Quantitive Assessment of Gustatory Function and Its Association with Demographics, and Systemic Morbidity
Abstract
:Simple Summary
Abstract
1. Introduction
- To describe the demographic and medical profiles of the patients attending the Orofacial Chemosensory Center clinic examined for taste disturbances.
- To analyze the associations of gustatory function as measured by validated taste strips with demographics and co-morbidities, and thus identify specific patient demographics and co-morbidities that are associated with quantitative gustatory dysfunction.
2. Materials and Methods
2.1. Study Design
2.2. Ethical Approval
2.3. Eligibility Criteria
2.4. Collected Data and Definition of the Variables
2.4.1. Dependent Variable: Taste Scores
2.4.2. Independent Variables
- Demographics and smoking status: age-quantitative continuous, sex-male/female, and current smoker: yes/no.
- History of head and/or neck trauma: Categorized into two types—minor trauma, e.g., injuries resulting from invasive or prolonged dental procedures, and major trauma including falls, road traffic accidents, and altercations. The history of the surgical procedure was recorded.
- Local conditions: xerostomia, hyposalivation, and burning mouth syndrome (BMS).
- Zinc, B-12, and iron deficiencies.
- Exposures: medications, toxins, chemotherapy, and radiation.
- Systemic diseases: yes/no.
2.5. Statistical Methods
3. Results
3.1. Demographics and Clinical Parameters of the Study Population
3.2. Total and Specific Taste Scores (Sweet, Salty, Sour, Bitter) of the Study Population
3.3. Univariate Analyses of the Associations of Demographics and Co-Morbidities with the Specific Taste and the Total Taste Scores
- Age had a statistically significant slight negative correlation with sour and bitter special taste scores as well as with the total taste score since the correlation coefficients were neglectable (<0.3).
- Men, patients with a history of major trauma, and current chemotherapy treatment were independently associated with lower (i.e., worse) taste scores in all specialized as well as total taste scores. Minor trauma was not associated with worse taste scores.
- Patients with zinc deficiency exhibited worse sweet, salty, and total taste scores compared with those without the deficiency.
- BMS was associated with higher salty and total taste scores.
- S/P upper respiratory tract infection (S/P URTI) was associated with higher taste scores in all specialized as well as total taste scores.
3.4. Benjamini–Hochberg (BH) Procedure to Decrease the False Detection Rate (FDR)
3.5. Multivariate Analysis of Specific and Total Taste Scores with Statistically Significant Independent Variables
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Doty, R.; Postuma, R.; Devere, R. Taste and Smell Disorders in Clinical Neurology; American Academy of Neurology: Minneapolis, MN, USA, 2012. [Google Scholar]
- Hawkes, C.; Doty, R. Smell and Taste Disorders; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Soter, A.; Kim, J.; Jackman, A.; Tourbier, I.; Kaul, A.; Doty, R.L. Accuracy of self-report in detecting taste dysfunction. Laryngoscope 2008, 118, 611–617. [Google Scholar] [CrossRef]
- Park, J.M.; Kim, M.G.; Jung, J.; Kim, S.S.; Jung, A.R.; Kim, S.H.; Yeo, S.G. Effect of Age and Severity of Facial Palsy on Taste Thresholds in Bell’s Palsy Patients. J. Audiol. Otol. 2017, 21, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Maremmani, C.; Rossi, G.; Tambasco, N.; Fattori, B.; Pieroni, A.; Ramat, S.; Napolitano, A.; Vanni, P.; Serra, P.; Piersanti, P.; et al. The validity and reliability of the Italian Olfactory Identification Test (IOIT) in healthy subjects and in Parkinson’s disease patients. Park. Relat. Disord. 2012, 18, 788–793. [Google Scholar] [CrossRef]
