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Simple Summary: The SARS-CoV-2 virus that caused COVID-19 devastated families, social struc-
tures, and economies worldwide. This pandemic has overwhelmed healthcare systems, increased
deaths and disabilities, and triggered a global socio-economic crisis. Although the COVID-19 vaccines
were developed rapidly, their effectiveness significantly decreased by the end of 2021 due to mutated
viruses evading the immune system. As a result, despite high vaccination rates in industrialized
countries, significant outbreaks occurred due to immune evasion associated with viral mutations.
Over 300 clinical studies have shown that vitamin D (and ivermectin) are widely available and eco-
nomical agents that promote immune system function. Proper doses of vitamin D effectively prevent
and treat SARS-CoV-2, reducing complications, hospitalizations, and deaths by approximately 50%.
Those with vitamin D deficiency fare the worse. SARS-CoV-2 activates the renin-angiotensin system
by increasing renin expression, leading to elevated levels of the inflammatogenic and vasoconstrictor
peptide angiotensin-II. SARS-CoV-2 viruses cause widespread inflammation, blood clots, and lung
damage through multiple mechanisms, leading to impaired tissue oxygenation and death. In addition
to enhancing the immune system, vitamin D increases ACE-2 enzyme levels, which breaks down
angiotensin-II and reduces SARS-CoV-2-induced inflammation. It also lowers blood pressure and
mitigates abnormal clotting. While the virus enters human cells through ACE-2 receptors, excess
ACE-2 spills into the bloodstream and neutralizes viruses. This manuscript discusses how vitamin D
mitigates the harmful effects of COVID-19.

Abstract: The interaction of the SARS-CoV-2 spike protein with membrane-bound angiotensin-
converting enzyme-2 (ACE-2) receptors in epithelial cells facilitates viral entry into human cells.
Despite this, ACE-2 exerts significant protective effects against coronaviruses by neutralizing viruses
in circulation and mitigating inflammation. While SARS-CoV-2 reduces ACE-2 expression, vitamin D
increases it, counteracting the virus’s harmful effects. Vitamin D’s beneficial actions are mediated
through complex molecular mechanisms involving innate and adaptive immune systems. Meanwhile,
vitamin D status [25(OH)D concentration] is inversely correlated with severity, complications, and
mortality rates from COVID-19. This study explores mechanisms through which vitamin D inhibits
SARS-CoV-2 replication, including the suppression of transcription enzymes, reduced inflammation
and oxidative stress, and increased expression of neutralizing antibodies and antimicrobial pep-
tides. Both hypovitaminosis D and SARS-CoV-2 elevate renin levels, the rate-limiting step in the
renin-angiotensin-aldosterone system (RAS); it increases ACE-1 but reduces ACE-2 expression. This
imbalance leads to elevated levels of the pro-inflammatory, pro-coagulatory, and vasoconstricting
peptide angiotensin-II (Ang-II), leading to widespread inflammation. It also causes increased mem-
brane permeability, allowing fluid and viruses to infiltrate soft tissues, lungs, and the vascular system.
In contrast, sufficient vitamin D levels suppress renin expression, reducing RAS activity, lowering
ACE-1, and increasing ACE-2 levels. ACE-2 cleaves Ang-II to generate Ang(1–7), a vasodilatory, anti-
inflammatory, and anti-thrombotic peptide that mitigates oxidative stress and counteracts the harmful
effects of SARS-CoV-2. Excess ACE-2 molecules spill into the bloodstream as soluble receptors, neu-
tralizing and facilitating the destruction of the virus. These combined mechanisms reduce viral
replication, load, and spread. Hence, vitamin D facilitates rapid recovery and minimizes transmission
to others. Overall, vitamin D enhances the immune response and counteracts the pathological effects
of SARS-CoV-2. Additionally, data suggests that widely used anti-hypertensive agents—angiotensin
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receptor blockers and ACE inhibitors—may lessen the adverse impacts of SARS-CoV-2, although
they are less potent than vitamin D.

