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Simple Summary: Non-apoptotic modes of cell death have gained increasing attention in the past
few years. Cuproptosis is a copper-dependent cell death mechanism that is involved in numerous
diseases, including cancer. The relevance of cuproptosis for the survival times of cancer patients
is still incompletely understood. We have investigated cuproptosis-related genes based on their
mRNA expression and statistical relationship to the survival times of patients by using Kaplan–Meier
statistics. Further, we have investigated the possible interactions of the genes with signaling networks.
Our study has shown that cuproptosis may play an important role in hepatocellular carcinoma, renal
clear cell carcinoma, papillary renal cell carcinoma, and lung adenocarcinoma. We identified gene
signatures consisting of nine to twenty-one genes in the above four tumor types, and we have shown
that a high mRNA expression of 63/124 cuproptosis-associated genes significantly correlated with
shorter survival times of cancer patients.

Abstract: We investigated the mRNA expression of 124 cuproptosis-associated genes in 7489 biopsies
from 20 different tumor types of The Cancer Genome Atlas (TCGA). The KM plotter algorithm has
been used to calculate Kaplan–Meier statistics and false discovery rate (FDR) corrections. Interaction
networks have been generated using Ingenuity Pathway Analysis (IPA). High mRNA expression
of 63 out of 124 genes significantly correlated with shorter survival times of cancer patients across
all 20 tumor types. IPA analyses revealed that their gene products were interconnected in canonical
pathways (e.g., cancer, cell death, cell cycle, cell signaling). Four tumor entities showed a higher
accumulation of genes than the other cancer types, i.e., renal clear cell carcinoma (n = 21), renal papil-
lary carcinoma (n = 13), kidney hepatocellular carcinoma (n = 13), and lung adenocarcinoma (n = 9).
These gene clusters may serve as prognostic signatures for patient survival. These signatures were
also of prognostic value for tumors with high mutational rates and neoantigen loads. Cuproptosis
is of prognostic significance for the survival of cancer patients. The identification of specific gene
signatures deserves further exploration for their clinical utility in routine diagnostics.

Keywords: cancer; gene signatures; prognostic factors; RNA-sequencing; signaling pathways;
survival time

1. Introduction

Metals play essential roles in human physiology, e.g., the transition metals iron (Fe),
copper (Co), manganese (Mn), and molybdenum (Mo) act as cofactors of metalloenzymes.
Redox reactions catalyzed by metal ions are involved in electron transfer processes that
are tightly controlled to maintain metal homeostasis in the body; this is the case with
Mo [1]. In general, metals are involved in the activation of normal physiological functions,
e.g., immune reactions, electron transfer during mitochondrial respiration, xenobiotic
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metabolism, and oxygen transport in blood and tissues as carried out by Fe, Co, and
Mn [2,3]. Fe is involved in the regulation of enzymatic activity, oxygen transmission, and
DNA repair; Co is crucial for cytochrome c oxidase in the mitochondria; Mn is important
for control of heart function and blood pressure regulation; Mo is an important cofactor for
several enzyme activities. Upon disturbances of this balance, reactive oxygen species (ROS)
are generated (mainly by the Fenton reaction) that are harmful to nucleophilic molecules
such as DNA, proteins, and biomembranes [4]. Hence, transition metal ion deficiency can
cause diseases, e.g., iron deficiency in anemia or chronic kidney disease; copper deficiency
in anemia, brain disease and heart disease; manganese deficiency in epilepsy and diabetes;
molybdenum deficiency in encephalopathy and intractable seizures [5,6].

On the other hand, an excess of metal ions can be toxic. Disrupted metal homeostasis
and enhanced ROS generation lead to oxidative stress that may override the body’s an-
tioxidant protective capacity causing acute or chronic toxicity [4]. However, redox inactive
metals (e.g., cadmium (Cd), lead (Pb), or arsenic (As)) can also exert toxicity by binding
thiol-groups and depleting glutathione [7]. This results in a reduction of the cellular energy
that the body would get because of the interruption of the flow of electrons caused by the
redox inactive metal. A main source for contamination with metals (lead, cadmium, nickel,
mercury, arsenic, etc.) is drinking water [8]. An exception is the redox inert transition metal
zinc which counteracts diseases by reducing oxidative stress [9–11].