- Reiter, E.R.; DiNardo, L.J.; Costanzo, R.M. Toxic effects on gustatory function. Adv. Otorhinolaryngol. 2006, 63, 265–277. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.C.; Hwang, S.H.; Rison, R.; Chang, G.Y. Central pathway of taste: Clinical and MRI study. Eur. Neurol. 1998, 39, 200–203. [Google Scholar] [CrossRef] [PubMed]
- Welge-Lussen, A.; Dorig, P.; Wolfensberger, M.; Krone, F.; Hummel, T. A study about the frequency of taste disorders. J. Neurol. 2011, 258, 386–392. [Google Scholar] [CrossRef]
- Hernandez, A.K.; Walke, A.; Haehner, A.; Cuevas, M.; Hummel, T. Correlations between gustatory, trigeminal, and olfactory functions and nasal airflow. Eur. Arch. Otorhinolaryngol. 2023, 280, 4101–4109. [Google Scholar] [CrossRef]
- Molnar, A.; Maihoub, S.; Mavrogeni, P.; Krasznai, M.; Tamas, L.; Kraxner, H. The Correlation between the Results of the Sniffin’ Sticks Test, Demographic Data, and Questionnaire of Olfactory Disorders in a Hungarian Population after a SARS-CoV-2 Infection. J. Clin. Med. 2023, 12, 1041. [Google Scholar] [CrossRef]
- Bromley, S.M. Smell and taste disorders: A primary care approach. Am. Fam. Physician 2000, 61, 427–436. [Google Scholar]
- Deems, D.A.; Yen, D.M.; Kreshak, A.; Doty, R.L. Spontaneous resolution of dysgeusia. Arch. Otolaryngol. Head. Neck Surg. 1996, 122, 961–963. [Google Scholar] [CrossRef]
- Budala, D.G.; Martu, M.A.; Maftei, G.A.; Diaconu-Popa, D.A.; Danila, V.; Luchian, I. The Role of Natural Compounds in Optimizing Contemporary Dental Treatment-Current Status and Future Trends. J. Funct. Biomater. 2023, 14, 273. [Google Scholar] [CrossRef]
- HL, M. Magnitude estimations of the course of gustatory adaptation. Percept. Psychophys. 1968, 4, 193–196. [Google Scholar]
- Norgaard, H.J.; Fjaeldstad, A.W. Differences in Correlation between Subjective and Measured Olfactory and Gustatory Dysfunctions after Initial Ear, Nose and Throat Evaluation. Int. Arch. Otorhinolaryngol. 2021, 25, e563–e569. [Google Scholar] [CrossRef] [PubMed]
- Park, S.Y.; Kim, K.S.; Min, H.J. Gustatory dysfunction perceptions versus objective gustatory dysfunction among older adults. BMC Geriatr. 2023, 23, 56. [Google Scholar] [CrossRef] [PubMed]
- Weiffenbach, J.M.; Baum, B.J.; Burghauser, R. Taste thresholds: Quality specific variation with human aging. J. Gerontol. 1982, 37, 372–377. [Google Scholar] [CrossRef] [PubMed]
- Burghart Messtechnik GmbH. Burghart Taste Strips. Available online: https://www.smelltest.eu/en/product/burghart-taste-strips/ (accessed on 8 July 2023).
- Mueller, C.; Kallert, S.; Renner, B.; Stiassny, K.; Temmel, A.F.; Hummel, T.; Kobal, G. Quantitative assessment of gustatory function in a clinical context using impregnated “taste strips”. Rhinology 2003, 41, 2–6. [Google Scholar]
- Mistretta, C.M. Aging effects on anatomy and neurophysiology of taste and smell. Gerodontology 1984, 3, 131–136. [Google Scholar] [CrossRef]
- Barragan, R.; Coltell, O.; Portoles, O.; Asensio, E.M.; Sorli, J.V.; Ortega-Azorin, C.; Gonzalez, J.I.; Saiz, C.; Fernandez-Carrion, R.; Ordovas, J.M.; et al. Bitter, Sweet, Salty, Sour and Umami Taste Perception Decreases with Age: Sex-Specific Analysis, Modulation by Genetic Variants and Taste-Preference Associations in 18 to 80 Year-Old Subjects. Nutrients 2018, 10, 1539. [Google Scholar] [CrossRef]
- Braun, T.; Doerr, J.M.; Peters, L.; Viard, M.; Reuter, I.; Prosiegel, M.; Weber, S.; Yeniguen, M.; Tschernatsch, M.; Gerriets, T.; et al. Age-related changes in oral sensitivity, taste and smell. Sci. Rep. 2022, 12, 1533. [Google Scholar] [CrossRef]
