OMICS Approaches to Assess Dinoflagellate Responses to Chemical Stressors
Abstract
:Simple Summary
Abstract
1. Introduction
2. Transcriptomic Approaches
Purpose | Species | Approach | Findings | Ref |
---|---|---|---|---|
HAB formation | ||||
Effects of N-limitation to understand Harmful Algae Blooms’ (HABs’) formation | Prorocentrum shikokuense | RNA-seq | N-uptake, N-recycling and a shift to mixotrophy constitute a strategy to cope with N-deficiency | [18] |
Responses of membrane proteome to metal contamination in a harmful species | Alexandrium pacificum | 2D-electrophoresis | The downregulation of metal-binding transporter is a strategy to limit metal entry in the cell The ATP synthase downregulation is a strategy to reduce oxidative stress | [19] |
Proteomic responses to phosphorus deficiency to understand HABs’ formation | Alexandrium catenella | iTRAQ-based quantitative proteomic | Carbon accumulation through starch polymerization, the utilization of Glucose-6-Phosphate as a dissolved organic phosphorus and carbon source, and a reduction in phosphorus demand in response to phosphorus deficiency | [20] |
Transcriptional and post-transcriptional regulation under nutrient addition on a bloom-forming species | Prorocentrum shikokuense (syn. P. dongaihense) | RNA-seq and microRNA sequencing | N- and P-metabolism, energy and carbohydrate metabolisms, cell division and microbial defense are upregulated at the transcript level under blooming conditions, while cell wall remodeling, amino acid metabolism and reactive oxygen species production might be regulated by micro-RNA | [21] |
Metabolomic changes in response to bacterial algicide IRI-160AA | Karlodinium veneficum | LC-MS/MS | Increase in oxidative stress biomarkers, antioxidants and compounds involved in DNA damage and the programmed pathway leading to cell death | [22] |
Impact of anthropic pressures | ||||
Proteomic responses to lead, zinc, copper and cadmium contamination | Alexandrium pacificum | 2D-electrophoresis | Photosynthesis ability and oxidative stress response decrease energy metabolism, protein translation and degradation. In addition, proteolytic activity is downregulated under metal stress | [23] |
Symbiodiniaceae mechanisms | ||||
Effect of trace metal deficiencies | Fugacium kawagutii | RNA-seq | Trace metal might alter adhesion abilities and cause an immunity response Evidence for a tradeoff between iron demand and oxidative stress response | [24] |
Nanoplastic effects on two Symbiodiniaceae species | Symbiodinium tridacnidorum Cladocopium sp. | RNA-seq | Nanoplastic affect photosynthesis efficiency and mitosis; it decreases intracellular degradation and increases motility The sensitivity to nanoplastic exposure is species-specific | [25] |
Metabolomic changes to acidification | Breviolum minutum | LC-MS/MS | Acidification affects biosynthesis of amino acids and proteins Accumulation of saturated fatty acids and oligosaccharides is enhanced as a strategy to cope with acidification | [26] |
Physiological and proteomic response to nutrient stress | Symbiodinium microadriaticum | LC–MS/MS | Proteomes were strongly affected by phosphate limitation. Very high N:P inhibited Symbiodinium cell division while increasing the abundance of chloroplast proteins | [27] |
