanja, J.; Bello, S.K. Piriformospora indica colonization reprograms plants to improved P-uptake, enhanced crop performance, and biotic/abiotic stress tolerance. Physiol. Mol. Plant Pathol. 2019, 106, 232–237. [Google Scholar] [CrossRef]
- Hashem, A.; Abd_Allah, E.F.; Alqarawi, A.A.; Al Huqail, A.A.; Egamberdieva, D.; Wirth, S. Alleviation of cadmium stress in Solanum lycopersicum L. by arbuscular mycorrhizal fungi via induction of acquired systemic tolerance. Saudi J. Biol. Sci. 2016, 23, 272–281. [Google Scholar] [CrossRef] [Green Version]
- Mo, Y.; Wang, Y.; Yang, R.; Zheng, J.; Liu, C.; Li, H.; Ma, J.; Zhang, Y.; Wei, C.; Zhang, X. Regulation of plant growth, photosynthesis, antioxidation and osmosis by an arbuscular mycorrhizal fungus in watermelon seedlings under well-watered and drought conditions. Front. Plant Sci. 2016, 7, 644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, A.; Wu, X.; Ullah, A.; Fahad, S.; Muhammad, R.; Yan, L.; Jiang, C. Deficiency and toxicity of boron: Alterations in growth, oxidative damage and uptake by citrange orange plants. Ecotoxicol. Environ. Saf. 2017, 145, 575–582. [Google Scholar] [CrossRef] [PubMed]
- Çatav, Ş.S.; Genç, T.O.; Oktay, M.K.; Küçükakyüz, K. Effect of boron toxicity on oxidative stress and genotoxicity in wheat (Triticum aestivum L.). Bull. Environ. Contam. Toxicol. 2018, 100, 502–508. [Google Scholar] [CrossRef]
- Çatav, Ş.S.; Köşkeroğlu, S.; Tuna, A.L. Selenium supplementation mitigates boron toxicity induced growth inhibition and oxidative damage in pepper plants. S. Afr. J. Bot. 2022, 146, 375–382. [Google Scholar] [CrossRef]
- Paull, J.G.; Nable, R.O.; Rathjen, A.J. Physiological and genetic control of the tolerance of wheat to high concentrations of boron and implications for plant breeding. Plant Soil 1992, 146, 251–260. [Google Scholar] [CrossRef]
- Reid, R.J.; Hayes, J.E.; Post, A.; Stangoulis, J.R.; Graham, R.D. A critical analysis of the causes of boron toxicity in plants. Plant Cell Environ. 2004, 27, 1405–1414. [Google Scholar] [CrossRef]
- Nable, R.O. Resistance to boron toxicity amongst several barley and wheat cultivars: A preliminary examination of the resistance mechanism. Plant Soil 1988, 112, 45–52. [Google Scholar] [CrossRef]
- Sonmez, O.; Aydemir, S.; Kaya, C. Mitigation effects of mycorrhiza on boron toxicity in wheat (Triticum durum) plants. N. Z. J. Crop Hortic. Sci. 2009, 37, 99–104. [Google Scholar] [CrossRef]
- Khan, A.; Ali, L.; Chaudhary, H.J.; Munis, M.F.H.; Bano, A.; Masood, S. Bacillus pumilus alleviates boron toxicity in tomato (Lycopersicum esculentum L.) due to enhanced antioxidant enzymatic activity. Sci. Hortic. 2016, 200, 178–185. [Google Scholar]
- Khan, A.; Zhao, X.Q.; Javed, M.T.; Khan, K.S.; Bano, A.; Shen, R.F.; Masood, S. Bacillus pumilus enhances tolerance in rice (Oryza sativa L.) to combined stresses of NaCl and high boron due to limited uptake of Na+. Environ. Exp. Bot. 2016, 124, 120–129. [Google Scholar] [CrossRef]