Keywords: 25(OH)D; 1,25(OH)2D; calcitriol; endocrine; mechanisms; morbidity and mortality;
pandemic; public health; renin-angiotensin axis

1. Introduction

The COVID-19 pandemic, triggered by the severe acute respiratory syndrome
coronavirus-2 (SARS-CoV-2), caused havoc worldwide, leading to socio-economic crises
and widespread negative repercussions on the global populace [1,2]. Vitamin D is a sec-
osteroid molecule that undergoes two steps of hydroxylation to generate its most active
form, calcitriol [1,25-dihydroxyvitamin D; 1,25(OH)2D] [3]. Beyond its pivotal role in
calcium regulation, vitamin D engages in various biological functions affecting all tissues,
especially the modulation of innate and adaptive immunity [4]. Upon binding to the
vitamin (calcitriol) D receptor (VDR, CTR), it forms a complex with cofactors, translocates
into the nucleus, and attaches to relevant portions of DNA [5]. While vitamin D and its
receptor polymorphisms affect disease vulnerability and responses [6,7], they regulate over
1700 human genes, up- or down-regulating target genes [8].

The human immune system is operated by a complex network of mechanisms that
respond to signals generated by membrane-bound signaling molecules, including toll-like
receptors (TLR) [9–11]. In humans, many overlapping mechanisms effectively regulate
the innate and adaptive immune systems [12]. Over 75% of the immune system func-
tions rely on having sufficient calcitriol synthesized within immune cells. Consequently,
vitamin D modulates immune cell functions and helps maintain a robust immune sys-
tem [5,13]. Moreover, immune cells themselves express both vitamin D/calcitriol receptor
(VDR/CTR) [14] and the 1α-hydroxylase enzyme (from the CYP27B1 gene) responsible
for converting 25(OH)D into 1,25(OH)2D intracellularly [11,15,16]. Beyond its classical
genomic functions, vitamin D exerts membrane-based and non-genomic actions, swiftly
modulating various physiological pathways. These rapid actions and their autocrine and
paracrine functions are particularly prominent within immune cells [17].

Vitamin D modulates the immune response, potentially reducing inflammation, and
is associated with cytokine storm in severe COVID-19 [18]. Vitamin D up-regulates
angiotensin-converting enzyme-2 (ACE-2) expression and generates angiotensin(1–7)
(Ang(1–7)), a potent vasodilatory peptide that counteracts angiotensin-II (Ang-II). Ang(1–7)
protects the cardiovascular system and mitigates lung injury caused by coronaviruses. Un-
derstanding the molecular interactions of these actions will provide insights into novel ther-
apeutic strategies and public health interventions to reduce the burden of COVID-19. This
review explores the interactions of vitamin D and ACE-2 on the backdrop of COVID-19 that
affect clinical outcomes by critically evaluating ongoing research and recently published
studies in this critical area.

This review article highlights the complex relationship between vitamin D and the
ACE-2 receptor, focusing on their roles in mitigating the severity and mortality of COVID-19.
We hypothesized that ACE-2 has a vital beneficial role in mitigating complications and
infections of COVID-19 despite its role as the primary entry site for coronaviruses into
epithelial cells. This study also investigated the vitamin D-dependent mechanisms of
ACE-2 in inhibiting SARS-CoV-2 replication and subduing inflammation and oxidative
stress reduction. This review highlights scientific data on the interactions of vitamin D on
the expression and function of ACE-2 related to SARS-CoV-2 entering human cells and
mitigating its harmful effects [19].
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1.1. Benefits of Vitamin D

Research has shown that vitamin D is essential for more than just bone health. It plays
a role in (A) the musculoskeletal system—it prevents rickets in children and osteomalacia
in adults) [20–22], and (B) immune functions—vitamin D is crucial for maintaining a robust
immune system [23,24] and reducing the risk of infections and autoimmune diseases [4,25],
modulates metabolism [26] and energy generation [27,28], prevents acute infections [4,22],
and minimizes chronic diseases [29]. Adequate vitamin D levels are linked to a lower risk of
several chronic conditions, such as cardiovascular disease [30,31] and certain cancers [32,33],
but others disagree [34,35]. In addition, it minimizes pregnancy-related complications
and disorders [36–39] and mental health conditions [40,41], potentially including bipolar
disorder [42] and the prevention of depression [43,44].

Meta-analyses and other clinical studies have consistently shown that sufficient vita-
min D supplementation protects against acute respiratory tract infections, particularly in
individuals with significant vitamin D deficiencies [45,46]. Further clinical research, includ-
ing randomized controlled trials (RCTs), has revealed that vitamin D supplementation plays
a crucial role in achieving positive health outcomes in cases of infectious diseases [13,47].
There are more than 310 peer-reviewed publications on the beneficial effects of prophylactic
vitamin D in preventing SARS-CoV-2 [48] and as an adjunct in treatment [43,49,50]. Figure 1
illustrates the broader benefits of vitamin D in human health related to the immune system.

