PiggyBac Transposon Mining in the Small Genomes of Animals
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. PB Transposon Mining
2.2. Phylogenetic Tree Construction
2.3. Evolutionary Dynamics Analysis
2.4. PB Sequence Analysis
3. Results
3.1. Distribution of PB Transposons in the Compact Genomes of Animals
3.2. Structural Organization and Classification of PB in the Compact Genomes of Animals
3.3. Sequence Analysis across the Seven Clades of PB
3.4. Evolution Dynamics of PB in the Compact Genomes of Animals
4. Discussion
4.1. Distribution, Diversity, and Activity of PB in the Compact Genomes of Animals
4.2. Structural Organization of PiggyBac in the Animal Genome
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Castanera, R.; López-Varas, L.; Borgognone, A.; LaButti, K.; Lapidus, A.; Schmutz, J.; Grimwood, J.; Pérez, G.; Pisabarro, A.G.; Grigoriev, I.V.; et al. Transposable Elements versus the Fungal Genome: Impact on Whole-Genome Architecture and Transcriptional Profiles. PLoS Genet. 2016, 12, e1006108. [Google Scholar] [CrossRef] [PubMed]
- Wicker, T.; Sabot, F.; Hua-Van, A.; Bennetzen, J.L.; Capy, P.; Chalhoub, B.; Flavell, A.; Leroy, P.; Morgante, M.; Panaud, O.; et al. A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet. 2007, 8, 973–982. [Google Scholar] [CrossRef] [PubMed]
- Kidwell, M.G. Transposable elements and the evolution of genome size in eukaryotes. Genetica 2002, 115, 49–63. [Google Scholar] [CrossRef] [PubMed]
- Carducci, F.; Biscotti, M.A.; Barucca, M.; Canapa, A. Transposable elements in vertebrates: Species evolution and environmental adaptation. Eur. Zool. J. 2019, 86, 497–503. [Google Scholar] [CrossRef]
- de Boer, J.G.; Yazawa, R.; Davidson, W.S.; Koop, B.F. Bursts and horizontal evolution of DNA transposons in the speciation of pseudotetraploid salmonids. BMC Genom. 2007, 8, 422. [Google Scholar] [CrossRef]
- Zhao, S.; Jiang, E.; Chen, S.; Gu, Y.; Shangguan, A.J.; Lv, T.; Luo, L.; Yu, Z. PiggyBac transposon vectors: The tools of the human gene encoding. Transl. Lung Cancer Res. 2016, 5, 120–125. [Google Scholar] [PubMed]
- Outa, J.O.; Kowenje, C.O.; Avenant-Oldewage, A.; Jirsa, F. Trace Elements in Crustaceans, Mollusks and Fish in the Kenyan Part of Lake Victoria: Bioaccumulation, Bioindication and Health Risk Analysis. Arch. Environ. Contam. Toxicol. 2020, 78, 589–603. [Google Scholar] [CrossRef]
- Chen, Q.; Luo, W.; Veach, R.A.; Hickman, A.B.; Wilson, M.H.; Dyda, F. Structural basis of seamless excision and specific targeting by piggyBac transposase. Nat. Commun. 2020, 11, 3446. [Google Scholar] [CrossRef]
- Elick, T.A.; Bauser, C.A.; Fraser, M.J. Excision of the piggyBac transposable element in vitro is a precise event that is enhanced by the expression of its encoded transposase. Genetica 1996, 98, 33–41. [Google Scholar] [CrossRef]
- Cary, L.C.; Goebel, M.; Corsaro, B.G.; Wang, H.G.; Rosen, E.; Fraser, M.J. Transposon mutagenesis of baculoviruses: Analysis of Trichoplusia ni transposon IFP2 insertions within the FP-locus of nuclear polyhedrosis viruses. Virology 1989, 172, 156–169. [Google Scholar] [CrossRef]
- Neafsey, D.E.; Palumbi, S.R. Genome size evolution in pufferfish: A comparative analysis of diodontid and tetraodontid pufferfish genomes. Genome Res. 2003, 13, 821–830. [Google Scholar] [CrossRef] [PubMed]