Comparison of nutrient availability effect in symbiont physiology in culture and in hospite | Breviolum minutum | LC-MS/MS | Photosystem proteins, antioxidant proteins and multicopper oxidase notably increased in abundance in the high-nutrient regimes, irrespective of the B. minutum state. In hospite vs. the free-living state, an increase in proteins involved in phosphoinositol metabolism potentially reflects inter-partner signaling that regulates the symbiosis | [28] |
Toxin production | ||||
Metabolomic changes in a toxic dinoflagellate to salinity stress | Dinophysis sacculus | LC-MS/MS and LC-HRMS/MS | Non-significant changes in pectenotoxin (PTX), okaidaic acid and osmolyte under different salinity concentrations suggest a high tolerance to salinity variation in Dinophysis sacculus | [29] |
Identification of new toxin analogs | Dinophysis strains | HRMS and Molecular Networking | Metabolites’ patterns are species-specific Identification of 5 putative new toxins analogs | [30] |
Genetic regulation of metabolites’ production under phosphorus and nitrogen starvation | Amphidinium gibbosum | Illumina Miseq, Iso-seq, RNA-seq, microRNA-seq | Involvement of post-transcriptional regulation through microRNA, alternative splicing and polycystronic expression of specific metabolites’ production | [31] |
Bioproduction optimization | ||||
Lipid profile under nutrient deficiency and algicidal bacterium to optimize biofuel production | Prorocentrum shikokuense (syn. P. dongaihense) | GC-MS | N and P stress induce lipid accumulation and change lipid properties to match the biodiesel standards | [32] |
Lipid content, docosahexaenoic acid (DHA) productivity, fatty acid composition and metabolomic analysis under different nitrogen-feeding strategies | Crypthecodinium cohnii | GC-MS | Heterotrophic culture conditions may alleviate high-nitrogen inhibition effect to induce higher DHA productivity as well as changes in amino acids, polysaccharides, purines and pentose phosphate pathway | [33] |
Metabolomic changes due to chemical modulators | Crypthecodinium cohnii | Targeted LC-MS | The chemical modulators: naphthoxyacetic acid, salicylic acid, abscisic acid and ethanolamine increased lipid accumulation. The enhanced metabolism in glycolysis and tricarboxylic acid cycle as well as the decreased metabolism in pentose phosphate pathway are related to the increased lipid biosynthesis | [34] |
3. Proteomic Approaches
4. Metabolomic Approaches
5. Multi-OMIC Approaches
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Taylor, F.J.R.; Hoppenrath, M.; Saldarriaga, J.F. Dinoflagellate diversity and distribution. In Protist Diversity and Geographical Distribution; Foissner, W., Hawksworth, D.L., Eds.; Topics in Biodiversity and Conservation; Springer: Dordrecht, The Netherlands, 2009; pp. 173–184. ISBN 978-90-481-2801-3. [Google Scholar]
- Gómez, F. A Quantitative Review of the Lifestyle, Habitat and Trophic Diversity of Dinoflagellates (Dinoflagellata, Alveolata). Syst. Biodivers. 2012, 10, 267–275. [Google Scholar] [CrossRef]