- Boyce, J.M.; Shone, G.R. Effects of ageing on smell and taste. Postgrad. Med. J. 2006, 82, 239–241. [Google Scholar]
- Mavi, A.; Ceyhan, O. Bitter taste thresholds, numbers and diameters of circumvallate papillae and their relation with age in a Turkish population. Gerodontology 1999, 16, 119–122. [Google Scholar] [CrossRef]
- Bartoshuk, L.M. Taste. Robust across the age span? Ann. N. Y. Acad. Sci. 1989, 561, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Ren, W.; Liu, Q.; Zhang, X.; Yu, Y. Age-related taste cell generation in circumvallate papillae organoids via regulation of multiple signaling pathways. Exp. Cell Res. 2020, 394, 112150. [Google Scholar] [CrossRef] [PubMed]
- Doty, R.L. Age-Related Deficits in Taste and Smell. Otolaryngol. Clin. N. Am. 2018, 51, 815–825. [Google Scholar] [CrossRef] [PubMed]
- Pavlidis, P.; Gouveris, H.; Anogeianaki, A.; Koutsonikolas, D.; Anogianakis, G.; Kekes, G. Age-related changes in electrogustometry thresholds, tongue tip vascularization, density, and form of the fungiform papillae in humans. Chem. Senses 2013, 38, 35–43. [Google Scholar] [CrossRef]
- Ogawa, T.; Annear, M.J.; Ikebe, K.; Maeda, Y. Taste-related sensations in old age. J. Oral. Rehabil. 2017, 44, 626–635. [Google Scholar] [CrossRef]
- Sato, K.; Endo, S.; Tomita, H. Sensitivity of three loci on the tongue and soft palate to four basic tastes in smokers and non-smokers. Acta Otolaryngol. Suppl. 2002, 122, 74–82. [Google Scholar] [CrossRef]
- Doty, R. Handbook of Olfaction and Gustation, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Martin, L.J.; Sollars, S.I. Contributory role of sex differences in the variations of gustatory function. J. Neurosci. Res. 2017, 95, 594–603. [Google Scholar] [CrossRef]
- Cecchini, M.P.; Cardobi, N.; Sbarbati, A.; Monaco, S.; Tinazzi, M.; Tamburin, S. Post-traumatic taste disorders: A case series. J. Neurol. 2018, 265, 836–844. [Google Scholar] [CrossRef]
- Fark, T.; Hummel, C.; Hahner, A.; Nin, T.; Hummel, T. Characteristics of taste disorders. Eur. Arch. Otorhinolaryngol. 2013, 270, 1855–1860. [Google Scholar] [CrossRef]
- Schechter, P.J.; Henkin, R.I. Abnormalities of taste and smell after head trauma. J. Neurol. Neurosurg. Psychiatry 1974, 37, 802–810. [Google Scholar] [CrossRef]
- Wrobel, B.B.; Leopold, D.A. Clinical assessment of patients with smell and taste disorders. Otolaryngol. Clin. N. Am. 2004, 37, 1127–1142. [Google Scholar] [CrossRef] [PubMed]
- Deems, D.A.; Doty, R.L.; Settle, R.G.; Moore-Gillon, V.; Shaman, P.; Mester, A.F.; Kimmelman, C.P.; Brightman, V.J.; Snow, J.B., Jr. Smell and taste disorders, a study of 750 patients from the University of Pennsylvania Smell and Taste Center. Arch. Otolaryngol. Head. Neck Surg. 1991, 117, 519–528. [Google Scholar] [CrossRef] [PubMed]
- Stankevice, D.; Fjaeldstad, A.W.; Ovesen, T. Isolated taste disorders in patients referred to a flavor clinic with taste and smell loss. Brain Behav. 2021, 11, e02071. [Google Scholar] [CrossRef] [PubMed]
- Kuba, S.; Fujiyama, R.; Yamanouchi, K.; Morita, M.; Sakimura, C.; Hatachi, T.; Matsumoto, M.; Yano, H.; Takatsuki, M.; Hayashida, N.; et al. Awareness of dysgeusia and gustatory tests in patients undergoing chemotherapy for breast cancer. Support. Care Cancer 2018, 26, 3883–3889. [Google Scholar] [CrossRef]
- Zabernigg, A.; Gamper, E.M.; Giesinger, J.M.; Rumpold, G.; Kemmler, G.; Gattringer, K.; Sperner-Unterweger, B.; Holzner, B. Taste alterations in cancer patients receiving chemotherapy: A neglected side effect? Oncologist 2010, 15, 913–920. [Google Scholar] [CrossRef]