 

Figure 1. Infections and immune-related broader functions of vitamin D (calcitriol, 1,25(OH)2D). The
figure illustrates muti-system-wide functions of vitamin D related through the modulation of innate
and adaptive immune systems, resulting in lowering complications from infections and chronic
disease burdens [⇑ = increased; ⇓ = reduced; RAS: renin-angiotensin-system; CVS: cardiovascular
system] (after Wimalawansa, Nutrients, 2022) [51].

Vitamin D is a threshold nutrient. Consequently, there will be little additional benefit
from over-supplementation or intake by those with sufficient vitamin D [5]. However,
supplementing deficient individuals provides a significant benefit [52]. In parallel, over-
exposure to sunlight does not lead to excess vitamin D entering the blood [53]. Notably,
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for those infected with SARS-CoV-2 (and other viruses), vitamin D and its metabolites
are consumed rapidly during infections and conditions associated with immune system
activation [51,54]. Therefore, unless supplemented, even those with reasonable serum
25(OH)D levels (e.g., on hospitalization) are likely to develop a deficiency from an acute
severe infection like SARS-CoV-2 [5].

Notably, over half of the world’s population is vitamin D deficient at any given
time [5]. Therefore, with little or no adverse effects, it is beneficial to consume vitamin D
supplements or be exposed to safe levels of daily sunlight [55–57]. However, even in the
sunniest regions in the world, the majority spend time indoors. Thus, most people need
supplemental vitamin D to prevent deficiency to stay healthy.

1.2. The Entry of SARS-CoV-2 into Human Cells

SARS-CoV-2, the virus responsible for COVID-19, enters human cells primarily by its
spike (S) protein interaction with the angiotensin-converting enzyme 2 (ACE-2) receptor on
the surface of human cells [57]. The spike protein has two subunits: S1, which contains the
receptor-binding domain (RBD) that specifically binds to ACE-2, and S2, which facilitates
membrane fusion [58,59]. Upon binding to ACE-2, the spike protein undergoes a confor-
mational change, enabling the virus to attach more firmly to the host cell. Transmembrane
protease serine 2 (TMPRSS2) in the host cell cleaves the S-protein at specific sites, triggering
the fusion of the viral and cellular membranes and allowing the viral RNA to enter the
cytoplasm [60].

Once inside the host cell, the host’s ribosomes translate the viral RNA into viral pro-
teins. The viral RNA genome serves as a template for replication and transcription to
produce more viral RNA genomes and sub-genomic RNAs [61], which encode structural
and accessory proteins [60,62]. These newly synthesized viral components are assembled
into new virions in the host cell’s endoplasmic reticulum-Golgi intermediate compart-
ment [63]. The mature virions are transported to the cell surface in vesicles and then
released into the extra-cellular space via exocytosis, including the tissue fluid and cir-
culation. These virions are primed to infect new local and distant host cells. This viral
entry, replication, and release cycle leads to the spread of SARS-CoV-2 within the host and
contributes to the pathology of COVID-19 [64].

Meanwhile, the expression of ACE-2 is regulated by vitamin D metabolites [65].
Vitamin D sufficiency increases the expression of ACE-2 (including the soluble ACE-2 in
the circulation) and dampens the renin-angiotensin system/axis (RAS) [59]. Despite cell
membrane-bound ACE-2 receptors serving as the primary entry point for the SARS-CoV-2
virus, numerous benefits of vitamin D interaction have been reported, initiating ACE-2-
related anti-viral effects against SARS-CoV-2 [19]. This review investigates the impact of
vitamin D on the immune system, focusing on its effects on the renin-angiotensin system
(RAS) and ACE-2 [66].

1.3. Functions of the Renin-Angiotensin System (RAS)

The renin-angiotensin-aldosterone axis (RAS) is a crucial endocrine axis that controls
critical physiological parameters, such as blood pressure homeostasis, immune functions,
and metabolism [66]. It is also known as the renin-angiotensin-aldosterone system (RAAS).
The RAS is an organized complex hormonal cascade that plays a vital role in controlling crit-
ical functions in many organs. Traditionally, RAS plays a crucial role in the cardiovascular
system, metabolism, cell growth, and homeostasis.