- Simón-Grao, S.; Nieves, M.; Martínez-Nicolás, J.J.; Alfosea-Simón, M.; Cámara-Zapata, J.M.; Fernández-Zapata, J.C.; García-Sánchez, F. Arbuscular mycorrhizal symbiosis improves tolerance of Carrizo citrange to excess boron supply by reducing leaf B concentration and toxicity in the leaves and roots. Ecotoxicol. Environ. Saf. 2019, 173, 322–330. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Dai, Z.; Cui, M.; Lu, W.; Sun, H. Arbuscular mycorrhizal fungi alleviate boron toxicity in Puccinellia tenuiflora under the combined stresses of salt and drought. Environ. Pollut. 2018, 240, 557–565. [Google Scholar] [CrossRef]
- Kalayci, M.; Alkan, A.; Cakmak, I.; Bayramoglu, O.; Yilmaz, A.; Aydin, M.; Ozbek, V.; Ekiz, H.; Ozberisoy, F. Studies on differential response of wheat cultivars to boron toxicity. Euphytica 1998, 100, 123–129. [Google Scholar] [CrossRef]
- Johnson, J.M.; Sherameti, I.; Ludwig, A.; Nongbri, P.L.; Sun, C.; Lou, B.; Varma, A.; Oelmüller, R. Protocols for Arabidopsis thaliana and Piriformospora indica co-cultivation—A model system to study plant beneficial traits. Endocytobiosis Cell Res. J. Int. Soc. Endocytobiol. 2011, 21, 101–113. [Google Scholar]
- Hill, T.W.; Kafer, E. Improved protocols for Aspergillus minimal medium: Trace element and minimal medium salt stock solutions. Fungal Genet. Rep. 2001, 48, 8. [Google Scholar]
- Das, A.; Kamal, S.; Shakil, N.A.; Sherameti, I.; Oelmuüller, R.; Dua, M.; Tuteja, N.; Johri, A.K.; Varma, A. The root endophyte fungus Piriformospora indica leads to early flowering, higher biomass and altered secondary metabolites of the medicinal plant, Coleus forskohlii. Plant Signal. Behav. 2012, 7, 103–112. [Google Scholar] [CrossRef] [Green Version]
- Bertolazi, A.A.; de Souza, S.B.; Ruas, K.F.; Campostrini, E.; de Rezende, C.E.; Cruz, C.; Melo, J.; Colodete, C.M.; Varma, A.; Ramos, A.C. Inoculation with Piriformospora indica is more efficient in wild-type rice than in transgenic rice over-expressing the vacuolar H+-PPase. Front. Microbiol. 2019, 10, 1087. [Google Scholar] [CrossRef] [Green Version]
- Kumar, V.; Sahai, V.; Bisaria, V.S. High-density spore production of Piriformospora indica, a plant growth-promoting endophyte, by optimization of nutritional and cultural parameters. Bioresour. Technol. 2011, 102, 3169–3175. [Google Scholar] [CrossRef]
- Singhal, U.; Khanuja, M.; Prasad, R.; Varma, A. Impact of synergistic association of ZnO-Nanorods and symbiotic fungus Piriformospora indica DSM 11827 on Brassica oleracea var. botrytis (Broccoli). Front. Microbiol. 2017, 8, 1909. [Google Scholar] [CrossRef]
- Tyagi, J.; Varma, A.; Pudake, R.N. Evaluation of comparative effects of arbuscular mycorrhiza (Rhizophagus intraradices) and endophyte (Piriformospora indica) association with finger millet (Eleusine coracana) under drought stress. Eur. J. Soil Biol. 2017, 81, 1–10. [Google Scholar] [CrossRef]
- Lutts, S.; Kinet, J.; Bouharmont, J. NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann. Bot. 1996, 78, 389–398. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. Chlorophylls and carotenoids, the pigments of photosynthetic biomembranes. Meth. Enzymol. 1987, 148, 350–382. [Google Scholar]
- Heath, R.L.; Packer, L. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 1968, 125, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Yadav, V.; Tuteja, N.; Johri, A.K. Antioxidant enzyme activities in maize plants colonized with Piriformospora indica. Microbiology 2009, 155, 780–790. [Google Scholar] [CrossRef] [Green Version]