- Larsen, A.K.; Thomsen, C.; Sanden, M.; Skadhauge, L.B.; Anker, C.B.; Mortensen, M.N.; Bredie, W.L.P. Taste alterations and oral discomfort in patients receiving chemotherapy. Support. Care Cancer 2021, 29, 7431–7439. [Google Scholar] [CrossRef]
- Yagi, T.; Asakawa, A.; Ueda, H.; Ikeda, S.; Miyawaki, S.; Inui, A. The role of zinc in the treatment of taste disorders. Recent. Pat. Food Nutr. Agric. 2013, 5, 44–51. [Google Scholar] [CrossRef]
- Risso, D.; Drayna, D.; Morini, G. Alteration, Reduction and Taste Loss: Main Causes and Potential Implications on Dietary Habits. Nutrients 2020, 12, 3284. [Google Scholar] [CrossRef]
- Matsugasumi, M.; Hashimoto, Y.; Okada, H.; Tanaka, M.; Kimura, T.; Kitagawa, N.; Tanaka, Y.; Fukuda, Y.; Sakai, R.; Yamazaki, M.; et al. The Association Between Taste Impairment and Serum Zinc Concentration in Adult Patients with Type 2 Diabetes. Can. J. Diabetes 2018, 42, 520–524. [Google Scholar] [CrossRef]
- Pisano, M.; Hilas, O. Zinc and Taste Disturbances in Older Adults: A Review of the Literature. Consult. Pharm. 2016, 31, 267–270. [Google Scholar] [CrossRef] [PubMed]
- Noh, H.; Paik, H.Y.; Kim, J.; Chung, J. Salty taste acuity is affected by the joint action of alphaENaC A663T gene polymorphism and available zinc intake in young women. Nutrients 2013, 5, 4950–4963. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, K.; Sato, M. Inhibition of taste nerve responses to sugars and amino acids by cupric and zinc ions in mice. Chem. Senses 1986, 11, 79–88. [Google Scholar] [CrossRef]
- Stewart-Knox, B.J.; Simpson, E.E.; Parr, H.; Rae, G.; Polito, A.; Intorre, F.; Andriollo Sanchez, M.; Meunier, N.; O’Connor, J.M.; Maiani, G.; et al. Taste acuity in response to zinc supplementation in older Europeans. Br. J. Nutr. 2008, 99, 129–136. [Google Scholar] [CrossRef]
- Yamagata, T.; Nakamura, Y.; Yamagata, Y.; Nakanishi, M.; Matsunaga, K.; Nakanishi, H.; Nishimoto, T.; Minakata, Y.; Mune, M.; Yukawa, S. The pilot trial of the prevention of the increase in electrical taste thresholds by zinc containing fluid infusion during chemotherapy to treat primary lung cancer. J. Exp. Clin. Cancer Res. 2003, 22, 557–563. [Google Scholar]
- Kumbargere Nagraj, S.; George, R.P.; Shetty, N.; Levenson, D.; Ferraiolo, D.M.; Shrestha, A. Interventions for managing taste disturbances. Cochrane Database Syst. Rev. 2017, 12, CD010470. [Google Scholar] [CrossRef]
- Park, Y.J.; Kho, H. S. Relationship between subjective taste sensations and taste strip test in patients with taste disorders with and without burning mouth syndrome. J. Dent. Sci. 2022, 17, 1528–1537. [Google Scholar] [CrossRef]
- Klasser, G.D.; Grushka, M.; Su, N. Burning Mouth Syndrome. Oral. Maxillofac. Surg. Clin. N. Am. 2016, 28, 381–396. [Google Scholar] [CrossRef]
- Su, N.; Poon, R.; Liu, C.; Dewan, C.; Darling, M.; Grushka, M. Pain reduction in burning mouth syndrome (BMS) may be associated with selective improvement of taste: A retrospective study. Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. 2020, 129, 461–467. [Google Scholar] [CrossRef]
- Solomon, S.M.; Bataiosu, M.; Popescu, D.M.; Rauten, A.M.; Gheorghe, D.N.; Petrescu, R.A.; Maftei, G.A.; Maglaviceanu, C.F. Biochemical Assesment of Salivary Parameters in Young Patients with Dental Lesions. Rev. Chim. 2019, 70, 4095–4097. [Google Scholar] [CrossRef]
- Sciuca, A.M.; Toader, M.P.; Stelea, C.G.; Maftei, G.A.; Ciurcanu, O.E.; Stefanescu, O.M.; Onofrei, B.A.; Popa, C. Desquamative Gingivitis in the Context of Autoimmune Bullous Dermatoses and Lichen Planus-Challenges in the Diagnosis and Treatment. Diagnostics 2022, 12, 1754. [Google Scholar] [CrossRef] [PubMed]
