Comprehensive RNA-Seq Gene Co-Expression Analysis Reveals Consistent Molecular Pathways in Hepatocellular Carcinoma across Diverse Risk Factors
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Retrieval and Preprocessing of Data
2.2. Gene Co-Expression Network Construction
2.3. Gene Co-Expression Network Analysis and Hub Gene Identification
2.4. Over Representation Analysis (ORA)
3. Results
4. Discussion
4.1. Grade I and Grade II HCC
4.2. Grade II and Grade III HCC
4.3. Module Preservation and Clustering
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.; Tu, W.; Liu, J.; Tian, D. Hepatocytes: A Key Role in Liver Inflammation. Front. Immunol. 2023, 13, 1083780. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.W.; Harmon, C.; O’Farrelly, C. Liver Immunology and Its Role in Inflammation and Homeostasis. Cell. Mol. Immunol. 2016, 13, 267–276. [Google Scholar] [CrossRef]
- Sharma, B.; John, S. Hepatic Cirrhosis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Asafo-Agyei, K.O.; Samant, H. Hepatocellular Carcinoma. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Boyault, S.; Rickman, D.S.; de Reyniès, A.; Balabaud, C.; Rebouissou, S.; Jeannot, E.; Hérault, A.; Saric, J.; Belghiti, J.; Franco, D.; et al. Transcriptome Classification of HCC Is Related to Gene Alterations and to New Therapeutic Targets. Hepatology 2007, 45, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.; Jiang, X.; Li, M.; Luo, Y. Hepatitis Virus and Hepatocellular Carcinoma: Recent Advances. Cancers 2023, 15, 533. [Google Scholar] [CrossRef]
- Russo, F.P.; Zanetto, A.; Pinto, E.; Battistella, S.; Penzo, B.; Burra, P.; Farinati, F. Hepatocellular Carcinoma in Chronic Viral Hepatitis: Where Do We Stand? Int. J. Mol. Sci. 2022, 23, 500. [Google Scholar] [CrossRef]
- Levrero, M.; Zucman-Rossi, J. Mechanisms of HBV-Induced Hepatocellular Carcinoma. J. Hepatol. 2016, 64, S84–S101. [Google Scholar] [CrossRef]
- Wendt, A.; Adhoute, X.; Castellani, P.; Oules, V.; Ansaldi, C.; Benali, S.; Bourlière, M. Chronic Hepatitis C: Future Treatment. Clin. Pharmacol. Adv. Appl. 2014, 6, 1–17. [Google Scholar] [CrossRef]
- Huang, D.Q.; El-Serag, H.B.; Loomba, R. Global Epidemiology of NAFLD-Related HCC: Trends, Predictions, Risk Factors and Prevention. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 223–238. [Google Scholar] [CrossRef]
- Ganne-Carrié, N.; Nahon, P. Hepatocellular Carcinoma in the Setting of Alcohol-Related Liver Disease. J. Hepatol. 2019, 70, 284–293. [Google Scholar] [CrossRef]
- Dhamija, E.; Paul, S.B.; Kedia, S. Non-Alcoholic Fatty Liver Disease Associated with Hepatocellular Carcinoma: An Increasing Concern. Indian. J. Med. Res. 2019, 149, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Foerster, F.; Gairing, S.J.; Müller, L.; Galle, P.R. NAFLD-Driven HCC: Safety and Efficacy of Current and Emerging Treatment Options. J. Hepatol. 2022, 76, 446–457. [Google Scholar] [CrossRef] [PubMed]