- Dickson, S.; Mandeep, S.M.; Smith, S.M. Evaluation of Vesicular Arbuscular Mycorrhizal Colonization by Staining. In Mycorrhiza Manual; Varma, A., Ed.; Springer Lab Manual; Springer: Berlin/Heidelberg, Germany, 1998; pp. 77–84. ISBN 978-3-642-60268-9. [Google Scholar]
- Phillips, J.M.; Hayman, D.S. Improved procedures for clearing roots and staining parasitic and VAM fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 1970, 55, 158–161. [Google Scholar] [CrossRef]
- Bousquet, J.; Simon, L.; Lalonde, M. DNA amplification from vegetative and sexual tissues of trees using polymerase chain reaction. Can. J. For. Res. 1990, 20, 254–357. [Google Scholar] [CrossRef]
- Lipp, M.; Brodmann, P.; Pietsch, K.; Pauwels, J.; Anklam, E. IUPAC Collaborative Trial Study of a Method to Detect Genetically Modified Soybeans and Maize in Dried Powder. J. AOAC Int. 1999, 82, 923–928. [Google Scholar] [CrossRef]
- Sahu, S.K.; Thangaraj, M.; Kathiresan, K. DNA extraction protocol for plants with high levels of secondary metabolites and polysaccharides without using liquid nitrogen and phenol. Int. Sch. Res. Not. 2012, 14, 2012. [Google Scholar]
- Metwally, A.; El-Shazoly, R.; Hamada, A.M. Effect of boron on growth criteria of some wheat cultivars. J. Biol. Earth Sci. 2012, 2, 1–9. [Google Scholar]
- Al-Huqail, A.A.; Khan, M.N.; Ali, H.M.; Siddiqui, M.H.; Al-Huqail, A.A.; AlZuaibr, F.M.; Al-Muwayhi, M.A.; Marraiki, N.; Al-Humaid, L.A. Exogenous melatonin mitigates boron toxicity in wheat. Ecotoxicol. Environ. Saf. 2020, 201, 110822. [Google Scholar] [CrossRef] [PubMed]
- Peskan-Berghöfer, T.; Shahollari, B.; Giong, P.H.; Hehl, S.; Markert, C.; Blanke, V.; Kost, G.; Varma, A.; Oelmüller, R. Association of Piriformospora indica with Arabidopsis thaliana roots represents a novel system to study beneficial plant-microbe interactions and involves early plant protein modifications in the endoplasmic reticulum and at the plasma membrane. Physiol. Plant. 2004, 122, 465–477. [Google Scholar] [CrossRef]
- Camehl, I.; Sherameti, I.; Venus, Y.; Bethke, G.; Varma, A.; Lee, J.; Oelmüller, R. Ethylene signalling and ethylene-targeted transcription factors are required to balance beneficial and nonbeneficial traits in the symbiosis between the endophytic fungus Piriformospora indica and Arabidopsis thaliana. New Phytol. 2010, 185, 1062–1073. [Google Scholar] [CrossRef]
- Kundu, A.; Mishra, S.; Kundu, P.; Jogawat, A.; Vadassery, J. Piriformospora indica recruits host-derived putrescine for growth promotion in plants. Plant Physiol. 2022, 188, 2289–2307. [Google Scholar] [CrossRef]
- Shahabivand, S.; Maivan, H.Z.; Goltapeh, E.M.; Sharifi, M.; Aliloo, A.A. The effects of root endophyte and arbuscular mycorrhizal fungi on growth and cadmium accumulation in wheat under cadmium toxicity. Plant Physiol. Biochem. 2012, 60, 53–58. [Google Scholar] [CrossRef]
- Rabiey, M.; Ullah, I.; Shaw, M.W. The endophytic fungus Piriformospora indica protects wheat from fusarium crown rot disease in simulated UK autumn conditions. Plant Pathol. 2015, 64, 1029–1040. [Google Scholar] [CrossRef]