- Filioreanu, A.M.; Popa, C.; Maftei, G.A.; Parlatescu, I.; Nicolae, C.L.; Popescu, E. Migratory stomatitis–case presentation. Rom. J. Oral. Rehabil. 2018, 10, 54–59. [Google Scholar]
- Henkin, R.I.; Larson, A.L.; Powell, R.D. Hypogeusia, dysgeusia, hyposmia, and dysosmia following influenza-like infection. Ann. Otol. Rhinol. Laryngol. 1975, 84, 672–682. [Google Scholar] [CrossRef] [PubMed]
- Cabrera, C.I.; Hicks, K.; Rodriguez, K.; Gerka Stuyt, J.A.; McComsey, G.A.; D’Anza, B. Comparison of the incidence of smell and taste disorders between influenza and COVID-19. Am. J. Otolaryngol. 2023, 45, 1041. [Google Scholar] [CrossRef] [PubMed]
- Mastrangelo, A.; Bonato, M.; Cinque, P. Smell and taste disorders in COVID-19: From pathogenesis to clinical features and outcomes. Neurosci. Lett. 2021, 748, 135694. [Google Scholar] [CrossRef] [PubMed]
- Kachru, D.N.; Tandon, S.K.; Misra, U.K.; Nag, D. Occupational lead poisoning among silver jewellery workers. Indian. J. Med. Sci. 1989, 43, 89–91. [Google Scholar]
- Zheng, Y.; Shen, Y.; Zhu, Z.; Hu, H. Associations between Cadmium Exposure and Taste and Smell Dysfunction: Results from the National Health and Nutrition Examination Survey (NHANES), 2011–2014. Int. J. Environ. Res. Public Health 2020, 17, 943. [Google Scholar] [CrossRef]
- Gobba, F. Sensory perception: An overlooked target of occupational exposure to metals. Bioinorg. Chem. Appl. 2003, 1, 199–214. [Google Scholar] [CrossRef]
- Brion, M.; de Timary, P.; Vander Stappen, C.; Guettat, L.; Lecomte, B.; Rombaux, P.; Maurage, P. Chemosensory Dysfunction in Alcohol-Related Disorders: A Joint Exploration of Olfaction and Taste. Chem. Senses 2015, 40, 605–608. [Google Scholar] [CrossRef]
Variable | Mean ± Standard Deviation | Median | IQR | Range |
---|---|---|---|---|
Age (years) | 53.56 ± 19.27 | 56 | 38–68 | 18–98 |
Variable | Frequency | Percent | ||
Sex | Men | 135 | 49.6 | |
Women | 137 | 50.4 | ||
Smoking | 42 | 15.4 | ||
Trauma | Major trauma | 48 | 17.6 | |
Minor trauma | 16 | 5.9 | ||
S/P Status post surgical procedure | 22 | 8.1 | ||
Xerostomia | 37 | 13.6 | ||
Hyposalivation | 28 | 10.3 | ||
Burning mouth syndrome | 16 | 5.9 | ||
Vitamins/nutrient deficiencies | Zinc deficiency | 5 | 1.8 | |
B12 deficiency | 3 | 1.1 | ||
Iron deficiency | 1 | 0.4 | ||
Exposures | Medication-related disturbance disorder | 30 | 11.1 | |
Exposure to toxic chemicals | 3 | 1.1 | ||
Current chemotherapy treatment | 5 | 1.8 | ||
Past chemotherapy treatment | 5 | 1.8 | ||
Radiotherapy | 7 | 2.6 | ||
Current oncologic disease | 3 | 1.1 | ||
Past oncologic disease | 15 | 5.5 | ||
Hypertension | 43 | 15.8 | ||
Diabetes mellitus | 37 | 13.6 | ||
Status/post (S/P) Upper respiratory infection (URTI) | 37 | 13.6 | ||
Gastrointestinal disease | 35 | 12.9 | ||
Cardiovascular disease | 27 | 9.9 | ||
Hypothyroidism | 26 | 9.6 | ||
Hyperlipidemia | 25 | 9.2 | ||
Pulmonary disease | 24 | 8.8 | ||
Behavior and psychiatric disorders | 24 | 8.8 | ||
Allergic reaction | 23 | 8.5 | ||
Neurologic disease | 23 | 8.5 | ||
Autoimmune disease | 21 | 7.7 | ||
Osteoporosis | 10 | 3.7 | ||
Red blood cell disease | 10 | 3.7 | ||
Kidney disease | 8 | 2.9 | ||
Fibromyalgia | 8 | 2.9 | ||
Lichen planus | 7 | 2.6 | ||
Obesity (body mass index (BMI) > 30) | 5 | 1.8 | ||
Sjögren’s syndrome | 4 | 1.5 | ||
Acquired bleeding and hypercoagulable disorder | 4 | 1.5 | ||
Liver disease | 2 | 0.7 | ||
Deafness | 1 | 0.4 | ||
Other | 15 | 5.5 |
Sweet Score (Mean ± SD) | Sour Score (Mean ± SD) | Salty Score (Mean ± SD) | Bitter Score (Mean ± SD) | Total Taste Score (Mean ± SD) | ||
---|---|---|---|---|---|---|
Age | Correlation Coefficient | −0.106 | −0.141 | −0.074 | −0.139 | −0.156 |