However, over the past 15 years, additional functions of the RAS, such as ACE-1 and
ACE-2) were identified. These include inflammatory processes that lead to lung and other
epithelial cell injury, even causing acute respiratory distress syndrome (ARDS), sepsis, car-
diac hypertrophy, pulmonary hypertension, acute pancreatitis, and glomerulonephritis [67].
The RAS is crucial in regulating several physiological parameters related to cardiovascular
and renal function [66]. Details of these are illustrated in Table 1.
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Table 1. Highlighting the critical functions of the RAS #.

Physiological Function Brief Description of Role, Regulations, and Actions

Blood pressure
The RAS regulates blood pressure by controlling the vascular tone via the constriction of blood
vessels. Angiotensin II is a potent vasoconstrictor peptide—a product in the RAS system that
increases blood pressure.

Fluid and electrolyte
balance

The RAS influences and helps maintain the body’s sodium and water balance. Angiotensin II
stimulates the release of aldosterone from the adrenal cortex, which promotes sodium reabsorption
and potassium excretion in the kidneys. This sodium retention leads to secondary water retention,
increasing blood volume and blood pressure.

Blood volume
By regulating sodium and water reabsorption in the kidneys, the RAS helps maintain the overall
blood volume. This is critical for maintaining adequate perfusion pressure and ensuring sufficient
blood flow to vital organs.

Systemic vascular
resistance

The constriction of systemic arterioles by angiotensin II increases peripheral resistance, which is a
major determinant of blood pressure.

Renal function The RAS modulates glomerular filtration rate (GFR) and renal blood flow. Angiotensin II constricts
efferent arterioles in the kidneys, helping maintain GFR despite systemic blood pressure changes.

Cardiac function
RAS affects cardiac function by influencing myocardial contractility and promoting cardiac
hypertrophy. Chronic activation of the system can lead to pathological changes in the heart, such as
ventricular hypertrophy and fibrosis, contributing to developing heart failure.

Immune regulation
RAS plays a critical role in immune homeostasis. Vitamin D modulates this activity. The over-activity
of the RAS could cause the excess generation of inflammatory cytokines, excess angiotensin-II, and
generalized inflammation. When uninhibited, it can lead to a cytokine storm.

# The above summary was created based on physiological and pathological findings and understanding from
multiple publications.

The primary active peptide of the RAS is Ang-II. However, there are other minor
components, like Ang-III and Ang-IV, as well as a counter-regulatory peptide, Ang(1–7) [66].
From a physiological point of view, the most important and widely studied two pep-
tides are Ang-II and Ang(1–7) [68], which are involved in human health maintenance and
disease statuses. Investigations are ongoing to understand its role in inflammation [18].
The RAAS is integral to the homeostatic regulation of cardiovascular, renal, and fluid bal-
ances (homeostasis) and is essential in physiological stability [67]. A sustained imbalance
of the RAS can lead to a lowering of ACE-2 (with loss of its protective effects) [59], causing
acute lung injury, like acute respiratory distress syndrome (ARDS), with high mortality.

1.4. Vitamin D on the Renin-Angiotensin-Aldosterone Hormonal (RAS) Axis

Activating the RAS, including coronaviruses, leads to the excess production of the
enzyme renin, which cleaves angiotensinogen into Ang-I. ACE -1 then cleaves Ang-1 to
form Ang-II [69]. This over-activation of the RAS leads to the excess production of Ang-II,
which enhances the production of inflammatory cytokines [70], worsening the morbidity
and mortality associated with infections/sepsis and leading to a cytokine storm that causes
lung damage [71]. Excessive production of inflammatory cytokines leads to uncontrolled
inflammation and is linked to immune dysfunction, as seen with excess Ang-II, which
causes enhanced inflammation and oxidative stress [70]. In contrast, sufficient vitamin D
suppresses the expression of renin, thus damping the RAS while increasing ACE-2 and
reducing Ang-II. Consequently, it reduces inflammation and oxidative stress, improving
clinical outcomes from infection and septic consequences [51,72,73].