- Zarea, M.J.; Hajinia, S.; Karimi, N.; Goltapeh, E.M.; Rejali, F.; Varma, A. Effect of Piriformospora indica and Azospirillum strains from saline or non-saline soil on mitigation of the effects of NaCl. Soil Biol. Biochem. 2012, 45, 139–146. [Google Scholar] [CrossRef]
- Meredith, J.A.; Anderson, R.C. The influence of varied microbial substrate conditions on the growth and mycorrhizal colonization of little bluestem [Schizachyrium scoparium (Michx.) Nash]. New Phytol. 1992, 121, 235–242. [Google Scholar] [CrossRef]
- Endlweber, K.; Scheu, S. Establishing arbuscular mycorrhiza free soil: A comparison of six methods and their effects on nutrient mobilization. Appl. Soil Ecol. 2006, 34, 276–279. [Google Scholar] [CrossRef]
- Mahmood, T.; Mehnaz, S.; Fleischmann, F.; Ali, R.; Hashmi, Z.H.; Iqbal, Z. Soil sterilization effects on root growth and formation of rhizosheaths in wheat seedlings. Pedobiologia 2014, 57, 123–130. [Google Scholar] [CrossRef]
- Ova, E.A.; Kutman, U.B.; Ozturk, L.; Cakmak, I. High phosphorus supply reduced zinc concentration of wheat in native soil but not in autoclaved soil or nutrient solution. Plant Soil 2015, 393, 147–162. [Google Scholar] [CrossRef]
- Gholami, A.; Shahsavani, S.; Nezarat, S. The effect of plant growth promoting rhizobacteria (PGPR) on germination, seedling growth and yield of maize. Int. J. Agric. Eng. 2009, 3, 9–14. [Google Scholar]
- Raven, J.A. Short-and long-distance transport of boric acid in plants. New Phytol. 1980, 84, 231–249. [Google Scholar] [CrossRef]
- Brown, P.H.; Hu, H. Phloem mobility of boron is species dependent. Evidence for phloem mobility in sorbitol rich species. Ann. Bot. 1996, 77, 497–505. [Google Scholar] [CrossRef] [Green Version]
- Brown, P.H.; Shelp, B.J. Boron mobility in plants. Plant Soil 1997, 193, 85–101. [Google Scholar] [CrossRef]
- Matoh, T.; Ochiai, K. Distribution and partitioning of newly taken-up boron in sunflower. Plant Soil 2005, 278, 351–360. [Google Scholar] [CrossRef]
- Xu, L.; Wang, A.; Wang, J.; Wei, Q.; Zhang, W. Piriformospora indica confers drought tolerance on Zea mays L. through enhancement of antioxidant activity and expression of drought-related genes. Crop J. 2017, 5, 251–258. [Google Scholar] [CrossRef] [Green Version]
- Ghabooli, M.; Rezaei, E.; Movahedi, Z.; Mohsenifard, E. Effect of Piriformospora indica inoculation on some morphophysiological parameters in licorice (Glycyrrhiza glabra L.) under drought stress. Iran. J. Plant Physiol. 2020, 10, 3379–3389. [Google Scholar]
- Shu, S.; Yuan, L.Y.; Guo, S.R.; Sun, J.; Yuan, Y.H. Effects of exogenous spermine on chlorophyll fluorescence, antioxidant system and ultrastructure of chloroplasts in Cucumis sativus L. under salt stress. Plant Physiol. Biochem. 2013, 63, 209–216. [Google Scholar] [CrossRef]
- Ogunwole, A.A.; Otusanya, O.O.; Oloyede, F.A.; Olabamiji, T.M. Comparative effects of boron toxicity and deficiency on the growth, chlorophyll, protein and some cations accumulation in Zea mays seedlings. Int. J. Innov. Sci. Res. 2015, 17, 316–335. [Google Scholar]
- Cervilla, L.M.; Blasco, B.; Ríos, J.J.; Rosales, M.A.; Rubio-Wilhelmi, M.M.; Sánchez-Rodríguez, E.; Romero, L.; Ruiz, J.M. Response of nitrogen metabolism to boron toxicity in tomato plants. Plant Biol. 2009, 11, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Kharkwal, A.C.; Abdin, M.Z.; Varma, A. Piriformospora indica-mediated salinity tolerance in Aloe vera plantlets. Symbiosis 2017, 72, 103–115. [Google Scholar] [CrossRef]