- Field, C.B.; Behrenfeld, M.J.; Randerson, J.T.; Falkowski, P. Primary Production of the Biosphere: Integrating Terrestrial and Oceanic Components. Science 1998, 281, 237–240. [Google Scholar] [CrossRef]
- Foley, A.M.; Stacy, B.A.; Schueller, P.; Flewelling, L.J.; Schroeder, B.; Minch, K.; Fauquier, D.A.; Foote, J.J.; Manire, C.A.; Atwood, K.E.; et al. Assessing Karenia Brevis Red Tide as a Mortality Factor of Sea Turtles in Florida, USA. Dis. Aquat. Organ. 2019, 132, 109–124. [Google Scholar] [CrossRef]
- Wang, S.-C.; Liu, F.-F.; Huang, T.-Y.; Fan, J.-L.; Gao, Z.-Y.; Liu, G.-Z. Effects of Nanoplastics on the Dinoflagellate Amphidinium carterae Hulburt from the Perspectives of Algal Growth, Oxidative Stress and Hemolysin Production. Nanomaterials 2021, 11, 2471. [Google Scholar] [CrossRef]
- Long, M.; Holland, A.; Planquette, H.; González Santana, D.; Whitby, H.; Soudant, P.; Sarthou, G.; Hégaret, H.; Jolley, D.F. Effects of Copper on the Dinoflagellate Alexandrium minutum and Its Allelochemical Potency. Aquat. Toxicol. 2019, 210, 251–261. [Google Scholar] [CrossRef]
- Armbrust, E.V.; Berges, J.A.; Bowler, C.; Green, B.R.; Martinez, D.; Putnam, N.H.; Zhou, S.; Allen, A.E.; Apt, K.E.; Bechner, M.; et al. The Genome of the Diatom Thalassiosira Pseudonana: Ecology, Evolution, and Metabolism. Science 2004, 306, 79–86. [Google Scholar] [CrossRef]
- Mock, T.; Samanta, M.P.; Iverson, V.; Berthiaume, C.; Robison, M.; Holtermann, K.; Durkin, C.; BonDurant, S.S.; Richmond, K.; Rodesch, M.; et al. Whole-Genome Expression Profiling of the Marine Diatom Thalassiosira pseudonana Identifies Genes Involved in Silicon Bioprocesses. Proc. Natl. Acad. Sci. USA 2008, 105, 1579–1584. [Google Scholar] [CrossRef]
- Bowler, C.; Allen, A.E.; Badger, J.H.; Grimwood, J.; Jabbari, K.; Kuo, A.; Maheswari, U.; Martens, C.; Maumus, F.; Otillar, R.P.; et al. The Phaeodactylum Genome Reveals the Evolutionary History of Diatom Genomes. Nature 2008, 456, 239–244. [Google Scholar] [CrossRef]
- Merchant, S.S.; Prochnik, S.E.; Vallon, O.; Harris, E.H.; Karpowicz, S.J.; Witman, G.B.; Terry, A.; Salamov, A.; Fritz-Laylin, L.K.; Maréchal-Drouard, L.; et al. The Chlamydomonas Genome Reveals the Evolution of Key Animal and Plant Functions. Science 2007, 318, 245–250. [Google Scholar] [CrossRef]
- Wisecaver, J.H.; Hackett, J.D. Dinoflagellate Genome Evolution. Annu. Rev. Microbiol. 2011, 65, 369–387. [Google Scholar] [CrossRef]
- Reich, H.G.; Kitchen, S.A.; Stankiewicz, K.H.; Devlin-Durante, M.; Fogarty, N.D.; Baums, I.B. Genomic Variation of an Endosymbiotic Dinoflagellate (Symbiodinium ‘fitti’) among Closely Related Coral Hosts. Mol. Ecol. 2021, 30, 3500–3514. [Google Scholar] [CrossRef]
- Nurk, S.; Koren, S.; Rhie, A.; Rautiainen, M.; Bzikadze, A.V.; Mikheenko, A.; Vollger, M.R.; Altemose, N.; Uralsky, L.; Gershman, A.; et al. The Complete Sequence of a Human Genome. Science 2022, 376, 44–53. [Google Scholar] [CrossRef]
- Nand, A.; Zhan, Y.; Salazar, O.R.; Aranda, M.; Voolstra, C.R.; Dekker, J. Genetic and Spatial Organization of the Unusual Chromosomes of the Dinoflagellate Symbiodinium microadriaticum. Nat. Genet. 2021, 53, 618–629. [Google Scholar] [CrossRef]