As aforementioned, calcitriol is a crucial regulator of the RAS axis and suppresses the
expression of the renin gene—a rate-limiting step of the synthesis of Ang-II via cyclic AMP
(cAMP)-dependent PKA signaling [74]. Calcitriol independently increases the expression
of ACE-2, reducing Ang-II and increasing the generation of angiotensin(1–7), suppressing
the formation of the CRE-CREB-CBP complex [70], and keeping RAS activity under control.
Meanwhile, certain viral infections like SARS-CoV-2 stimulate RAS activity, aggravating
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the situation in those with vitamin D deficiency and making them more vulnerable to
developing cytokine storms [19,70].

1.5. Functions of the ACE-2/Ang(1–7)/MasR Axis (Counter-Regulatory Pathway)

Vitamin D inhibits renin, induces ACE-2/Ang(1–7)/MasR axis activity, and modulates
the ACE/Ang II/AT1R axis. Through these mechanisms, vitamin D increases the expression
of ACE-2, MasR, and Ang(1–7) and elicits a protective role against acute lung injury/ARDS
and abnormal clotting activities [75]. Vitamin D can stimulate these beneficial targets like
ACE-2 [65,76]. The RAS is regulated mainly by vitamin D (calcitriol) suppressing renin
and increasing the expression of ACE-2 [65]—the latter also acts as a primary receptor for
SARS-CoV-2 entry into the cells [76].

In health, there is a balance between the RAS, the ACE-Ang–II-AT1R regulatory axis,
and the counter-regulatory axis (a pathway) of ACE-2-Ang–1–7-MasR. They are crucial
in maintaining human cardiovascular, inflammatory, and immune homeostasis [66]. The
wide distribution of ACE-2 in the heart, kidneys, lungs, colon, testis, etc., reflects this.
The activation of ACE-2 antagonizes the over-active RAS system, protecting against organ
damage and mitigating hypertension and cardiovascular diseases [65]. Once infected,
SARS-CoV-2 causes a major imbalance in the RAS, including the down-regulation of ACE-2
receptors when they invade human epithelial cells [75,77].

1.6. Molecular Aspects of the RAS and ACE

Angiotensin-converting enzyme-2 (ACE-2) is a peptidase expressed on epithelial
cell membranes and plays a crucial role in catabolizing Ang-II, thereby regulating the
RAS [78]. Furthermore, in humans, ACE-2 polymorphisms can influence susceptibil-
ity to diseases such as hypertension and coronaviruses, including SARS-CoV-2 [78,79].
ACE-2 counterbalances the enzymatic actions of ACE-1 and Ang-II synthesis by converting
Ang-II into the peptide Ang(1–7), reducing Ang-II molecular concentration. Furthermore,
Ang(1–7) acts via the G-protein-coupled Mas receptor (MasR) to induce vasodilation [80]
and attenuate the expression of pro-inflammatory cytokines [68], like TNF-α and IL-6 in
LPS-induced macrophages, thereby promoting anti-inflammatory effects [81]. Despite these
benefits, functional membrane ACE-2 receptors have been identified as the primary entry
site of coronavirus into human cells [82,83].

In addition, Ang II interacts with the adrenogenic axis—endothelin and neuro-
adrenergic systems—enhancing the local expression of noradrenaline and endothelin.
This pathway leads to trophic as well as adverse effects on the cardiac myocyte [84,85].
Ang II also stimulates aldosterone secretion from the adrenal glands, contributing to salt
balances and cardiac and vascular remodeling [84]; these compensatory mechanisms read-
just vascular homeostasis. However, continuously raised Ang-II could lead to a loss of
compensatory capacity and negatively affect the vascular system. In these situations, ACE
inhibitors (ACEi) and higher doses of angiotensin receptor blockers (ARBs) are vital in
stabilizing the condition and preventing cardiac failure [85,86].

Additionally, Ang(1–7) has direct anti-inflammatory effects on microglia [87] and con-
tributes to reducing inflammation in adipose tissue [88], as demonstrated in arthritis mod-
els [89]. Ang(1–7) also elicits anti-thrombotic actions through the Mas-receptor-mediated
release of nitric oxide (NO) from platelets [90]. Therefore, Ang(1–7) also effectively counters
and neutralizes the detrimental effects of Ang-II [91]. Ang(1–7) also provides benefits to
several major organs. Ang(1–7) attenuates myocyte hypertrophy and cardiac interstitial
fibrosis in cardiac tissue [92,93], leading to the higher expression of the ACE-2 gene [85]. In
individuals with type-2 diabetes mellitus, Ang(1–7) improves insulin sensitivity, reverses
hyperglycemia, and reduces diabetic nephropathy [94].