p-value * | 0.099 | 0.027 | 0.251 | 0.030 | 0.013 | |
Sex | Women | 2.74 ± 1.17 | 2.23 ± 1.04 | 2.38 ± 1.22 | 2.66 ± 1.25 | 9.98 ± 3.59 |
Men | 2.31 ± 1.39 | 1.60 ± 1.04 | 1.79 ± 1.27 | 1.51 ± 1.36 | 7.07 ± 3.93 | |
p-value ** | 0.009 | <0.001 | <0.001 | <0.001 | <0.001 | |
Hyposalivation | No | 2.59 ± 1.28 | 1.93 ± 1.11 | 2.10 ± 1.27 | 2.08 ± 1.44 | 8.62 ± 4.06 |
Yes | 2.03 ± 1.4 | 1.77 ± 0.89 | 2.0 ± 1.35 | 2.11 ± 1.31 | 7.85 ± 3.76 | |
p-value ** | 0.038 | 0.473 | 0.693 | 0.936 | 0.351 | |
BMS | No | 2.52 ± 1.32 | 1.89 ± 1.09 | 2.03 ± 1.29 | 2.05 ± 1.439 | 8.39 ± 4.09 |
Yes | 2.93 ± 0.79 | 2.33 ± 0.97 | 2.93 ± 0.79 | 2.6 ± 1.12 | 10.68 ± 1.99 | |
p-value ** | 0.216 | 0.130 | 0.009 | 0.153 | 0.027 | |
Major trauma | No | 2.66 ± 1.22 | 2.02 ± 1.06 | 2.20 ± 1.26 | 2.27 ± 1.37 | 9.06 ± 3.81 |
Yes | 1.87 ± 1.47 | 1.44 ± 1.07 | 1.55 ± 1.25 | 1.20 ± 1.35 | 6.01 ± 4.15 | |
p-value ** | <0.001 | 0.001 | 0.002 | <0.001 | <0.001 | |
Minor trauma | No | 2.55 ± 1.30 | 1.91 ± 1.10 | 2.11 ± 1.29 | 2.07 ± 1.44 | 8.57 ± 4.06 |
Yes | 2.03 ± 1.21 | 2.00 ± 0.93 | 1.69 ± 1.10 | 2.30 ± 1.03 | 7.88 ± 3.61 | |
p-value ** | 0.164 | 0.787 | 0.249 | 0.573 | 0.55 | |
Zinc deficiency | No | 2.55 ± 1.29 | 1.93 ± 1.09 | 2.11 ± 1.27 | 2.10 ± 1.42 | 8.62 ± 4.02 |
Yes | 1.20 ± 0.83 | 1.20 ± 0.83 | 0.80 ± 0.83 | 1.20 ± 1.09 | 4.40 ± 2.96 | |
p-value ** | 0.021 | 0.136 | 0.023 | 0.159 | 0.02 | |
Exposure to toxic chemicals | No | 2.53 ± 1.29 | 1.93 ± 1.08 | 2.11 ± 1.27 | 2.10 ± 1.42 | 8.58 ± 4.02 |
Yes | 2.00 ± 2.00 | 1.00 ± 1.00 | 0.33 ± 0.57 | 1.00 ± 1.00 | 4.33 ± 3.21 | |
p-value ** | 0.481 | 0.142 | 0.017 | 0.183 | 0.069 | |
S/P URTI | No | 2.45 ± 1.32 | 1.86 ± 1.10 | 1.99 ± 1.28 | 2.02 ± 1.41 | 8.24 ± 4.06 |
Yes | 3.03 ± 1.04 | 2.32 ± 0.94 | 2.77 ± 1.05 | 2.54 ± 1.43 | 10.56 ± 3.16 | |
p-value ** | 0.021 | 0.028 | 0.001 | 0.0055 | 0.002 | |
Gastrointestinal disease (GI) | No | 3.49 ± 1.32 | 1.91 ± 1.09 | 2.02 ± 1.28 | 2.03 ± 1.44 | 8.06 ± 4.09 |
Yes | 2.74 ± 1.18 | 1.93 ± 1.10 | 2.53 ± 1.19 | 2.45 ± 1.22 | 9.64 ± 3.47 | |
p-value ** | 0.313 | 0.913 | 0.035 | 0.115 | 0.085 | |
Kidney disease | No | 2.52 ± 1.31 | 1.92 ± 1.08 | 2.08 ± 1.27 | 2.12 ± 1.42 | 8.55 ± 4.06 |
Yes | 2.71 ± 1.11 | 1.85 ± 1.34 | 2.28 ± 1.49 | 1.00 ± 1.00 | 8.00 ± 3.02 | |
p-value ** | 0.703 | 0.877 | 0.687 | 0.04 | 0.702 | |
Obesity | No | 2.53 ± 1.29 | 1.92 ± 1.07 | 2.09 ± 1.28 | 2.11 ± 1.42 | 8.55 ± 4.02 |
Yes | 2.33 ± 2.08 | 1.33 ± 2.30 | 2.00 ± 1.73 | 0.33 ± 0.57 | 7.50 ± 5.25 | |
p-value ** | 0.795 | 0.35 | 0.901 | 0.031 | 0.605 | |
Autoimmune disease | No | 2.58 ± 1.27 | 1.93 ± 1.07 | 2.10 ± 1.29 | 2.10 ± 1.44 | 8.61 ± 4.04 |
Yes | 1.82 ± 1.50 | 1.70 ± 1.26 | 1.88 ± 1.16 | 1.88 ± 1.11 | 7.65 ± 3.84 | |
p-value ** | 0.021 | 0.402 | 0.486 | 0.534 | 0.306 | |
Current chemotherapy treatment | No | 2.55 ± 1.29 | 1.94 ± 1.08 | 2.12 ± 1.27 | 2.12 ± 1.41 | 8.64 ± 3.99 |
Yes | 1.4 ± 1.14 | 0.8 ± 0.83 | 0.6 ± 0.54 | 0.4 ± 0.54 | 3.2 ± 2.28 | |
p-value ** | 0.05 | 0.02 | 0.008 | 0.007 | 0.003 |
Taste Score | Variable | Corrected p-Value | i | p Value Level for FDR | Number of Comparisons | Crit | Test |
---|---|---|---|---|---|---|---|
Total taste score | Kidney disease | 0.702 | 14 | 0.05 | 14 | 0.05 | Not Significant |
obesity | 0.605 | 13 | 0.05 | 14 | 0.046429 | Not Significant | |
Minor trauma | 0.55 | 12 | 0.05 | 14 | 0.042857 | Not Significant | |
Hyposalivation | 0.351 | 11 | 0.05 | 14 | 0.039286 | Not Significant | |
Autoimmune disease | 0.306 | 10 | 0.05 | 14 | 0.035714 | Not Significant | |
GI | 0.085 | 9 | 0.05 | 14 | 0.032143 | Not Significant | |
Exposure to toxins | 0.069 | 8 | 0.05 | 14 | 0.028571 | Not Significant | |
BMS | 0.027 | 7 | 0.05 | 14 | 0.025 | Not Significant | |