- Lin, S.; Song, B.; Morse, D. Spatial Organization of Dinoflagellate Genomes: Novel Insights and Remaining Critical Questions. J. Phycol. 2021, 57, 1674–1678. [Google Scholar] [CrossRef]
- Zhang, Y.-J.; Zhang, S.-F.; He, Z.-P.; Lin, L.; Wang, D.-Z. Proteomic Analysis Provides New Insights into the Adaptive Response of a Dinoflagellate Prorocentrum donghaiense to Changing Ambient Nitrogen. Plant Cell Environ. 2015, 38, 2128–2142. [Google Scholar] [CrossRef]
- Horak, C.E.; Snyder, M. Global Analysis of Gene Expression in Yeast. Funct. Integr. Genom. 2002, 2, 171–180. [Google Scholar] [CrossRef]
- Li, H.; Li, L.; Yu, L.; Yang, X.; Shi, X.; Wang, J.; Li, J.; Lin, S. Transcriptome Profiling Reveals Versatile Dissolved Organic Nitrogen Utilization, Mixotrophy, and N Conservation in the Dinoflagellate Prorocentrum shikokuense under N Deficiency. Sci. Total Environ. 2021, 763, 143013. [Google Scholar] [CrossRef]
- Chetouhi, C.; Masseret, E.; Satta, C.T.; Balliau, T.; Laabir, M.; Jean, N. Intraspecific Variability in Membrane Proteome, Cell Growth, and Morphometry of the Invasive Marine Neurotoxic Dinoflagellate Alexandrium pacificum Grown in Metal-Contaminated Conditions. Sci. Total Environ. 2020, 715, 136834. [Google Scholar] [CrossRef]
- Zhang, S.-F.; Zhang, Y.; Lin, L.; Wang, D.-Z. iTRAQ-Based Quantitative Proteomic Analysis of a Toxigenic Dinoflagellate Alexandrium catenella at Different Stages of Toxin Biosynthesis during the Cell Cycle. Mar. Drugs 2018, 16, 491. [Google Scholar] [CrossRef]
- Yu, L.; Zhang, Y.; Li, M.; Wang, C.; Lin, X.; Li, L.; Shi, X.; Guo, C.; Lin, S. Comparative Metatranscriptomic Profiling and microRNA Sequencing to Reveal Active Metabolic Pathways Associated with a Dinoflagellate Bloom. Sci. Total Environ. 2020, 699, 134323. [Google Scholar] [CrossRef]
- Wang, Y.; Coyne, K.J. Metabolomic Insights of the Effects of Bacterial Algicide IRI-160AA on Dinoflagellate Karlodinium veneficum. Metabolites 2022, 12, 317. [Google Scholar] [CrossRef]
- Jean, N.; Perié, L.; Dumont, E.; Bertheau, L.; Balliau, T.; Caruana, A.M.N.; Amzil, Z.; Laabir, M.; Masseret, E. Metal Stresses Modify Soluble Proteomes and Toxin Profiles in Two Mediterranean Strains of the Distributed Dinoflagellate Alexandrium pacificum. Sci. Total Environ. 2022, 818, 151680. [Google Scholar] [CrossRef]
- Li, T.; Lin, X.; Yu, L.; Lin, S.; Rodriguez, I.B.; Ho, T.-Y. RNA-seq Profiling of Fugacium kawagutii Reveals Strong Responses in Metabolic Processes and Symbiosis Potential to Deficiencies of Iron and Other Trace Metals. Sci. Total Environ. 2020, 705, 135767. [Google Scholar] [CrossRef]
- Ripken, C.; Khalturin, K.; Shoguchi, E. Response of Coral Reef Dinoflagellates to Nanoplastics under Experimental Conditions Suggests Downregulation of Cellular Metabolism. Microorganisms 2020, 8, 1759. [Google Scholar] [CrossRef]
- Jiang, J.; Lu, Y. Metabolite Profiling of Breviolum minutum in Response to Acidification. Aquat. Toxicol. 2019, 213, 105215. [Google Scholar] [CrossRef]
- Oakley, C.A.; Newson, G.I.; Peng, L.; Davy, S.K. The Symbiodinium Proteome Response to Thermal and Nutrient Stresses. Plant Cell Physiol. 2023, 64, 433–447. [Google Scholar] [CrossRef]