- Safri, F.; Nguyen, R.; Zerehpooshnesfchi, S.; George, J.; Qiao, L. Heterogeneity of Hepatocellular Carcinoma: From Mechanisms to Clinical Implications. Cancer Gene Ther. 2024, 31, 1105–1112. [Google Scholar] [CrossRef] [PubMed]
- Barcena-Varela, M.; Lujambio, A. The Endless Sources of Hepatocellular Carcinoma Heterogeneity. Cancers 2021, 13, 2621. [Google Scholar] [CrossRef]
- Kalasekar, S.M.; VanSant-Webb, C.H.; Evason, K.J. Intratumor Heterogeneity in Hepatocellular Carcinoma: Challenges and Opportunities. Cancers 2021, 13, 5524. [Google Scholar] [CrossRef]
- Friemel, J.; Rechsteiner, M.; Frick, L.; Böhm, F.; Struckmann, K.; Egger, M.; Moch, H.; Heikenwalder, M.; Weber, A. Intratumor Heterogeneity in Hepatocellular Carcinoma. Clin. Cancer Res. 2015, 21, 1951–1961. [Google Scholar] [CrossRef]
- Almeida-Silva, F.; Venancio, T.M. BioNERO: An All-in-One R/Bioconductor Package for Comprehensive and Easy Biological Network Reconstruction. Funct. Integr. Genom. 2022, 22, 131–136. [Google Scholar] [CrossRef]
- Oldham, M.C.; Langfelder, P.; Horvath, S. Network Methods for Describing Sample Relationships in Genomic Datasets: Application to Huntington’s Disease. BMC Syst. Biol. 2012, 6, 63. [Google Scholar] [CrossRef]
- Langfelder, P.; Horvath, S. WGCNA: An R Package for Weighted Correlation Network Analysis. BMC Bioinform. 2008, 9, 559. [Google Scholar] [CrossRef]
- Mailem, R.C.; Tayo, L.L. Drug Repurposing Using Gene Co-Expression and Module Preservation Analysis in Acute Respiratory Distress Syndrome (ARDS), Systemic Inflammatory Response Syndrome (SIRS), Sepsis, and COVID-19. Biology 2022, 11, 1827. [Google Scholar] [CrossRef]
- Emmons, A. Pathways and Gene Sets: What Is Functional Enrichment Analysis? Available online: https://bioinformatics.ccr.cancer.gov/btep/pathways-and-gene-sets-what-is-functional-enrichment-analysis/ (accessed on 11 August 2024).
- Wu, T.; Hu, E.; Xu, S.; Chen, M.; Guo, P.; Dai, Z.; Feng, T.; Zhou, L.; Tang, W.; Zhan, L.; et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation 2021, 2, 100141. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Macleod, I.; Su, A.I. BioGPS and MyGene. Info: Organizing Online, Gene-Centric Information. Nucleic Acids Res. 2013, 41, D561–D565. [Google Scholar] [CrossRef]
- Abdelgawad, I.A. Epithelial Cell Adhesion Molecule mRNA Can Be a Potential Marker to Predict Metastasis in Hepatocellular Carcinoma Patients. Asian Pac. J. Cancer Prev. 2020, 21, 861–866. [Google Scholar] [CrossRef] [PubMed]
- Martins-Filho, S.N.; Paiva, C.; Azevedo, R.S.; Alves, V.A.F. Histological Grading of Hepatocellular Carcinoma—A Systematic Review of Literature. Front. Med. 2017, 4, 193. [Google Scholar] [CrossRef]
- Yu, G.-R.; Kim, S.-H.; Park, S.-H.; Cui, X.-D.; Xu, D.-Y.; Yu, H.-C.; Cho, B.-H.; Yeom, Y.-I.; Kim, S.-S.; Kim, S.-B.; et al. Identification of Molecular Markers for the Oncogenic Differentiation of Hepatocellular Carcinoma. Exp. Mol. Med. 2007, 39, 641–652. [Google Scholar] [CrossRef]
- Yin, L.; Cai, Z.; Zhu, B.; Xu, C. Identification of Key Pathways and Genes in the Dynamic Progression of HCC Based on WGCNA. Genes. 2018, 9, 92. [Google Scholar] [CrossRef]