- Abdelaziz, M.E.; Abdelsattar, M.; Abdeldaym, E.A.; Atia, M.A.; Mahmoud, A.W.M.; Saad, M.M.; Hirt, H. Piriformospora indica alters Na+/K+ homeostasis, antioxidant enzymes and LeNHX1 expression of greenhouse tomato grown under salt stress. Sci. Hortic. 2019, 256, 108532. [Google Scholar] [CrossRef]
- Bhardwaj, S. Micronutrient Enhancement in Rice. Ph.D. Thesis, Amity University, Uttar Pradesh, India, 2011. [Google Scholar]
- Shahabivand, S.; Parvaneh, A.; Aliloo, A.A. Root endophytic fungus Piriformospora indica affected growth, cadmium partitioning and chlorophyll fluorescence of sunflower under cadmium toxicity. Ecotoxicol. Environ. Saf. 2017, 145, 496–502. [Google Scholar] [CrossRef]
- Schnurbusch, T.; Hayes, J.; Hrmova, M.; Baumann, U.; Ramesh, S.A.; Tyerman, S.D.; Langridge, P.; Sutton, T. Boron toxicity tolerance in barley through reduced expression of the multifunctional aquaporin HvNIP2;1. Plant Physiol. 2010, 153, 1706–1715. [Google Scholar] [CrossRef] [Green Version]
- Koide, R.T. Nutrient supply, nutrient demand and plant response to mycorrhizal infection. New Phytol. 1991, 117, 365–386. [Google Scholar] [CrossRef] [PubMed]
- Yadav, V.; Kumar, M.; Deep, D.K.; Kumar, H.; Sharma, R.; Tripathi, T.; Tuteja, N.; Saxena, A.K.; Johri, A.K. A phosphate transporter from the root endophytic fungus Piriformospora indica plays a role in the phosphate transport to the host plant. J. Biol. Chem. 2010, 285, 26532–26544. [Google Scholar] [CrossRef] [Green Version]
- Malla, R.; Prasad, R.; Giang, P.H.; Pokharel, U.; Oelmueller, R.; Varma, A. Characteristic features of symbiotic fungus Piriformospora indica. Endocytobiosis Cell Res. 2004, 15, 579–600. [Google Scholar]
- Shahollari, B.; Varma, A.; Oelmuller, R. Expression of a receptor kinase in Arabidopsis roots is stimulated by the basidiomycete Piriformospora indica and the protein accumulates in Triton X-100 insoluble plasma membrane microdomains. J. Plant Physiol. 2005, 162, 945–958. [Google Scholar] [CrossRef]
- Lambers, H.; Brundrett, M.C.; Raven, J.A.; Hopper, S.D. Plant mineral nutrition in ancient landscapes: High plant species diversity on infertile soils is linked to functional diversity for nutritional strategies. Plant Soil 2010, 334, 11–31. [Google Scholar] [CrossRef]
- Boyd, H.W. Manganese toxicity to peanuts in autoclaved soil. Plant Soil 1971, 34, 133–144. [Google Scholar] [CrossRef]
- Williams-Linera, G.; Ewel, J.J. Effect of autoclave sterilization of a tropical andept on seed germination and seedling growth. Plant Soil 1984, 82, 263–268. [Google Scholar] [CrossRef]
- Miransari, M.; Bahrami, H.A.; Rejali, F.; Malakouti, M.J. Effects of arbuscular mycorrhiza, soil sterilization, and soil compaction on wheat (Triticum aestivum L.) nutrients uptake. Soil Tillage Res. 2009, 104, 48–55. [Google Scholar] [CrossRef]
- Alvarez-Tinaut, M.C.; Leal, A.; Martínez, L.R. Iron-manganese interaction and its relation to boron levels in tomato plants. Plant Soil 1980, 55, 377–388. [Google Scholar] [CrossRef]