- Hinegardner, R. Celluler DNA contents and evolution of teleostean fishes. Am. Nat. 1972, 106, 436–447. [Google Scholar] [CrossRef]
- Brenner, S.; Elgar, G.; Sandford, R.; Macrae, A.; Venkatesh, B.; Aparicio, S. Characterization of the pufferfish (Fugu) genome as a compact model vertebrate genome. Nature 1993, 366, 265–268. [Google Scholar] [CrossRef] [PubMed]
- Lamatsch, D.K.; Steinlein, C.; Schmid, M.; Schartl, M. Noninvasive determination of genome size and ploidy level in fishes by flow cytometry: Detection of triploid Poecilia formosa. Cytometry 2000, 39, 91–95. [Google Scholar] [CrossRef]
- Santini, F.; Sorenson, L.; Alfaro, M.E. A new phylogeny of tetraodontiform fishes (Tetraodontiformes, Acanthomorpha) based on 22 loci. Mol. Phylogenet Evol. 2013, 69, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Ravi, V.; Venkatesh, B. Rapidly evolving fish genomes and teleost diversity. Curr. Opin. Genet. Dev. 2008, 18, 544–550. [Google Scholar] [CrossRef]
- Yong, Y.S.; Quek, L.S.; Lim, E.K.; Ngo, A. A case report of puffer fish poisoning in singapore. Case Rep. Med. 2013, 2013, 206971. [Google Scholar] [CrossRef]
- Shao, F.; Han, M.; Peng, Z. Evolution and diversity of transposable elements in fish genomes. Sci. Rep. 2019, 9, 15399. [Google Scholar] [CrossRef]
- Gao, B.; Shen, D.; Xue, S.; Chen, C.; Cui, H.; Song, C. The contribution of transposable elements to size variations between four teleost genomes. Mob. DNA 2016, 7, 4. [Google Scholar] [CrossRef]
- Brainerd, E.L.; Slutz, S.S.; Hall, E.K.; Phillis, R.W. Patterns of genome size evolution in tetraodontiform fishes. Evolution 2001, 55, 2363–2368. [Google Scholar]
- Yamada, K.D.; Tomii, K.; Katoh, K. Application of the MAFFT sequence alignment program to large data-reexamination of the usefulness of chained guide trees. Bioinformatics 2016, 32, 3246–3251. [Google Scholar] [CrossRef]
- Nguyen, L.T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef] [PubMed]
- Chen, N. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr. Protoc. Bioinform. 2004, 5, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 1980, 16, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Xie, Y.; Ma, J.; Luo, X.; Nie, P.; Zuo, Z.; Lahrmann, U.; Zhao, Q.; Zheng, Y.; Zhao, Y.; et al. IBS: An illustrator for the presentation and visualization of biological sequences. Bioinformatics 2015, 31, 3359–3361. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Craig, P.A.; Goodsell, D.; Bourne, P.E. BioEditor-simplifying macromolecular structure annotation. Bioinformatics 2003, 19, 897–898. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.; Devaraj, A.; Singh, M.; Jimenez Orgaz, A.; Chen, J.X.; Selbach, M.; Ivics, Z.; Izsvák, Z. Suicidal autointegration of sleeping beauty and piggyBac transposons in eukaryotic cells. PLoS Genet. 2014, 10, e1004103. [Google Scholar] [CrossRef]
- Keith, J.H.; Schaeper, C.A.; Fraser, T.S.; Fraser, M.J., Jr. Mutational analysis of highly conserved aspartate residues essential to the catalytic core of the piggyBac transposase. BMC Mol. Biol. 2008, 9, 73. [Google Scholar] [CrossRef]
- Mitra, R.; Fain-Thornton, J.; Craig, N.L. piggyBac can bypass DNA synthesis during cut and paste transposition. Embo J. 2008, 27, 1097–1109. [Google Scholar] [CrossRef] [PubMed]