- Li, C.; Zhang, E.; Ye, Y.; Xiao, Z.; Huang, H.; Zeng, Z. Association of Mitochondrial Phosphoenolpyruvate Carboxykinase with Prognosis and Immune Regulation in Hepatocellular Carcinoma. Sci. Rep. 2024, 14, 14051. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Shay, C.; Saba, N.F.; Teng, Y. Cancer Metabolism and Carcinogenesis. Exp. Hematol. Oncol. 2024, 13, 10. [Google Scholar] [CrossRef]
- Gonzalez, H.; Hagerling, C.; Werb, Z. Roles of the Immune System in Cancer: From Tumor Initiation to Metastatic Progression. Genes. Dev. 2018, 32, 1267–1284. [Google Scholar] [CrossRef]
- Gofton, C.; Upendran, Y.; Zheng, M.-H.; George, J. MAFLD: How Is It Different from NAFLD? Clin. Mol. Hepatol. 2023, 29, S17–S31. [Google Scholar] [CrossRef]
- Shi, Q.; Zeng, Y.; Xue, C.; Chu, Q.; Yuan, X.; Li, L. Development of a Promising PPAR Signaling Pathway-Related Prognostic Prediction Model for Hepatocellular Carcinoma. Sci. Rep. 2024, 14, 4926. [Google Scholar] [CrossRef] [PubMed]
- Foglia, B.; Beltrà, M.; Sutti, S.; Cannito, S. Metabolic Reprogramming of HCC: A New Microenvironment for Immune Responses. Int. J. Mol. Sci. 2023, 24, 7463. [Google Scholar] [CrossRef] [PubMed]
- Xia, L.; Oyang, L.; Lin, J.; Tan, S.; Han, Y.; Wu, N.; Yi, P.; Tang, L.; Pan, Q.; Rao, S.; et al. The Cancer Metabolic Reprogramming and Immune Response. Mol. Cancer 2021, 20, 28. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Zhu, X.; Lv, Y.; Jiao, Y.; Wang, G. Glucometabolic Reprogramming in the Hepatocellular Carcinoma Microenvironment: Cause and Effect. Cancer Manag. Res. 2020, 12, 5957–5974. [Google Scholar] [CrossRef]
- Katoch, S.; Sharma, V.; Patial, V. Peroxisome Proliferator-Activated Receptor Gamma as a Therapeutic Target for Hepatocellular Carcinoma: Experimental and Clinical Scenarios. World J. Gastroenterol. 2022, 28, 3535–3554. [Google Scholar] [CrossRef]
- Orda, M.A.; Fowler, P.M.P.T.; Tayo, L.L. Modular Hub Genes in DNA Microarray Suggest Potential Signaling Pathway Interconnectivity in Various Glioma Grades. Biology 2024, 13, 206. [Google Scholar] [CrossRef]
- Cook, K.; Coulter, A.; Keenan, M.; Greenway, F.; Losso, J. Sodium Propionate or Sodium Butyrate Promotes Fatty Acid Oxidation in HepG2 Cells Under Oxidative Stress. J. Med. Food 2023, 26, 74–79. [Google Scholar] [CrossRef]
- Huang, J.; Wu, Q.; Yang, Y.; Du, Q.; Yan, P.; Li, X.; Yao, M.; Li, J.; Huang, Y.; Cai, X.; et al. NKG2D Ligand MICA Regulates Macrophage Phenotype through PPAR/EHHADH Pathway Altering Fatty Acid Oxidation (FAO) in Hepatocellular Carcinoma (HCC). Res. Sq. 2023. [Google Scholar] [CrossRef]
- Ali, E.S.; Rychkov, G.Y.; Barritt, G.J. Deranged Hepatocyte Intracellular Ca2+ Homeostasis and the Progression of Non-Alcoholic Fatty Liver Disease to Hepatocellular Carcinoma. Cell Calcium 2019, 82, 102057. [Google Scholar] [CrossRef]
- Yin, L.; Zhou, L.; Xu, R. Identification of Tumor Mutation Burden and Immune Infiltrates in Hepatocellular Carcinoma Based on Multi-Omics Analysis. Front. Mol. Biosci. 2021, 7, 599142. [Google Scholar] [CrossRef]