Occupational and environmental exposure to metals can be carcinogenic, not only
by causing oxidative stress and DNA damage but also by epigenetic mechanisms and
alterations in signal transduction pathways [12,13]. Once a tumor has developed, metals
such as iron also contribute to typical hallmarks of tumor progression, e.g., metastasis and
angiogenesis [14]. Recent interest has focused on another transition metal, copper. Like
iron, copper generates ROS and contributes to cancer growth, epithelial to mesenchymal
transition, metastasis, and angiogenesis [15–17].

Despite the role of iron and copper in cell proliferation, they also sense cell death.
Copper-dependent growth has been termed cuproplasia, while the mechanisms of these
two transition metals have been termed ferroptosis and cuproptosis, respectively [18–21].
Both forms of the programed cell are involved in numerous human diseases, including
cancer [22–25]. Copper-containing anticancer drugs have been developed that show as-
tonishing activity in the fight against this disease [26–29], and it can be expected that
copper-containing regimens will pass clinical trials in the drug developmental process for
new cancer treatments [30,31]. Given the importance of ferroptosis in cancer, the role of
ferroptosis and ferroptosis-related genes as a prognostic factor for the survival of patients
has been investigated and established for several cancer types, e.g., melanoma, glioma,
hepatocellular carcinoma, breast cancer, and others [32–35].

Cuproptosis is coming up as a new metal ion-dependent cell death mechanism, and
copper ionophores are attracting great interest in cancer therapy. Copper-based nanoma-
terials in bladder cancer have shown improved efficacy to immunotherapy. Cuproptosis-
related genes are also showing predictive capacity for patients in various cancers and
may help in patient sensitivity to chemotherapy. Although cuproptosis has been investi-
gated recently, less is known about its prognostic role for cancer patient survival [36,37].
Multi-“omics” studies have shown the potential importance of certain genes that mediate
cuproptosis as determinants of patient outcomes, and further studies focusing on copper-
related gene signatures will offer substantial potential for advancing our understanding of
cancer biology.

In the present investigation, we systematically investigated 124 cuproptosis-related
genes in more than 7489 tumor biopsies of different tumor types of the Cancer Genome Atlas
(TDGA) regarding their mRNA expression and statistical relationship to the survival times
of patients by using Kaplan–Meier statistics. Those genes with significant relationships to
the survival times of patients were subjected to Ingenuity Pathway Analysis (IPA) to detect
their interactions among each other in signaling networks.
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2. Materials and Methods
2.1. Compilation of Cuproptosis-Associated Genes

We screened the PubMed Literature database with the keywords “gene” and “cuprop-
tosis”. Papers containing compilations of cuproptosis-associated genes were used to
compile our own list of genes. Cuproptosis-related genes have been identified from the
literature and served as the basis for our investigations. These genes are experimentally
validated to contribute to the cuproptosis mode of programed cell death [38–47]. A list
containing 124 cuproptosis-related genes is provided in Supplementary Table S1.

The expression of these genes in 7489 tumor biopsies was reported by the Cancer
Genome Atlas (TCGA) [38]. The Cancer Genome Atlas (TCGA) is a large genomic program
initiated by the National Cancer Institute and the National Human Genome Research
Program (Bethesda, MD, USA) to characterize the molecular architecture of a large number
of different cancer types by analyzing thousands of tumor samples with different ge-
nomic technologies (www.cancer.gov/ccg/research/genome-sequencing/tcga) (accessed
on 1 October 2024). Among gene copy number analysis, methylation, and mutational status
of DNA, the RNA expression is analyzed. Microarray hybridization and high-throughput
sequencing are used for characterizing DNA and RNA. Based on transcriptomic profiling,
which comprises all expressed genes of the human genome, subgroups of interest can be
formed, e.g., genes driving programmed cell death [48], genes determining anticancer drug
response [49], genes related to tumor immunology [50], etc. Previous investigations on
cell death focused on apoptosis [51], autophagy [52], and ferroptosis [53]. Therefore, we
focused on cuproptosis as novel mode of programmed cell death and selected genes known
from the literature as determinants of cuproptosis (see above). The genes selected from the
literature were used to run the TCGA-based KM plotter (see below).