- Dunemann, S.M.; Wasmuth, J.D. Horizontal transfer of a retrotransposon between parasitic nematodes and the common shrew. Mob. DNA 2019, 10, 24. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, A.; Sim, C.; Hong, Y.S.; Hogan, J.R.; Fraser, M.J.; Robertson, H.M.; Collins, F.H. Molecular evolutionary analysis of the widespread piggyBac transposon family and related “domesticated” sequences. Mol. Genet. Genom. 2003, 270, 173–180. [Google Scholar] [CrossRef]
- LeRiche, K.; Eagle, S.H.; Crease, T.J. Copy number of the transposon, Pokey, in rDNA is positively correlated with rDNA copy number in Daphnia obtuse [corrected]. PLoS ONE 2014, 9, e114773. [Google Scholar] [CrossRef] [PubMed]
- Guan, Z.; Shi, S.; Diaby, M.; Danley, P.; Ullah, N.; Puzakov, M.; Gao, B.; Song, C. Horizontal transfer of Buster transposons across multiple phyla and classes of animals. Mol. Phylogenet Evol. 2022, 173, 107506. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhang, L.; Meyer, E.; Matz, M.V. Characterization of a group of MITEs with unusual features from two coral genomes. PLoS ONE 2010, 5, e10700. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.; Wang, Y.; Diaby, M.; Zong, W.; Shen, D.; Wang, S.; Chen, C.; Wang, X.; Song, C. Evolution of pogo, a separate superfamily of IS630-Tc1-mariner transposons, revealing recurrent domestication events in vertebrates. Mob. DNA 2020, 11, 25. [Google Scholar] [CrossRef]
- Hayward, A.; Ghazal, A.; Andersson, G.; Andersson, L.; Jern, P. ZBED evolution: Repeated utilization of DNA transposons as regulators of diverse host functions. PLoS ONE 2013, 8, e59940. [Google Scholar] [CrossRef]
- Bouallègue, M.; Rouault, J.D.; Hua-Van, A.; Makni, M.; Capy, P. Molecular Evolution of piggyBac Superfamily: From Selfishness to Domestication. Genome Biol. Evol. 2017, 9, 323–339. [Google Scholar] [CrossRef]
- Li, X.; Guan, Z.; Wang, F.; Wang, Y.; Asare, E.; Shi, S.; Lin, Z.; Ji, T.; Gao, B.; Song, C. Evolution of piggyBac Transposons in Apoidea. Insects 2023, 14, 402. [Google Scholar] [CrossRef]
- Ding, S.; Wu, X.; Li, G.; Han, M.; Zhuang, Y.; Xu, T. Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell 2005, 122, 473–483. [Google Scholar] [CrossRef] [PubMed]
- Jia, W.; Asare, E.; Liu, T.; Zhang, P.; Wang, Y.; Wang, S.; Shen, D.; Miskey, C.; Gao, B.; Ivics, Z.; et al. Horizontal Transfer and Evolutionary Profiles of Two Tc1/DD34E Transposons (ZB and SB) in Vertebrates. Genes 2022, 13, 2239. [Google Scholar] [CrossRef] [PubMed]
- Yusa, K. piggyBac Transposon. Microbiol. Spectr. 2015, 3, Mdna3-0028-2014. [Google Scholar] [CrossRef] [PubMed]
Taxa Distribution | Order | Species | Number of Species Inquired | Number of Species Containing PB | Number of Types Containing FL PB | Number of Types Containing Intact PB Copies | Length of the FL PB a | Length of the Intact PB b | Transposase Length of the Intact PB | TIR Length of the Intact PB |
---|---|---|---|---|---|---|---|---|---|---|
Annelida | 7 | 6 | ||||||||
Crassiclitellata | Aporrectodea caliginosa | 28 | 14 | 1416–5657 | 2223–5657 | 507–1316 | 8–61 | |||
Eisenia fetida | 1 | - | 2167 | - | - | - | ||||
Lumbricus rubellus | 11 | 7 | 1705–4295 | 2318–4295 | 574–925 | 13–18 | ||||
Rhynchobdellida | Helobdella robusta | 6 | 4 | 2190–2724 | 2313–2724 | 535–587 | 12–15 | |||
Hirudinida | Hirudo medicinalis | 1 | - | 1483–1518 | - | - | - | |||
Terebellida | Paralvinella palmiformis | 1 | 1 | 2587 | 2587 | 503 | 13 | |||
Arthropoda | 30 | 13 | ||||||||
Araneae | Argiope aurantia | 16 | 3 | 1765–9505 | 2314–9505 | 544–577 | 13–18 | |||