Zinc deficiency | 0.02 | 6 | 0.05 | 14 | 0.021429 | Significant | |
Age | 0.013 | 5 | 0.05 | 14 | 0.017857 | Significant | |
Current chemotherapy | 0.003 | 4 | 0.05 | 14 | 0.014286 | Significant | |
S/P URTI | 0.002 | 3 | 0.05 | 14 | 0.010714 | Significant | |
Major trauma | 0 | 2 | 0.05 | 14 | 0.007143 | Significant | |
Sex | 0 | 1 | 0.05 | 14 | 0.003571 | Significant | |
Sweet score | Age | 0.909 | 14 | 0.05 | 14 | 0.05 | Not Significant |
obesity | 0.795 | 13 | 0.05 | 14 | 0.046429 | Not Significant | |
Kidney disease | 0.703 | 12 | 0.05 | 14 | 0.042857 | Not Significant | |
Exposure to toxins | 0.481 | 11 | 0.05 | 14 | 0.039286 | Not Significant | |
GI | 0.313 | 10 | 0.05 | 14 | 0.035714 | Not Significant | |
BMS | 0.216 | 9 | 0.05 | 14 | 0.032143 | Not Significant | |
Minor trauma | 0.164 | 8 | 0.05 | 14 | 0.028571 | Not Significant | |
Current chemotherapy | 0.05 | 7 | 0.05 | 14 | 0.025 | Not Significant | |
Hyposalivation | 0.038 | 6 | 0.05 | 14 | 0.021429 | Not Significant | |
Autoimmune disease | 0.021 | 5 | 0.05 | 14 | 0.017857 | Not Significant | |
S/P URTI | 0.021 | 4 | 0.05 | 14 | 0.014286 | Not Significant | |
Zinc deficiency | 0.021 | 3 | 0.05 | 14 | 0.010714 | Not Significant | |
Sex | 0.009 | 2 | 0.05 | 14 | 0.007143 | Not Significant | |
Major trauma | 0.001 | 1 | 0.05 | 14 | 0.003571 | Significant | |
Sour score | GI | 0.913 | 14 | 0.05 | 14 | 0.05 | Not Significant |
Kidney disease | 0.877 | 13 | 0.05 | 14 | 0.046429 | Not Significant | |
Minor trauma | 0.787 | 12 | 0.05 | 14 | 0.042857 | Not Significant | |
Hyposalivation | 0.473 | 11 | 0.05 | 14 | 0.039286 | Not Significant | |
Autoimmune disease | 0.402 | 10 | 0.05 | 14 | 0.035714 | Not Significant | |
obesity | 0.35 | 9 | 0.05 | 14 | 0.032143 | Not Significant | |
Exposure to toxins | 0.142 | 8 | 0.05 | 14 | 0.028571 | Not Significant | |
Zinc deficiency | 0.136 | 7 | 0.05 | 14 | 0.025 | Not Significant | |
BMS | 0.13 | 6 | 0.05 | 14 | 0.021429 | Not Significant | |
S/P URTI | 0.028 | 5 | 0.05 | 14 | 0.017857 | Not Significant | |
Age | 0.027 | 4 | 0.05 | 14 | 0.014286 | Not Significant | |
Current chemotherapy | 0.02 | 3 | 0.05 | 14 | 0.010714 | Not Significant | |
Major trauma | 0.002 | 2 | 0.05 | 14 | 0.007143 | Significant | |
Sex | 0 | 1 | 0.05 | 14 | 0.003571 | Significant | |
Salty score | obesity | 0.901 | 14 | 0.05 | 14 | 0.05 | Not Significant |
Hyposalivation | 0.693 | 13 | 0.05 | 14 | 0.046429 | Not Significant | |
Kidney disease | 0.687 | 12 | 0.05 | 14 | 0.042857 | Not Significant | |
Autoimmune disease | 0.486 | 11 | 0.05 | 14 | 0.039286 | Not Significant | |
Age | 0.251 | 10 | 0.05 | 14 | 0.035714 | Not Significant | |
Minor trauma | 0.249 | 9 | 0.05 | 14 | 0.032143 | Not Significant | |
GI | 0.035 | 8 | 0.05 | 14 | 0.028571 | Not Significant | |
Zinc deficiency | 0.023 | 7 | 0.05 | 14 | 0.025 | Significant | |
Exposure to toxins | 0.017 | 6 | 0.05 | 14 | 0.021429 | Significant | |
BMS | 0.009 | 5 | 0.05 | 14 | 0.017857 | Significant | |
Current chemotherapy | 0.008 | 4 | 0.05 | 14 | 0.014286 | Significant | |
S/P URTI | 0.001 | 3 | 0.05 | 14 | 0.010714 | Significant | |
Major trauma | 0 | 2 | 0.05 | 14 | 0.007143 | Significant | |
Sex | 0 | 1 | 0.05 | 14 | 0.003571 | Significant | |
Bitter score | Hyposalivation | 0.936 | 14 | 0.05 | 14 | 0.05 | Not Significant |
Minor trauma | 0.573 | 13 | 0.05 | 14 | 0.046429 | Not Significant | |
Autoimmune disease | 0.534 | 12 | 0.05 | 14 | 0.042857 | Not Significant | |
Exposure to toxins | 0.183 | 11 | 0.05 | 14 | 0.039286 | Not Significant | |
Zinc deficiency | 0.159 | 10 | 0.05 | 14 | 0.035714 | Not Significant | |