2.2. Kaplan–Meier Survival Statistics

Based on the TCGA database, the transcriptome-wide expression profiles of cancer
samples can be correlated with clinical parameters of the corresponding patients, e.g., their
survival times. The connection of molecular and clinical parameters in a common database
offers a unique opportunity for advanced biostatistical exploration. In this context, a
Kaplan–Meier (KM) plotter platform has been generated that allows the analysis of mRNA
expression of single or multiple genes from large datasets. This method allows the identifi-
cation of novel prognostic markers because of huge datasets in a unified database [54,55].
The analysis of survival times of patients represents a long-lasting and classical method
in clinical oncology for many decades. The coupling of Kaplan–Meier-based survival
analyses with transcriptomic data facilitates the discovery of novel biomarkers to better
understand the determinants of tumor diseases and to further improve cancer treatments
by the development of novel target-directed drugs. In the present investigation, we used
the KM plotter algorithm (https://kmplot.com/analysis/) (accessed on 1 October 2024) as
previously published [56,57]. To avoid type I errors of multiple comparisons, we used false
discovery rate corrections [58] with a cut-off of 5%. The database of the KM plotter consists
of 7489 biopsies from 20 different tumor types from TCGA.

2.3. Ingenuity Pathway Analysis

Ingenuity Pathway Analysis (IPA) (Ingenuity Systems, Qiagen, Redwood City, CA,
USA; version: fall release 2023) is a bioinformatic tool to analyze and interpret complex
biological data in the context of molecular pathways and cellular networks. We utilized IPA
to identify cellular functions, canonical pathways, and individual interaction networks of
those cuproptosis-related genes that significantly correlated with any of the 20 tumor types
analyzed by Kaplan–Meier statistics (see Section 2.2). Thereby, we constructed interaction
networks for cuproptosis based on the survival times of cancer patients.

www.cancer.gov/ccg/research/genome-sequencing/tcga
https://kmplot.com/analysis/


Biology 2024, 13, 793 4 of 14

3. Results

As a starting point, we assembled 124 genes reported in the literature to be associated
with the copper-related mode of programed cell death, termed cuproptosis. The mRNA
expression of these genes from 7489 biopsies belonging to 20 tumor types have been
subjected to Kaplan–Meier statistics using the KM plotter algorithm. A total of 63 out of
124 genes significantly correlated with the outcome of the disease, i.e., high expression
of these genes in the tumors was associated with shorter overall survival of patients at a
significance level of p < 0.05 and a false discovery rate (FDR) of ≤5%. The results are shown
in Supplementary Table S1 and illustrated in the plot depicted in Figure 1. Here, the yellow
boxes indicate the significant correlations (p = 0.05; FDR ≤ 5%) between gene expression
and survival times in the different tumor types, while blue boxes show the non-significant
relationships. The genes on the left side of Figure 1 show significant associations to each
one tumor type (n = 40), the genes in the middle to two, three, or four tumor entities (n = 9,
n = 6, and n = 4), respectively, and the genes at the right side to four cancer types (n = 4).
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Figure 1. Color-coded plot of Kaplan–Meier statistics of 59 cuproptosis-related genes for 20 tumor
types. The yellow color indicates significant correlations between high mRNA expression in tumors
and worse overall patient survival (p < 0.05; FDR ≤ 5%). The blue boxes show non-significant
relationships.

As all these gene expressions correlated with the survival times of at least one tumor
type, we applied Ingenuity Pathway Analysis (IPA) software (version: fall release 2023
to construct interaction networks with the purpose of obtaining comprising signaling
pathways for the cuproptotic mode of cell death. The top five pathways are shown in
Figure 2. They included cancer, cell death and cell signaling, cell signaling, cell cycle,
and cell-to-cell signal and interaction. Importantly, these pathways are linked to the
progression and prognosis of cancer patients. Cancer cells progress through the cell cycle
in an uncontrolled manner, implying that a malfunctioning cell cycle contributes to cellular
malignancy. This process is connected to defects in signaling pathways that contribute to
the homeostasis in normal cells but favor abnormal cell growth, invasion, and metastasis in
tumor cells. It was interesting to observe that the genes we identified by IPA as prognostic
relevant belonged to pathways that were not only involved in cellular functions crucial for
cancer biology in general (i.e., cancer, cell signaling, cell signaling and interaction) but also
in the fate of cancer cells upon treatment (i.e., cell death and survival, cell cycle) (Figure 2A).
The individual networks for how these genes were predicted to interact with each other are
shown in Figure 2B–F.
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Figure 2. Ingenuity Pathway Analysis of cuproptosis-associated genes that significantly correlated
with overall survival of cancer patients. The canonical pathway analysis in the top left panel shows
the top five pathways identified. The corresponding networks of these canonical pathways are shown
in the other panels of this figure.