- Mashini, A.G.; Oakley, C.A.; Beepat, S.S.; Peng, L.; Grossman, A.R.; Weis, V.M.; Davy, S.K. The Influence of Symbiosis on the Proteome of the Exaiptasia Endosymbiont Breviolum minutum. Microorganisms 2023, 11, 292. [Google Scholar] [CrossRef]
- Gaillard, S.; Réveillon, D.; Danthu, C.; Hervé, F.; Sibat, M.; Carpentier, L.; Hégaret, H.; Séchet, V.; Hess, P. Effect of a Short-Term Salinity Stress on the Growth, Biovolume, Toxins, Osmolytes and Metabolite Profiles on Three Strains of the Dinophysis acuminata-complex (Dinophysis cf. sacculus). Harmful Algae 2021, 107, 102009. [Google Scholar] [CrossRef]
- Sibat, M.; Réveillon, D.; Antoine, C.; Carpentier, L.; Rovillon, G.A.; Sechet, V.; Bertrand, S. Molecular Networking as a Novel Approach to Unravel Toxin Diversity of Four Strains of the Dominant Dinophysis Species from French Coastal Waters. Harmful Algae 2021, 103, 102026. [Google Scholar] [CrossRef]
- Beedessee, G.; Kubota, T.; Arimoto, A.; Nishitsuji, K.; Waller, R.F.; Hisata, K.; Yamasaki, S.; Satoh, N.; Kobayashi, J.; Shoguchi, E. Integrated Omics Unveil the Secondary Metabolic Landscape of a Basal Dinoflagellate. BMC Biol. 2020, 18, 139. [Google Scholar] [CrossRef]
- Gui, J.; Chen, S.; Luo, G.; Wu, Z.; Fan, Y.; Yao, L.; Xu, H. Nutrient Deficiency and an Algicidal Bacterium Improved the Lipid Profiles of a Novel Promising Oleaginous Dinoflagellate, Prorocentrum donghaiense, for Biodiesel Production. Appl. Environ. Microbiol. 2021, 87, e0115921. [Google Scholar] [CrossRef]
- Liu, L.; Wang, F.; Yang, J.; Li, X.; Cui, J.; Liu, J.; Shi, M.; Wang, K.; Chen, L.; Zhang, W. Nitrogen Feeding Strategies and Metabolomic Analysis To Alleviate High-Nitrogen Inhibition on Docosahexaenoic Acid Production in Crypthecodinium cohnii. J. Agric. Food Chem. 2018, 66, 10640–10650. [Google Scholar] [CrossRef]
- Li, J.; Niu, X.; Pei, G.; Sui, X.; Zhang, X.; Chen, L.; Zhang, W. Identification and Metabolomic Analysis of Chemical Modulators for Lipid Accumulation in Crypthecodinium cohnii. Bioresour. Technol. 2015, 191, 362–368. [Google Scholar] [CrossRef]
- Wang, Z.; Gerstein, M.; Snyder, M. RNA-Seq: A Revolutionary Tool for Transcriptomics. Nat. Rev. Genet. 2009, 10, 57–63. [Google Scholar] [CrossRef]
- Dagenais-Bellefeuille, S.; Morse, D. Putting the N in Dinoflagellates. Front. Microbiol. 2013, 4, 369. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Xiao, Y.; Liu, L.; Xie, Y.; Ma, R.; Chen, J. Transcriptome Responses of the Dinoflagellate Karenia mikimotoi Driven by Nitrogen Deficiency. Harmful Algae 2021, 103, 101977. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.-F.; Yuan, C.-J.; Chen, Y.; Lin, L.; Wang, D.-Z. Transcriptomic Response to Changing Ambient Phosphorus in the Marine Dinoflagellate Prorocentrum donghaiense. Sci. Total Environ. 2019, 692, 1037–1047. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Lin, X.; Li, L.; Li, M.; Palenik, B.; Lin, S. Transcriptomic and microRNAomic Profiling Reveals Multi-Faceted Mechanisms to Cope with Phosphate Stress in a Dinoflagellate. ISME J. 2017, 11, 2209–2218. [Google Scholar] [CrossRef]