- Nallanthighal, S.; Heiserman, J.P.; Cheon, D.-J. The Role of the Extracellular Matrix in Cancer Stemness. Front. Cell Dev. Biol. 2019, 7, 86. [Google Scholar] [CrossRef] [PubMed]
- Ozaki, T.; Nakagawara, A. Role of P53 in Cell Death and Human Cancers. Cancers 2011, 3, 994–1013. [Google Scholar] [CrossRef]
- Liu, J.; Han, F.; Ding, J.; Liang, X.; Liu, J.; Huang, D.; Zhang, C. Identification of Multiple Hub Genes and Pathways in Hepatocellular Carcinoma: A Bioinformatics Analysis. BioMed Res. Int. 2021, 2021, 8849415. [Google Scholar] [CrossRef] [PubMed]
- Navarro, N.; Molist, C.; Sansa-Girona, J.; Zarzosa, P.; Gallo-Oller, G.; Pons, G.; Magdaleno, A.; Guillén, G.; Hladun, R.; Garrido, M.; et al. Integrin Alpha9 Emerges as a Key Therapeutic Target to Reduce Metastasis in Rhabdomyosarcoma and Neuroblastoma. Cell. Mol. Life Sci. 2022, 79, 546. [Google Scholar] [CrossRef]
- Fung, J.; Lai, C.-L.; Yuen, M.-F. Hepatitis B and C Virus-Related Carcinogenesis. Clin. Microbiol. Infect. 2009, 15, 964–970. [Google Scholar] [CrossRef]
- Selvamani, S.P.; Khan, A.; Tay, E.S.E.; Garvey, M.; Ajoyan, H.; Diefenbach, E.; Gloss, B.S.; Tu, T.; George, J.; Douglas, M.W. Hepatitis B Virus and Hepatitis C Virus Affect Mitochondrial Function through Different Metabolic Pathways, Explaining Virus-Specific Clinical Features of Chronic Hepatitis. J. Infect. Dis. 2024. [Google Scholar] [CrossRef]
- Guo, C.; Ma, J.; Zhong, Q.; Zhao, M.; Hu, T.; Chen, T.; Qiu, L.; Wen, L. Curcumin Improves Alcoholic Fatty Liver by Inhibiting Fatty Acid Biosynthesis. Toxicol. Appl. Pharmacol. 2017, 328, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Sharma, L.; Kashyap, M.K.; Sharma, D. Non-Alcoholic Fatty Liver Disease (NAFLD): A Systematic Review and Meta-Analysis from an Omics Perspective. Gene Expr. 2023, 22, 79–91. [Google Scholar] [CrossRef]
- Ally, A.; Balasundaram, M.; Carlsen, R.; Chuah, E.; Clarke, A.; Dhalla, N.; Holt, R.A.; Jones, S.J.M.; Lee, D.; Ma, Y.; et al. Comprehensive and Integrative Genomic Characterization of Hepatocellular Carcinoma. Cell 2017, 169, 1327–1341.e23. [Google Scholar] [CrossRef]
- Gao, Q.; Fan, L.; Chen, Y.; Cai, J. Identification of the Hub and Prognostic Genes in Liver Hepatocellular Carcinoma via Bioinformatics Analysis. Front. Mol. Biosci. 2022, 9, 1000847. [Google Scholar] [CrossRef]
- Liu, C.; Dai, Q.; Ding, Q.; Wei, M.; Kong, X. Identification of Key Genes in Hepatitis B Associated Hepatocellular Carcinoma Based on WGCNA. Infect. Agents Cancer 2021, 16, 18. [Google Scholar] [CrossRef] [PubMed]
Histological Grades | Alcohol Consumption | Hepatitis B | Hepatitis C | Non-Alcoholic Fatty Liver Disease (NAFLD) | No History |
---|---|---|---|---|---|
Grade I | ABAT, SCP2, PFKFB1, ACSM2A, HSD17B6, PCK2, SLC10A1, EHHADH, ALDH6A1, CYP8B1 | GLYAT, SLC27A5, PCK2, CYP8B1, SEC14L2, ASPDH, ACSM2A, HAGH, HAAO, LDHD | TFR2, CYB5A, SERPINC1, RBP4, PCK2, HPN, HAAO, RIDA, SDC1, APOF | KNG1, AASS, PLG, TF, IVD, CYP4V2, C6, TLCD4, ACAA1, BCKDHB | LCP2, HACD4, WIPF1, BIN2, CD53, HCLS1, IKZF1, EVI2B, NCKAP1L, TSHZ3 |