Counting the number of genes correlating with various tumor types revealed that the
expression of 39 out of 63 genes correlated with survival times of patients with only four
tumor types, i.e., renal clear cell carcinoma (KIRC), renal papillary cell carcinoma (KIRP),
hepatocellular carcinoma (LIHC), and lung adenocarcinoma (LUAD). These genes and
their functions are compiled in Table 1. The number of correlating genes was lower in all
other tumor types investigated.
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Table 1. Prognostic significance of mRNA expression of selected genes for overall survival of
patients with hepatocellular carcinoma, lung adenocarcinoma, renal clear cell carcinoma, or renal
papillary carcinoma.

Symbol Gene Name Function Tumor
Type

Sample
No. p-Value FDR

RYR1 (=CCO) Ryanodine receptor 1 (skeletal) Calcium release channel KIRC 530 2.1 × 10−4 5%

HES7
Hairy and enhancer of split
(Drosophila) family BHLH
transcription factor 7

Transcriptional repressor KIRC 530 6.7 × 10−7 1%

IL6 Interleukin 6 Proinflammatory cytokine KIRC 530 5.3 × 10−8 1%
LOXL1 Lysine oxidase-like Biogenesis of connective tissue KIRC 530 3.0 × 10−7 1%
MAP2K2
(=MEK2)

Mitogen-activated protein
kinase kinase 2

Mitogenic growth factor,
signal transduction KIRC 530 3.7 × 10−4 1%

PIK3R1 Phosphoinositide-3-kinase
regulatory subunit 1

Role in the metabolic insulin
action KIRC 530 4.9 × 10−5 1%

PIK3R2 Phosphoinositide-3-kinase
regulatory subunit 2

Regulatory component of
PI3K, growth signaling
pathways

KIRC 530 1.0 × 10−4 3%

PIK3R6 Phosphoinositide-3-kinase
regulatory subunit 6

Regulatory component of
PI3K, growth signaling
pathways

KIRC 530 5.3 × 10−5 1%

SCO2 Synthesis of cytochrome C
oxidase 1

Role in aerobic ATP
production KIRC 530 1.6 × 10−4 1%

SLC40A1 Solute carrier family 40
member 1 Iron export KIRC 530 8.5 × 10−13 1%

TIMP1 Tissue inhibitor of
metalloproteinases 1

Degradation of extracellular
matrix, cell proliferation KIRC 530 2.1 × 10−4 1%

ULK1 Unc-51-like autophagy-
activating kinase 1

Serine/threonine kinase,
autophagosome assembly KIRC 530 5.6 × 10−6 1%

ULK3 Unc-51-like autophagy-
activating kinase 3

Serine/threonine kinase,
fibroblast activation KIRC 530 1.0 × 10−4 3%

AOC2 Amine oxidase copper-
containing 2

Oxidative conversion of
amines
to aldehydes and ammonia

KIRP 287 3.0 × 10−4 5%

AOC3 Amine oxidase copper-
containing 3

Adhesive properties,
leukocyte
trafficking

KIRP 287 1.6 × 10−4 2%

BRCA1 Breast and ovarian cancer
susceptibility protein 1 Tumor suppressor KIRP 287 4.1 × 10−5 1%

FLT1 Fms-related receptor tyrosine
kinase 1 Role in angiogenesis KIRP 287 4.1 × 10−6 1%

HEPH Hephaestin Copper and iron transport and
homeostasis KIRP 287 5.0 × 10−4 5%

IGF2 Insulin-like growth factor 2 Cell development and growth KIRP 287 7.2 × 10−5 1%

PDE3B Phosphodiesterase 3B
Negative regulation of
angiogenesis and cell
adhesion

KIRP 287 2.4 × 10−4 3%

ATG13 Autophagy-related 13
Autophagosome formation
and
mitophagy

LIHC 370 6.0 × 10−5 1%

DLAT Dihydrolipoamide
S-acetyltransferase

Component of the pyruvate
dehydrogenase complex LIHC 370 5.0 × 10−5 1%

HES6
Hairy and enhancer of split
(Drosophila) family BHLH
transcription factor 6

Regulation of cell
differentiation LIHC 370 2.1 × 10−4 3%

HRAS Harvey rat sarcoma viral oncogene
homolog Oncogenic GTPase LIHC 370 2.3 × 10−4 5%