- Lin, S.; Yu, L.; Zhang, H. Transcriptomic Responses to Thermal Stress and Varied Phosphorus Conditions in Fugacium kawagutii. Microorganisms 2019, 7, 96. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Tan, L.; Han, X.; Wang, X.; Zhang, Y.; Ma, X.; Lin, K.; Wang, R.; Ni, Z.; Wang, J.; et al. Microplastic-Induced Apoptosis and Metabolism Responses in Marine Dinoflagellate, Karenia mikimotoi. Sci. Total Environ. 2022, 804, 150252. [Google Scholar] [CrossRef]
- Dammak Walha, L.; Hamza, A.; Abdmouleh Keskes, F.; Cibic, T.; Mechi, A.; Mahfoudi, M.; Sammari, C. Heavy Metals Accumulation in Environmental Matrices and Their Influence on Potentially Harmful Dinoflagellates Development in the Gulf of Gabes (Tunisia). Estuar. Coast. Shelf Sci. 2021, 254, 107317. [Google Scholar] [CrossRef]
- D’Costa, P.M.; Kunkolienkar, R.S.S.; Naik, A.G.; Naik, R.K.; Roy, R. The Response of Prorocentrum sigmoides and Its Associated Culturable Bacteria to Metals and Organic Pollutants. J. Basic Microbiol. 2019, 59, 979–991. [Google Scholar] [CrossRef] [PubMed]
- Jean, N.; Dumont, E.; Herzi, F.; Balliau, T.; Laabir, M.; Masseret, E.; Mounier, S. Modifications of the Soluble Proteome of a Mediterranean Strain of the Invasive Neurotoxic Dinoflagellate Alexandrium catenella under Metal Stress Conditions. Aquat. Toxicol. 2017, 188, 80–91. [Google Scholar] [CrossRef] [PubMed]
- Longo, S.; Sibat, M.; Darius, H.T.; Hess, P.; Chinain, M. Effects of pH and Nutrients (Nitrogen) on Growth and Toxin Profile of the Ciguatera-Causing Dinoflagellate Gambierdiscus polynesiensis (Dinophyceae). Toxins 2020, 12, 767. [Google Scholar] [CrossRef]
- Lu, Y.; Jiang, J.; Zhao, H.; Han, X.; Xiang, Y.; Zhou, W. Clade-Specific Sterol Metabolites in Dinoflagellate Endosymbionts Are Associated with Coral Bleaching in Response to Environmental Cues. mSystems 2020, 5, e00765-20. [Google Scholar] [CrossRef]
- Malto, Z.B.L.; Benico, G.A.; Batucan, J.D.; Dela Cruz, J.; Romero, M.L.J.; Azanza, R.V.; Salvador-Reyes, L.A. Global Mass Spectrometric Analysis Reveals Chemical Diversity of Secondary Metabolites and 44-Methylgambierone Production in Philippine Gambierdiscus Strains. Front. Mar. Sci. 2022, 8, 767024. [Google Scholar] [CrossRef]
- García-Portela, M.; Reguera, B.; Sibat, M.; Altenburger, A.; Rodríguez, F.; Hess, P. Metabolomic Profiles of Dinophysis acuminata and Dinophysis acuta Using Non-Targeted High-Resolution Mass Spectrometry: Effect of Nutritional Status and Prey. Mar. Drugs 2018, 16, 143. [Google Scholar] [CrossRef]
- Wu, H.; Chen, J.; Peng, J.; Zhong, Y.; Zheng, G.; Guo, M.; Tan, Z.; Zhai, Y.; Lu, S. Nontarget Screening and Toxicity Evaluation of Diol Esters of Okadaic Acid and Dinophysistoxins Reveal Intraspecies Difference of Prorocentrum lima. Environ. Sci. Technol. 2020, 54, 12366–12375. [Google Scholar] [CrossRef]
- Wang, M.; Carver, J.J.; Phelan, V.V.; Sanchez, L.M.; Garg, N.; Peng, Y.; Nguyen, D.D.; Watrous, J.; Kapono, C.A.; Luzzatto-Knaan, T.; et al. Sharing and Community Curation of Mass Spectrometry Data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 2016, 34, 828–837. [Google Scholar] [CrossRef]
- Wellkamp, M.; García-Camacho, F.; Durán-Riveroll, L.M.; Tebben, J.; Tillmann, U.; Krock, B. LC-MS/MS Method Development for the Discovery and Identification of Amphidinols Produced by Amphidinium. Mar. Drugs 2020, 18, 497. [Google Scholar] [CrossRef]