- Mozafar, A. Boron effect on mineral nutrients of maize. J. Agron. 1989, 81, 285–290. [Google Scholar] [CrossRef]
- Lopez-Lefebre, L.R.; Rivero, R.M.; Garcia, P.C.; Sánchez, E.; Ruiz, J.M.; Romero, L. Boron effect on mineral nutrients of tobacco. J. Plant Nutr. 2002, 25, 509–522. [Google Scholar] [CrossRef]
- Waller, F.; Achatz, B.; Baltruschat, H.; Fodor, J.; Becker, K.; Fischer, M.; Heier, T.; Hückelhoven, R.; Neumann, C.; von Wettstein, D.; et al. The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc. Natl. Acad. Sci. USA 2005, 102, 13386–13391. [Google Scholar] [CrossRef]
- Baltruschat, H.; Fodor, J.; Harrach, B.D.; Niemczyk, E.; Barna, B.; Gullner, G.; Janeczko, A.; Kogel, K.H.; Schäfer, P.; Schwarczinger, I.; et al. Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. New Phytol. 2008, 180, 501–510. [Google Scholar] [CrossRef] [PubMed]
- Fang, K.; Zhang, W.; Xing, Y.; Zhang, Q.; Yang, L.; Cao, Q.; Qin, L. Boron toxicity causes multiple effects on Malus domestica pollen tube growth. Front. Plant Sci. 2016, 7, 208. [Google Scholar] [CrossRef] [Green Version]
- Stangoulis, J.; Tate, M.; Graham, R.; Bucknall, M.; Palmer, L.; Boughton, B.; Reid, R. The mechanism of boron mobility in wheat and canola phloem. Plant Physiol. 2010, 153, 876–881. [Google Scholar] [CrossRef] [Green Version]
Source of Variation | DF | Shoot DW (g) | REL (%) | MDA (nmol g−1) | Total Chlorophyll (nmol g−1) | |||||
---|---|---|---|---|---|---|---|---|---|---|
F Pr. | HSD0.05 | F Pr. | HSD0.05 | F Pr. | HSD0.05 | F Pr. | HSD0.05 | |||
Nusrat | Inoculation (I) | 1 | <0.001 | 0.036 | <0.001 | 4.1 | 0.006 | 3.2 | 0.697 | n.s. |
Soil sterilization (S) | 1 | <0.001 | 0.036 | 0.213 | n.s. | <0.001 | 3.2 | 0.009 | 83 | |
Boron supply (B) | 3 | <0.001 | 0.066 | <0.001 | 7.7 | 0.020 | 5.8 | 0.075 | n.s. | |
I X S | 1 | 0.123 | n.s. | 0.060 | n.s. | 0.463 | n.s. | 0.004 | 156 | |
I X B | 3 | 0.652 | n.s. | 0.005 | 12.9 | 0.436 | n.s. | 0.156 | n.s. | |
S X B | 3 | 0.001 | 0.114 | 0.023 | 12.9 | 0.678 | n.s. | 0.023 | 262 | |
I X S X B | 3 | 0.018 | 0.184 | 0.234 | n.s. | 0.925 | n.s. | 0.349 | n.s. | |
Saricanak-98 | Inoculation (I) | 1 | <0.001 | 0.024 | <0.001 | 2.5 | 0.008 | 3.8 | 0.014 | 76 |
Soil sterilization (S) | 1 | <0.001 | 0.024 | <0.001 | 2.5 | 0.163 | n.s. | 0.467 | n.s. | |
Boron supply (B) | 3 | <0.001 | 0.045 | <0.001 | 4.6 | <0.001 | 7.2 | 0.030 | 143 | |
I X S | 1 | 0.037 | 0.045 | 0.006 | 4.6 | 0.451 | n.s. | 0.405 | n.s. | |
I X B | 3 | 0.361 | n.s. | 0.001 | 7.8 | 0.487 | n.s. | 0.005 | 241 | |
S X B | 3 | 0.497 | n.s. | <0.001 | 7.8 | 0.608 | n.s. | 0.371 | n.s. | |
I X S X B | 3 | 0.869 | n.s. | 0.201 | n.s. | 0.519 | n.s. | 0.437 | n.s. |
Shoot DW (g Plant −1) | ||||||
---|---|---|---|---|---|---|
Cultivar | Soil Sterilization | S. indica | B Supply (mg kg−1) | |||
1 | 10 | 20 | 30 | |||
Nusrat | Autoclaved | (−) | 0.58 ± 0.08 | 0.53 ± 0.17 | 0.56 ± 0.11 | 0.47 ± 0.06 |
(+) | 0.73 ± 0.08 | 0.82 ± 0.07 | 0.68 ± 0.02 | 0.58 ± 0.03 | ||
Non-autoclaved | (−) | 0.62 ± 0.10 | 0.50 ± 0.03 | 0.33 ± 0.03 | 0.27 ± 0.03 | |
(+) | 0.71 ± 0.03 | 0.54 ± 0.08 | 0.52 ± 0.04 | 0.38 ± 0.02 | ||
Saricanak-98 | Autoclaved | (−) | 0.68 ± 0.05 | 0.67 ± 0.03 | 0.56 ± 0.04 | 0.50 ± 0.05 |
(+) | 0.84 ± 0.03 | 0.76 ± 0.10 | 0.63 ± 0.04 | 0.58 ± 0.03 | ||