TIGAR TP53-induced glycolysis
regulatory phosphatase Blockage of glycolysis LIHC 370 3.2 × 10−4 5%

COA6 Cytochrome c oxidase
assembly factor 6 Mitochondrial respiration LUAD 504 1.1 × 10−4 3%

STEAP1
Six-transmembrane epithelial
antigen of prostate
metalloreductase 1

Cell surface antigen at cell–cell
junctions LUAD 504 1.4 × 10−6 1%

VEGFC Vascular endothelial growth Angiogenesis and endothelial LUAD 504 3.0 × 10−4 1%
factor C cell growth KIRP 287 4.1 × 10−4 5%

STEAP3 STEAP3 metalloreductase Iron and copper transporter KIRC 530 3.7 × 10−2 1%
in p53-mediated apoptosis KIRP 287 1.3 × 10−5 1%
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Table 1. Cont.

Symbol Gene Name Function Tumor
Type

Sample
No. p-Value FDR

SLC25A37 Solute carrier family 25
member 37

Imports iron for the synthesis
of
mitochondrial heme

KIRP 530 3.3 × 10−7 1%

PIK3R3 Phosphoinositide-3-kinase
regulatory subunit 3

Second messenger in growth
signaling pathways KIRC 530 4.6 × 10−8 1%

ANGPT4 Angiopoietin 4 Involved in angiogenesis KIRP 287 3.1 × 10−4 5%
STEAP2 STEAP2 metalloreductase Iron and copper uptake LUAD 504 1.2 × 10−4 3%

KIRC 530 3.5 × 10−5 1%
LUAD 504 3.7 × 10−5 1%

FOXO6 Forkhead box O6 Regulation of transcription KIRC 530 5.4 × 10−5 1%
by RNA polymerase II KIRP 287 3.6 × 10−4 5%

MEMO1 Mediator of cell motility 1 Microtubule-based processes KIRC 530 3.3 × 10−7 1%
LIHC 370 1.7 × 10−4 3%

NRAS Neuroblastoma RAS viral
oncogene homolog Oncogenic GTPase LIHC 370 3.4 × 10−5 1%

PKM Pyruvate kinase M Glycolysis LIHC 370 2.7 × 10−6 1%
LUAD 504 1.5 × 10−4 3%

CDKN2A Cyclin-dependent kinase Regulation of the G1 phase of LIHC 370 2.2 × 10−4 5%
inhibitor 2A the cell cycle LUAD 504 2.4 × 10−4 5%

KIRP 287 7.1 × 10−8 1%
LIHC 370 6.3 × 10−5 1%
KIRP 287 1.6 × 10−7 1%
LIHC 370 2.3 × 10−5 1%
LIHC 370 3.9 × 10−7 1%
LUAD 504 1.8 × 10−6 1%

SLC2A1 Glucose transporter type 1 Glucose transport in the blood KIRP 287 4.5 × 10−4 5%
(=GLUT1) brain barrier LIHC 370 2.7 × 10−8 1%

LUAD 504 3.6 × 10−7 1%

Therefore, we used the mean expression levels of these groups of genes to investigate
the prognostic value for these four tumor types, i.e., we calculated the mean mRNA
expression of 21 genes in renal clear cell carcinoma, each of the 13 genes in papillary cell
carcinoma and hepatocellular carcinoma, and 9 genes in lung adenocarcinoma. As expected,
the Kaplan–Meier survival curves were statistically significant, with very low p-values
ranging from 1.5 × 10−6 to 2.5 × 10−10 and FDR values of 1% (Figure 3). This indicates
that these group of genes represent gene signatures with high prognostic value for patients
suffering from these four tumor types.

To investigate not only overall survival times, we also studied the prognostic value
of these gene signatures for refractory-free survival times, but the set criteria (p < 0.05;
FDR ≤ 5%) were not reached for any of the four tumor entities.