- Tsugawa, H.; Satoh, A.; Uchino, H.; Cajka, T.; Arita, M.; Arita, M. Mass Spectrometry Data Repository Enhances Novel Metabolite Discoveries with Advances in Computational Metabolomics. Metabolites 2019, 9, 119. [Google Scholar] [CrossRef]
- Fan, Z.; Zhou, Y.; Ressom, H.W. MOTA: Network-Based Multi-Omic Data Integration for Biomarker Discovery. Metabolites 2020, 10, 144. [Google Scholar] [CrossRef] [PubMed]
- Bi, Y.; Wang, F.; Zhang, W. Omics Analysis for Dinoflagellates Biology Research. Microorganisms 2019, 7, 288. [Google Scholar] [CrossRef] [PubMed]
- Cowen, L.J.; Klein-Seetharaman, J.; Putnam, H. Bioinformatics of Corals: Investigating Heterogeneous Omics Data from Coral Holobionts for Insight into Reef Health and Resillience. In Proceedings of the Biocomputing 2021; World Scientific: Kohala Coast, HI, USA, 2020; pp. 336–340. [Google Scholar]
- Yu, L.; Li, T.; Li, L.; Lin, X.; Li, H.; Liu, C.C.; Guo, C.; Lin, S. SAGER: A Database of Symbiodiniaceae and Algal Genomic Resource. Database J. Biol. Databases Curation 2020, 2020, baaa051. [Google Scholar] [CrossRef] [PubMed]
- Tse, S.P.; Beauchemin, M.; Morse, D.; Lo, S.C. Refining Transcriptome Gene Catalogs by MS-Validation of Expressed Proteins. Proteomics 2018, 18, 1700271. [Google Scholar] [CrossRef]
- Nimmo, I.C.; Barbrook, A.C.; Lassadi, I.; Chen, J.E.; Geisler, K.; Smith, A.G.; Aranda, M.; Purton, S.; Waller, R.F.; Nisbet, R.E.R.; et al. Genetic Transformation of the Dinoflagellate Chloroplast. eLife 2022, 8, e45292. [Google Scholar] [CrossRef]
- Sprecher, B.N.; Zhang, H.; Lin, S. Nuclear Gene Transformation in the Dinoflagellate Oxyrrhis marina. Microorganisms 2020, 8, 126. [Google Scholar] [CrossRef]
- Judd, M.; Place, A.R. A Strategy for Gene Knockdown in Dinoflagellates. Microorganisms 2022, 10, 1131. [Google Scholar] [CrossRef]
- Morey, J.S.; Monroe, E.A.; Kinney, A.L.; Beal, M.; Johnson, J.G.; Hitchcock, G.L.; Van Dolah, F.M. Transcriptomic Response of the Red Tide Dinoflagellate, Karenia brevis, to Nitrogen and Phosphorus Depletion and Addition. BMC Genom. 2011, 12, 346. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roussel, A.; Mériot, V.; Jauffrais, T.; Berteaux-Lecellier, V.; Lebouvier, N. OMICS Approaches to Assess Dinoflagellate Responses to Chemical Stressors. Biology 2023, 12, 1234. https://doi.org/10.3390/biology12091234
Roussel A, Mériot V, Jauffrais T, Berteaux-Lecellier V, Lebouvier N. OMICS Approaches to Assess Dinoflagellate Responses to Chemical Stressors. Biology. 2023; 12(9):1234. https://doi.org/10.3390/biology12091234
Chicago/Turabian StyleRoussel, Alice, Vincent Mériot, Thierry Jauffrais, Véronique Berteaux-Lecellier, and Nicolas Lebouvier. 2023. "OMICS Approaches to Assess Dinoflagellate Responses to Chemical Stressors" Biology 12, no. 9: 1234. https://doi.org/10.3390/biology12091234
APA StyleRoussel, A., Mériot, V., Jauffrais, T., Berteaux-Lecellier, V., & Lebouvier, N. (2023). OMICS Approaches to Assess Dinoflagellate Responses to Chemical Stressors. Biology, 12(9), 1234. https://doi.org/10.3390/biology12091234