BMS | 0.153 | 9 | 0.05 | 14 | 0.032143 | Not Significant | |
GI | 0.115 | 8 | 0.05 | 14 | 0.028571 | Not Significant | |
Kidney disease | 0.04 | 7 | 0.05 | 14 | 0.025 | Not Significant | |
obesity | 0.031 | 6 | 0.05 | 14 | 0.021429 | Not Significant | |
Age | 0.03 | 5 | 0.05 | 14 | 0.017857 | Not Significant | |
Current chemotherapy | 0.007 | 4 | 0.05 | 14 | 0.014286 | Significant | |
S/P URTI | 0.0055 | 3 | 0.05 | 14 | 0.010714 | Significant | |
Major trauma | 0 | 2 | 0.05 | 14 | 0.007143 | Significant | |
Sex | 0 | 1 | 0.05 | 14 | 0.003571 | Significant |
Unstandardized Coefficients | Standardized Coefficients | t | Sig. | 95.0% Confidence Interval for B | Collinearity Statistics | |||||
---|---|---|---|---|---|---|---|---|---|---|
B | Std. Error | Beta | Lower Bound | Upper Bound | Tolerance | VIF | ||||
Total taste score | (Constant) | 15.157 | 0.947 | 16.004 | <0.001 | 13.291 | 17.023 | |||
Zinc deficiency | −3.252 | 1.559 | −0.113 | −2.085 | 0.038 | −6.323 | −0.180 | 0.972 | 1.029 | |
Age | −0.038 | 0.011 | −0.181 | −3.284 | 0.001 | −0.060 | −0.015 | 0.946 | 1.058 | |
Current chemotherapy | −5.984 | 1.545 | −0.209 | −3.874 | <0.001 | −9.027 | −2.941 | 0.990 | 1.010 | |
URTI | 1.639 | 0.658 | 0.136 | 2.490 | 0.013 | 0.342 | 2.936 | 0.958 | 1.044 | |
Major trauma | −2.797 | 0.608 | −0.260 | −4.598 | <0.001 | −3.995 | −1.598 | 0.896 | 1.116 | |
Sex | −2.736 | 0.439 | −0.340 | −6.235 | <0.001 | −3.601 | −1.872 | 0.965 | 1.036 | |
Salty score | (Constant) | 2.823 | 0.242 | 11.689 | <0.001 | 2.347 | 3.299 | |||
Zinc deficiency | −1.186 | 0.533 | −0.131 | −2.222 | 0.027 | −2.237 | −0.135 | 0.976 | 1.025 | |
Exposure to toxic chemicals | −1.559 | 0.686 | −0.134 | −2.274 | 0.024 | −2.910 | −0.208 | 0.976 | 1.024 | |
BMS | 0.762 | 0.317 | 0.143 | 2.405 | 0.017 | 0.138 | 1.386 | 0.963 | 1.038 | |
Current chemotherapy | −1.572 | 0.531 | −0.174 | −2.961 | 0.003 | −2.617 | −0.526 | 0.986 | 1.014 | |
URTI | 0.656 | 0.231 | 0.171 | 2.836 | 0.005 | 0.200 | 1.113 | 0.938 | 1.066 | |
Major trauma | −0.497 | 0.205 | −0.148 | −2.417 | 0.016 | −0.902 | −0.092 | 0.910 | 1.099 | |
Sex | −0.465 | 0.153 | −0.182 | −3.042 | 0.003 | −0.766 | −0.164 | 0.953 | 1.049 | |
Bitter score | (Constant) | 3.853 | 0.253 | 15.253 | <0.001 | 3.355 | 4.350 | |||
Current chemotherapy | −1.950 | 0.561 | −0.194 | −3.476 | 0.001 | −3.055 | −0.845 | 0.991 | 1.009 | |
URTI | 0.323 | 0.242 | 0.076 | 1.335 | 0.183 | −0.154 | 0.800 | 0.963 | 1.038 | |
Major trauma | −0.871 | 0.214 | −0.233 | −4.075 | <0.001 | −1.292 | −0.450 | 0.943 | 1.060 | |
Sex | −1.073 | 0.160 | −0.377 | −6.713 | <0.001 | −1.388 | −0.758 | 0.979 | 1.022 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aframian, D.J.; Zedan, A.; Agbariah, W.; Rettman, A.; Almoznino, G. Quantitive Assessment of Gustatory Function and Its Association with Demographics, and Systemic Morbidity. Biology 2024, 13, 50. https://doi.org/10.3390/biology13010050
Aframian DJ, Zedan A, Agbariah W, Rettman A, Almoznino G. Quantitive Assessment of Gustatory Function and Its Association with Demographics, and Systemic Morbidity. Biology. 2024; 13(1):50. https://doi.org/10.3390/biology13010050
Chicago/Turabian StyleAframian, Doron J., Alaa Zedan, Weaam Agbariah, Andra Rettman, and Galit Almoznino. 2024. "Quantitive Assessment of Gustatory Function and Its Association with Demographics, and Systemic Morbidity" Biology 13, no. 1: 50. https://doi.org/10.3390/biology13010050
APA StyleAframian, D. J., Zedan, A., Agbariah, W., Rettman, A., & Almoznino, G. (2024). Quantitive Assessment of Gustatory Function and Its Association with Demographics, and Systemic Morbidity. Biology, 13(1), 50. https://doi.org/10.3390/biology13010050