As the survival curves in Figure 3 result from all tumors of the respective tumor
types, we were interested to see the relevance of these gene signatures in subgroups,
i.e., tumors of grade 3 or in stage 3 and 4 as well as tumors with high mutation burden
or high neoantigen load because these parameters also influence the treatment outcome.
The results of significant correlations in these clinical and molecular subgroups are shown
in Figure 4. The expression of the 13-gene signature was significantly correlated with the
survival times of patients with hepatocellular carcinoma grade 3 (Figure 4, top panel, left),
while the gene signatures of the other three tumor types did not yield significant results
regarding tumor grading. The 21-gene signature of renal clear cell carcinoma correlated
with survival of stage 3 and four tumor types (Figure 4, top panel, right). Significant
correlations were not found to other tumor types in stages 3 and 4. Furthermore, we
investigated the relationships of gene expression and high mutation burden. The respective
gene signatures significantly correlated with survival times of hepatocellular carcinoma
and lung adenocarcinoma with high mutational burden (Figure 4, middle panel) but not of
renal clear cell carcinoma or renal papillary cell carcinoma. Finally, the neoantigen load of
tumors was subjected to Kaplan–Meier analyses. High neoantigen load of hepatocellular



Biology 2024, 13, 793 8 of 14

carcinoma, lung adenocarcinoma, and renal clear cell carcinoma patients correlated with
the corresponding gene signatures (Figure 4, bottom panel). A significant relationship to
renal papillary cell carcinoma was not found.
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4. Discussion

Cuproptosis represents a novel mode of cell death involving copper [18,20]. This
transition metal plays a crucial role in normal physiology under healthy conditions but
also in the pathophysiology of many diseases [21,22,24]. Since cuproptosis is also a rele-
vant mechanism of non-apoptotic cell death in cancer [25], we focused on the prognostic
relevance of cuproptosis in cancer using the TCGA dataset. We found that at least some
cuproptosis-relevant genes exert prognostic significance in all 20 different tumor types ana-
lyzed. Interestingly, however, the expression of cuproptosis-related genes was clustered in
four tumor types (hepatocellular carcinoma, renal clear cell carcinoma, papillary renal cell
carcinoma, and lung adenocarcinoma), indicating that cuproptosis may play an important
role in these tumor types. Our results highlight (1) a 13-gene signature and its correlation
with survival times for hepatocellular carcinoma grade 3 patients; (2) another 21-gene sig-
nature and its correlation to the survival times of stage 3 and 4 renal clear cell carcinomas;
and (3) the gene signatures correlating with high mutational burden and neoantigen load
of lung adenocarcinoma, hepatocellular carcinoma, and renal clear cell carcinoma patients,
respectively. Indeed, the relevance of copper has been previously documented in these
tumor types [59–61], and our study gives more insight into this importance.

The quest for prognostic markers indicating survival probabilities has been at the
center of interest in clinical oncology since the early days. While clinicopathological param-
eters (such as tumor size, lymph node and distant metastasis, and tumor differentiation)
represent classical categories in this context, this armory has been supplemented during
the past three decades by molecular markers and recently by transcriptome-wide RNA-
sequencing [62–64]. The latter one especially allows one to simultaneously identify not only
single but multiple prognostic factors in a comprising manner in a short time. In the present
investigation, we took advantage of the TCGA, which assembled one of the largest data col-
lections in the history of clinical oncology. The systematic evaluation of cuproptosis-related
genes performed by us unraveled clusters (or call them signatures) of multiple genes whose
expression was significantly correlated with the survival times of patients. We identified
gene signatures consisting of nine to twenty-one genes in four tumor types. Other authors
also reported gene signatures with varying numbers of genes with prognostic relevance
for renal clear cell carcinoma [38,65,66], hepatocellular carcinoma [51–53], and lung adeno
carcinoma [39,67–71]. Gene signatures have not been reported for papillary cell carcinoma
yet. Interestingly, these gene signatures did not only predict survival probabilities but also
detected subtypes of tumors that otherwise appeared homogenous upon histopathological
examination. The further formation of new subtypes of cancers makes the prediction of
patients’ survival more precise. These signatures maybe all used to develop novel clinical
routine diagnostics to predict the survival chances of individual patients in the future.
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Hence, our approach may further contribute to set up new tools for the individualization
and improved precision of cancer medicine.

As shown here, these gene expression signatures can not only be combined with
classical prognostic parameters (such as tumor stage and grade) but also with new ones
(such as gene mutation rates and neoantigen load) to further enhance prognostic power.
The mutation rate is a parameter for genetic instability and tumor progression, and thereby
provides the possibility to apply novel targeted drugs addressing mutated driver genes
in carcinogenesis. The neoantigen load may provide information on the utility of im-
munotherapies specifically attacking newly appearing tumor markers that are absent in the
corresponding normal tissues the tumors are derived from [72].