Non-autoclaved | (−) | 0.53 ± 0.02 | 0.52 ± 0.08 | 0.35 ± 0.02 | 0.34 ± 0.03 | |
(+) | 0.60 ± 0.06 | 0.57 ± 0.06 | 0.39 ± 0.06 | 0.36 ± 0.04 |
Total Chlorophyll (nmol g−1) | ||||||
---|---|---|---|---|---|---|
Cultivar | Soil Sterilization | S. indica | B Supply (mg kg−1) | |||
1 | 10 | 20 | 30 | |||
Nusrat | Autoclaved | (−) | 1067 ± 104 | 794 ± 147 | 658 ± 72 | 529 ± 50 |
(+) | 1155 ± 127 | 879 ± 40 | 734 ± 150 | 778 ± 46 | ||
Non-autoclaved | (−) | 873 ± 213 | 897 ± 227 | 616 ± 118 | 507 ± 179 | |
(+) | 700 ± 169 | 643 ± 44 | 927 ± 253 | 727 ± 86 | ||
Saricanak-98 | Autoclaved | (−) | 723 ± 162 | 789 ± 169 | 842 ± 126 | 778 ± 167 |
(+) | 1092 ± 97 | 808 ± 40 | 878 ± 230 | 679 ± 92 | ||
Non-autoclaved | (−) | 822 ± 120 | 832 ± 327 | 659 ± 72 | 786 ± 301 | |
(+) | 795 ± 245 | 853 ± 126 | 828 ± 129 | 604 ± 70 |
Source of Variation | DF | Shoot B Conc. (mg kg−1) | Shoot Mn Conc. (mg kg−1) | Shoot P Conc. (%) | DF | Straw B Conc. (mg kg−1) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
F Pr. | HSD0.05 | F Pr. | HSD0.05 | F Pr. | HSD0.05 | F Pr. | HSD0.05 | ||||
Nusrat | Inoculation (I) | 1 | 0.357 | n.s. | 0.004 | 5.26 | <0.001 | 0.014 | 1 | 0.0012 | 19 |
Soil sterilization (S) | 1 | 0.015 | 26 | <0.001 | 5.26 | <0.001 | 0.014 | 1 | <0.001 | 19 | |
Boron supply (B) | 3 | <0.001 | 48 | <0.001 | 9.75 | <0.001 | 0.026 | 2 | <0.001 | 28 | |
I X S | 1 | 0.885 | n.s. | 0.266 | n.s. | 0.478 | n.s. | 1 | 0.534 | n.s. | |
I X B | 3 | 0.512 | n.s. | 0.885 | n.s. | 0.447 | n.s. | 2 | 0.188 | n.s. | |
S X B | 3 | 0.040 | 80 | 0.002 | 16.42 | <0.001 | 0.047 | 2 | <0.001 | 48 | |
I X S X B | 3 | 0.424 | n.s. | 0.985 | n.s. | 0.914 | n.s. | 2 | 0.25 | n.s. | |
Saricanak-98 | Inoculation (I) | 1 | 0.826 | n.s. | 0.132 | n.s. | 0.051 | n.s. | 1 | 0.250 | n.s. |
Soil sterilization (S) | 1 | <0.001 | 27 | <0.001 | 3.31 | <0.001 | 0.016 | 1 | 0.002 | 31 | |
Boron supply (B) | 3 | <0.001 | 51 | 0.735 | n.s. | <0.001 | 0.029 | 2 | <0.001 | 47 | |
I X S | 1 | 0.373 | n.s. | 0.002 | 6.2 | 0.733 | n.s. | 1 | 0.568 | n.s. | |
I X B | 3 | 0.997 | n.s. | 0.176 | n.s. | 0.134 | n.s. | 2 | 0.075 | n.s. | |
S X B | 3 | 0.123 | n.s. | 0.005 | 10.44 | <0.001 | 0.05 | 2 | 0.154 | n.s. | |
I X S X B | 3 | 0.908 | n.s. | 0.531 | n.s. | 0.774 | n.s. | 2 | 0.747 | n.s. |
Source of Variation | DF | Grain B Conc. (mg kg−1) | Straw DW (g) | Grain Number (Plant−1) | Grain Yield Plant−1 (g) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Nusrat | F Pr. | HSD0.05 | F Pr. | HSD0.05 | F Pr. | HSD0.05 | F Pr. | HSD0.05 | ||
Inoculation (I) | 1 | 0.220 | n.s. | 0.001 | 0.117 | 0.003 | 3.463 | 0.595 | n.s. | |
Soil sterilization (S) | 1 | 0.066 | n.s. | <0.001 | 0.117 | 0.004 | 3.463 | <0.001 | 0.125 | |
Boron supply (B) | 2 | <0.001 | 0.212 | 0.567 | n.s. | 0.006 | 5.110 | <0.001 | 0.185 | |
I X S | 1 | 0.163 | n.s. | 0.120 | n.s. | 0.363 | n.s. | 0.145 | n.s. | |
I X B | 2 | 0.244 | n.s. | 0.207 | n.s. | 0.033 | 8.897 | 0.342 | n.s. | |
S X B | 2 | 0.013 | 0.372 | 0.523 | n.s. | 0.379 | n.s. | 0.250 | n.s. | |
I X S X B | 2 | 0.340 | n.s. | 0.977 | n.s. | 0.181 | n.s. | 0.970 | n.s. | |
Saricanak-98 | Inoculation (I) | 1 | 0.022 | 0.412 | 0.041 | 0.231 | 0.011 | 3.463 | 0.385 | n.s. |