In the kidney, Ang(1–7) facilitates vasodilation, enhancing renal blood flow and mitigat-
ing renal hypertension, preventing further production of the vasoconstrictive Ang-II [95].
Additionally, Ang(1–7) increases the glomerular filtration rate (GFR) and water and elec-
trolyte molecular excretion in a dose-dependent manner [68,96]. Following closed trau-
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matic brain injury, both Ang(1–7) and ACE-2 have improved cognitive and neurological
functions [97]. Furthermore, they exhibit protective effects in cerebral ischemia [98] and
hemorrhagic stroke in animal models [99–102].

Moreover, the modulation of the ACE-2/MAS pathway holds promise in preventing
pulmonary injuries and represents a potential target for drug development to reduce viral
entry [103]. ACE-2 exists in membrane-bound and soluble forms [59]. It is a double-edged
sword, as SARS-CoV-2 utilizes membrane-bound ACE-2 to invade epithelial cells [67].
Meanwhile, soluble ACE-2 in extra-cellular fluid, particularly in circulation, binds to
coronaviruses like SARS-CoV-2, facilitating their neutralization [104].

2. Regulation of the Immune System

Calcitriol, 1,25-dihydroxycholecalciferol, the most active vitamin D metabolite, is
crucial for immune cell functions. It is a potent immune modulator. It has been estimated
that two-thirds of immune cells’ physiological activation and functions rely on generating
sufficient calcitriol within them [13,105]. Because circulatory concentrations are too low,
the capacity of calcitriol to diffuse into immune cells is minimal [106]. In contrast, vitamin
D and calcifediol 25(OH)D (in nmol) circulate approximately 900 times higher than the
hormonal form of calcitriol (pmol). This allows them to diffuse into peripheral target cells
and is utilized for the intracellular generation of calcitriol [5,13]. This intracellular calcitriol
is essential for maintaining immune cell activities, including preventing autoimmunity
and combating invading pathogens [5,107–109]. Once generated adequately within the
immune cells, calcitriol activates the cytosol’s vitamin D (calcitriol) receptors (VDR/CTR)
and provides autocrine and paracrine signaling as well as genomic modulations [5].

Calcitriol concentrations in the circulation are controlled by parathyroid hormone
(PTH) and ionized calcium in the blood but not by tissue 24-hydroxylase. In contrast, in the
target tissues, the production of calcitriol is mainly regulated by a combination of the serum
25(OH)D concentration (and D3) in a concentration-dependent manner (for diffusion). It
is subjected to the feedback catabolic activity of tissue 24-hydroxylases and not by PTH.
Except for membrane effects, vitamin D has minimal actions; therefore, the “physiological
concentrations of vitamin D status” level refers to D3 and 25(OH)D concentrations in
the circulation, of which only the latter is measured routinely to assess vitamin D status.
Peripheral target cells, like immune cells, primarily depend on the diffusion of vitamin
D and 25(OH)D from the circulation to generate higher concentrations of non-hormonal
calcitriol, intracellularly [13,51].

2.1. Mechanisms of Adequate Vitamin D Supplementation in Infections

The crucial role of vitamin D adequacy in combating acute infections was confirmed
a decade ago [47,110,111]. Serum 25(OH)D concentration thresholds needed for robust
immune systems to overcome infections [112–114] and to reduce health risks were clarified
in recent years in adults [13,115–117] and children [113,118–120]. Studies have affirmed
the mechanisms of action of how ultraviolet-B (UVB) rays and vitamin D supplements
help individuals with infections recover faster [121,122]. Subsequently, many studies have
consolidated these findings [47,123–125].

The converging data indicate that the minimum effective serum 25(OH)D concentra-
tion to reduce infections and their severity is 40 ng/mL (100 nmol/L) [4,108,117,126], with
the optimum being above 50 ng/mL [13,47,51,111,125,127,128]. Regarding SARS-CoV-2
infection, numerous studies reported that effective use of vitamin D3 and calcifediol signifi-
cantly improves clinical outcomes from those with hypovitaminosis D, including reduced
hospitalizations and deaths [129–135]. The primary mechanism is stimulating the immune
system, supported by other mechanisms discussed previously, including subduing the RAS
and increasing the expression of ACE-2 [66].