The identification of novel prognostic factors and signatures as new diagnostic tools
in clinical oncology are only one side of the coin. Another question relates to their function
and interaction with each other. Since the description of network pharmacology as a
new concept in pharmacology by Shao Li and Andrew L. Hopkins [73–76], it has become
increasingly clearer that complex networks of interacting proteins drive tumor progression
and determine treatment outcome. Therefore, studying the complex networks represents
another important task that we addressed in the present investigation.

The interaction networks constructed based on prognostically relevant genes give
interesting insights into the mechanisms that drive tumor progression and, hence, influence
the survival of patients. The functions of proteins encoded by the identified genes could be
basically assigned to the following six main mechanisms:

• Cell growth and gene expression (CDKN2A, FOXO6, HES6, HES7, IGF2, LOXL1,
MEMO1, TIMP1);

• Oncogenes and tumor suppressors (BRCA1, HRAS, NRAS);
• Signal transduction (MAP2K2, PIK3R1, PIK3R2, PIK3R3, PIK3R6, ULK1, ULK6);
• Angiogenesis (ANGPT4, FLT1, PDE3B, VEGFC);
• Metabolism (AOC2, AOC3, COA6, DLAT, PKM, SCO2, TIGAR);
• Transporters and channels (HEPH, RYR1, SCL2A1, SLC40A1, STEAP2).

These mechanisms represent basic features of cancer cells. The deregulation of onco-
genes and tumor suppressor genes as well as cancer-specific metabolic changes and signal
transduction are tightly connected with altered signal transduction and transporter and ion
channel functions, ultimately leading to cancer cell growth and tumor neoangiogenesis. The
interweaving of these mechanisms may provide a possible explanation for the prognostic
role of these genes regarding patients’ survival. We have visualized these interactions by
using the IPA tool. Pathway analyses are highly valuable for the elucidation of proteomic
and transcriptomic data to generate hypotheses for the complex interaction networks of
proteins and genes in diseased cells and tissues. We used this technique as an approach to
generate interaction maps of genes with prognostic significance. Such interaction maps
emphasize the fact that the orchestration of multiple rather than single genes determines
tumor progression and, finally, the fate of patients.

As can be expected, not all these cuproptosis-related genes contribute to the survival
chances of cancer patients. Therefore, we performed Kaplan–Meier analyses and found
that several genes significantly correlated with each of the 20 tumor types included in
the investigation. Then, we focused on the four tumor types with the highest number of
correlating genes. It is a well-known approach in the literature to focus not only on single
genes but on entire groups of genes, so-called signatures. The idea behind this approach is
that gene signatures may predict the survival chances with higher precision than single
genes. Gene signatures with prognostic value for the survival of patients have been
described for various cancer types, including the most common cancer types, such as breast
cancer, lung cancer, prostate cancer, etc. [77–81]. Here, we identified gene signatures for four
tumor entities, i.e., renal papillary cell carcinoma, renal clear cell carcinoma, hepatocellular
carcinoma, and lung adenocarcinoma, with a specific focus on one mode of cell death,
cuproptosis, and combined this point of view with other prognostic factors such as stage
and grade, as well as molecular markers such as mutation rate and neoantigen load.
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The task for the future would be to compare the diverse genes signatures reported
In the literature and to delineate consensus gene signatures that can be developed for
diagnostic test systems to predict the survival probabilities of cancer patients.

5. Conclusions

Kaplan–Meier statistics in 7489 biopsies from 20 different tumor types revealed that
the high mRNA expression of 63/124 cuproptosis-associated genes significantly correlated
with shorter survival times of cancer patients. The accumulation of significantly corre-
lating cuproptosis-related genes in renal clear cell carcinoma, renal papillary carcinoma,
hepatocellular carcinoma, and lung adenocarcinoma indicated that this mode of cell death
may play an important role in these four tumor types. The relevance of these genes as
prognostic markers in clinical routine diagnostics needs to be further explored in the future
by validation of identified gene signatures in clinical settings or comparison with other
reported gene signatures.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biology13100793/s1. Table S1: Kaplan–Meier overall survival
analysis of 124 genes associated with the cuproptosis type of programed cell death in 7489 biopsies of
The Cancer Genome Atlas (TCGA) as recently compiled [48,52,66–74].
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