Grade II | STING1, HACD4, COL3A1, RAB31, LCP2, HEPH, GPR132, ADAMTS2, ZEB2, KCTD12 | STING1, HCLS1, SELPLG, CD48, GPSM3, COL14A1, LCP2, GLIPR2, ANTXR1, COTL1 | FAU, ELOB, GADD45GIP1, ATP5F1D, BLOC1S1, NDUFA3, CHCHD5, SERF2, ROMO1, EDF1 | C3orf18, TMEM139, CYP2C18, TNFSF10, NA, ZNF69 | EHHADH, SEC14L2, GLYATL1, SLC27A5, CYP8B1, DMGDH, PCK2, ACSM2A, GLYAT, FMO4 |
Grade III | CCNB2, HJURP, TPX2, KIFC1, KIF23, KIF11, KIF4A, NEK2, TTK, MELK, CCNB1 | WNK2, MAPK13, EPCAM | KIF18B, KIF23, TOP2A, KIFC1, CKAP2L, NCAPH, MCM10, GINS1, CDCA8, TICRR | GINS1, TOP2A, CLSPN, KIF11, NUF2, KIF2C, CDK1, ZWINT, KIF23, SGO1 | KIF18B, CDK1, KIF23, CENPA, TOP2A, GTSE1, TICRR, MYBL2, KIF18A, TROAP |
Grade IV | - | KIF18B, KIF4A, KIF23, TPX2, CKAP2L, GINS1, TOP2A, BUB1, HJURP, MELK | COL14A1, ANTXR1, PODN, COL3A1, KIRREL1, LAMA2, SSC5D, EPHA3, AEBP1, ISLR | - | - |
Clusters | Category | Top Enrichment | p-Value Adjusted |
---|---|---|---|
Cluster 1 | Carbohydrate metabolism | Pentose and glucuronate interconversions | 0.000601 |
Cluster 2 | Xenobiotics biodegradation and metabolism | Metabolism of xenobiotics by cytochrome P450 | 2.14 × 10−8 |
Cluster 3 | Immune system | Complement and coagulation cascades | 1.48 × 10−20 |
Cluster 4 | Translation | Ribosome | 2.06 × 10−44 |
Cluster 5 | Cell growth and death | Cell cycle | 2.35 × 10−24 |
Cluster 6 | Signaling molecules and interaction | Cell adhesion molecules | 5.21 × 10−24 |
Cluster 7 1 | Amino acid metabolism | Arginine and proline metabolism | 0.01008 |
Cluster 8 | Cytoskeleton in muscle cells | 8.83 × 10−14 | |
Cluster 9 | Membrane transport | ABC transporters | 0.002854 |
Cluster 10 | Cellular community— eukaryotes | Tight junction | 0.010539 |
Cluster 11 | Energy metabolism | Oxidative phosphorylation | 0.019103 |
Cluster 12 | Amino acid metabolism | Valine, leucine, and isoleucine degradation | 0.000382 |
Cluster 13 | Nervous system | Serotonergic synapse | 0.054565 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Talubo, N.D.D.; Tsai, P.-W.; Tayo, L.L. Comprehensive RNA-Seq Gene Co-Expression Analysis Reveals Consistent Molecular Pathways in Hepatocellular Carcinoma across Diverse Risk Factors. Biology 2024, 13, 765. https://doi.org/10.3390/biology13100765
Talubo NDD, Tsai P-W, Tayo LL. Comprehensive RNA-Seq Gene Co-Expression Analysis Reveals Consistent Molecular Pathways in Hepatocellular Carcinoma across Diverse Risk Factors. Biology. 2024; 13(10):765. https://doi.org/10.3390/biology13100765
Chicago/Turabian StyleTalubo, Nicholas Dale D., Po-Wei Tsai, and Lemmuel L. Tayo. 2024. "Comprehensive RNA-Seq Gene Co-Expression Analysis Reveals Consistent Molecular Pathways in Hepatocellular Carcinoma across Diverse Risk Factors" Biology 13, no. 10: 765. https://doi.org/10.3390/biology13100765
APA StyleTalubo, N. D. D., Tsai, P. -W., & Tayo, L. L. (2024). Comprehensive RNA-Seq Gene Co-Expression Analysis Reveals Consistent Molecular Pathways in Hepatocellular Carcinoma across Diverse Risk Factors. Biology, 13(10), 765. https://doi.org/10.3390/biology13100765