Soil sterilization (S) | 1 | 0.001 | 0.412 | <0.001 | 0.231 | <0.001 | 3.463 | <0.001 | 0.150 | |
Boron supply (B) | 2 | <0.001 | 0.611 | 0.608 | n.s. | <0.001 | 5.112 | <0.001 | 0.219 | |
I X S | 1 | 0.643 | n.s. | 0.410 | n.s. | 0.719 | n.s. | 0.889 | n.s. | |
I X B | 2 | 0.162 | n.s. | 0.462 | n.s. | 0.341 | n.s. | 0.402 | n.s. | |
S X B | 2 | 0.021 | 1.045 | 0.602 | n.s. | 0.124 | n.s. | 0.648 | n.s. | |
I X S X B | 2 | 0.840 | n.s. | 0.308 | n.s. | 0.497 | n.s. | 0.682 | n.s. |
Grain B Conc. (mg kg−1) | |||||
---|---|---|---|---|---|
Cultivar | Soil Sterilization | S. indica | B Supply (mg kg−1) | ||
1 | 10 | 20 | |||
Nusrat | Autoclaved | (−) | 1.13 ± 0.13 | 1.42 ± 0.05 | 2.33 ± 0.13 |
(+) | 1.08 ± 0.20 | 1.37 ± 0.08 | 2.46 ± 0.52 | ||
Non-autoclaved | (−) | 0.92 ± 0.10 | 1.87 ± 0.27 | 2.80 ± 0.18 | |
(+) | 0.94 ± 0.07 | 1.39 ± 0.16 | 2.68 ± 0.23 | ||
Saricanak-98 | Autoclaved | (−) | 0.74 ± 0.05 | 1.94 ± 0.26 | 3.54 ± 0.63 |
(+) | 0.68 ± 0.03 | 1.65 ± 0.30 | 2.71 ± 0.09 | ||
Non-autoclaved | (−) | 0.73 ± 0.05 | 2.79 ± 0.40 | 5.15 ± 0.78 | |
(+) | 0.80 ± 0.04 | 2.05 ± 0.82 | 4.07 ± 1.50 |
Straw B Conc. (mg kg−1) | |||||
---|---|---|---|---|---|
Cultivar | Soil Sterilization | S. indica | B Supply (mg kg−1) | ||
1 | 10 | 20 | |||
Nusrat | Autoclaved | (−) | 25 ± 2 | 158 ± 11 | 390 ± 47 |
(+) | 26 ± 3 | 136 ± 23 | 331 ± 29 | ||
Non-autoclaved | (−) | 42 ± 10 | 257 ± 20 | 616 ± 56 | |
(+) | 26 ± 5 | 186 ± 18 | 586 ± 40 | ||
Saricanak-98 | Autoclaved | (−) | 30 ± 1 | 166 ± 17 | 606 ± 25 |
(+) | 24 ± 2 | 181 ± 14 | 513 ± 53 | ||
Non-autoclaved | (−) | 42 ± 6 | 228 ± 24 | 659 ± 91 | |
(+) | 29 ± 2 | 257 ± 84 | 615 ± 74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaval, A.; Yılmaz, H.; Tunca Gedik, S.; Yıldız Kutman, B.; Kutman, Ü.B. The Fungal Root Endophyte Serendipita indica (Piriformospora indica) Enhances Bread and Durum Wheat Performance under Boron Toxicity at Both Vegetative and Generative Stages of Development through Mechanisms Unrelated to Mineral Homeostasis. Biology 2023, 12, 1098. https://doi.org/10.3390/biology12081098
Kaval A, Yılmaz H, Tunca Gedik S, Yıldız Kutman B, Kutman ÜB. The Fungal Root Endophyte Serendipita indica (Piriformospora indica) Enhances Bread and Durum Wheat Performance under Boron Toxicity at Both Vegetative and Generative Stages of Development through Mechanisms Unrelated to Mineral Homeostasis. Biology. 2023; 12(8):1098. https://doi.org/10.3390/biology12081098
Chicago/Turabian StyleKaval, Ali, Halil Yılmaz, Sedef Tunca Gedik, Bahar Yıldız Kutman, and Ümit Barış Kutman. 2023. "The Fungal Root Endophyte Serendipita indica (Piriformospora indica) Enhances Bread and Durum Wheat Performance under Boron Toxicity at Both Vegetative and Generative Stages of Development through Mechanisms Unrelated to Mineral Homeostasis" Biology 12, no. 8: 1098. https://doi.org/10.3390/biology12081098
APA StyleKaval, A., Yılmaz, H., Tunca Gedik, S., Yıldız Kutman, B., & Kutman, Ü. B. (2023). The Fungal Root Endophyte Serendipita indica (Piriformospora indica) Enhances Bread and Durum Wheat Performance under Boron Toxicity at Both Vegetative and Generative Stages of Development through Mechanisms Unrelated to Mineral Homeostasis. Biology, 12(8), 1098. https://doi.org/10.3390/biology12081098