Argiope trifasciata | 21 | 8 | 1291–7726 | 2125–7726 | 500–640 | 12–18 | ||||
Latrodectus hesperus | 7 | 1 | 1773–3135 | 2168 | 558 | 6 | ||||
Loxosceles reclusa | 2 | - | 1314–2035 | - | - | - | ||||
Parasteatoda tepidariorum | 5 | 1 | 1680–2903 | 2133 | 564 | 7–16 | ||||
Tetragnatha versicolor | 7 | 2 | 1673–5404 | 3717–5404 | 584–687 | 9–14 | ||||
Balanomorpha | Amphibalanus amphitrite | 5 | 3 | 1965–4732 | 2708–4732 | 506–645 | 13–18 | |||
Decapoda | Callinectes sapidus | 4 | 2 | 2177–4527 | 2763–3434 | 554–629 | 13–24 | |||
Diplostraca | Daphnia obtusa | 2 | 2 | 5295–6986 | 5295–6986 | 506–714 | 12–14 | |||
Daphnia pulex | 1 | - | 2607–4619 | - | - | - | ||||
Daphnia pulicaria | 2 | 2 | 4407–8943 | 4407–8943 | 554–921 | 14–16 | ||||
Sarcoptiformes | Archegozetes longisetosus | 2 | 2 | 2348–2362 | 2348–2359 | 523–567 | 7–11 | |||
Siphonostomatoida | Lepeophtheirus salmonis | 2 | - | 1698–1739 | - | - | - | |||
Chordata | 10 | 6 | ||||||||
Tetraodontiformes | Mola mola | 1 | - | 2335–2350 | - | - | - | |||
Pao palembangensis | 2 | 1 | 1321–3029 | 3029 | 548 | 14 | ||||
Takifugu bimaculatus | 4 | 2 | 1234–3869 | 3386–3869 | 549–562 | 14–35 | ||||
Takifugu flavidus | 3 | - | 1966–3373 | - | - | - | ||||
Takifugu ocellatus | 2 | - | 1384–2056 | - | - | - | ||||
Takifugu rubripes | 3 | 1 | 1967–2750 | 2750 | 558 | 14 | ||||
Echinodermata | 6 | 2 | ||||||||
Temnopleuroida | Lytechinus pictus | 1 | 1 | 4650 | 4650 | 560 | 16 | |||
Lytechinus variegatus | 2 | 2 | 4777–5974 | 4777–5974 | 559–614 | 5–16 | ||||
Mollusca | 10 | 8 | ||||||||
Architaenioglossa | Biomphalaria glabrata | 9 | 9 | 2226–3072 | 2226–3072 | 505–675 | 5–17 | |||
Chitonida | Acanthopleura granulata | 2 | 2 | 2982–3061 | 2982–3061 | 522–703 | 15 | |||
Mytilida | Mytilisepta virgata | 6 | 1 | 2433–5661 | 4089–4133 | 543 | 16 | |||
Ostreida | Crassostrea gigas | 4 | 2 | 2348–6085 | 2348–2590 | 507–595 | 14–16 | |||
Crassostrea virginica | 6 | 1 | 3850–6572 | 5268–5289 | 523–586 | 9 | ||||
Ostrea edulis | 4 | 3 | 2347–3184 | 2347–2678 | 507–638 | 12–14 | ||||
Pectinida | Argopecten irradians irradians | 4 | 1 | 3130–4412 | 4047–4053 | 590–626 | 15 | |||
Pinctada fucata | 1 | - | 5595 | - | - | - | ||||
Platyhelminthes | 6 | 2 | ||||||||
Tricladida | Girardia tigrina | 21 | 1 | 1265–3478 | 2624–2627 | 504–525 | 13 | |||
Schmidtea mediterranea | 13 | 6 | 2126–3184 | 2359–3184 | 509–652 | 13–17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, M.; Addy, G.A.; Yang, N.; Asare, E.; Wu, H.; Saleh, A.A.; Shi, S.; Gao, B.; Song, C. PiggyBac Transposon Mining in the Small Genomes of Animals. Biology 2024, 13, 24. https://doi.org/10.3390/biology13010024
Guo M, Addy GA, Yang N, Asare E, Wu H, Saleh AA, Shi S, Gao B, Song C. PiggyBac Transposon Mining in the Small Genomes of Animals. Biology. 2024; 13(1):24. https://doi.org/10.3390/biology13010024
Chicago/Turabian StyleGuo, Mengke, George A. Addy, Naisu Yang, Emmanuel Asare, Han Wu, Ahmed A. Saleh, Shasha Shi, Bo Gao, and Chengyi Song. 2024. "PiggyBac Transposon Mining in the Small Genomes of Animals" Biology 13, no. 1: 24. https://doi.org/10.3390/biology13010024
APA StyleGuo, M., Addy, G. A., Yang, N., Asare, E., Wu, H., Saleh, A. A., Shi, S., Gao, B., & Song, C. (2024). PiggyBac Transposon Mining in the Small Genomes of Animals. Biology, 13(1), 24. https://doi.org/10.3390/biology13010024