Meta-analyses encompassing a variety of heterogeneous studies concluded that vi-
tamin D reduces the incidence of acute respiratory illnesses [45,114,136,137] and signifi-
cantly reduces the severity and mortality from COVID-19 [45,46,125,130,138–142]. In total,
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ten clinical trials out of 321 peer-reviewed clinical studies that used vitamin D as the
primary intervention to investigate the effects on clinical outcomes in COVID-19 (from
May 2020 to June 2024) reported a significant reduction in hospitalizations, ICU admis-
sions, or deaths [117,131,132,135,143–156] [early therapies for COVID-19 (https://c19early.
org, accessed on 25 January 2024) and publications specifically related to vitamin D
(https://c19early.org/d, accessed on 25 January 2024) [48].

2.2. Mechanisms Lowering the Severity of Infections

Vitamin D supplementation has been shown to reduce the severity and complications
of COVID-19 [157]. Hundreds of peer-reviewed publications have confirmed that serum
25(OH)D concentrations below 12 ng/mL (indicating severe vitamin D deficiency) pose
a significant risk for vulnerability to SARS-CoV-2 infection [158–161], its complications,
and mortality [135,162–164]. Supplementation with cholecalciferol (vitamin D3) or calcife-
diol [25(OH)D] rapidly elevates serum 25(OH)D concentrations and decreases the risk of
complications and deaths from SARS-CoV-2 infection [52,165–171].

Moreover, adequate vitamin D supplementation in COVID-19 patients with co-
morbidities has been observed to reduce complications, length of hospital stays, and
disease severity, leading to lower mortality rates [47,150–152,155,172–176]. Given the evi-
dence, vitamin D should be considered a crucial component of the physician’s arsenal in
the fight against COVID-19 [135].

2.3. Vitamin D Is Essential for Activating Immune Cells

Calcitriol is the most active vitamin D metabolite, crucial for combating invading
pathogens and preventing autoimmunity and chronic diseases [29,107,108]. Through
multiple mechanisms, calcitriol modulates the immune system [12]. When secreted from
renal tubular cells into the bloodstream, calcitriol functions as a hormone [5]. Circulatory
calcitriol alters the behavior of cells involved in calcium–phosphate–bone metabolism and
intestinal, bone, and parathyroid cells.

The average circulatory concentration of calcitriol in the circulation is about 0.045 ng/mL,
while the concentration of its free, diffusible form is far below the threshold needed to
diffuse into immune cells and initiate intracellular signaling [4,29]. Moreover, vitamin D
and calcifediol [25(OH)D] concentrations in the circulation are about 900-fold higher than
circulating calcitriol (ng vs. pg/L in the blood); thus, only these two compounds serve as
the substrate for intracellular calcitriol generation. Consequently, circulating calcitriol has
no evident impact outside the muscular-skeletal, parathyroid, and fat cells.

However, the higher nmol-range concentrations of calcitriol generated intracellularly
in response to TLR signaling provide (physiological) intracellular autocrine/intracrine sig-
naling crucial for immune functions to overcome threats like infections [177]. Consequently,
a holding mechanism increases serum levels, i.e., beyond a threat like detecting unfamiliar
proteins or antigens in the circulation or local tissues [178,179]. The sporadic increases in
the synthesis of calcitriol and VDR in response to TLR-4 signaling ensure the formation of
sufficient calcitriol–VDR complexes to modulate transcriptions and intra-cellular autocrine
signaling and genomic modulation, as and when needed [178].

The mechanisms mentioned above regulate inflammation and oxidative stresses
through the abovementioned mechanisms, primarily by suppressing inflammatory cy-
tokines and enhancing the synthesis of anti-inflammatory cytokines [177]. The immunomod-
ulatory effects of vitamin D include the activation of immune cells such as T and B cells,
macrophage and dendritic cells, and the enhanced production of several antimicrobial
peptides and neutralizing antibodies [108,180].

3. Vitamin D Deficiency and Vulnerability to Infections

Vitamin D modulates the innate and adaptive immune systems [178,181]. It enhances
innate immunity via complex mechanisms [182,183], including the expression of antimicro-
bial peptides like cathelicidin in various cells, including keratinocytes, epithelial cells, and

https://c19early.org
https://c19early.org
https://c19early.org/d
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monocytes [184]. Vitamin D also down-regulates inflammatory responses through multiple
mechanisms, including dampening the RAS [183], switching Th1 cells to Th2 and Th17
to Treg cells [185,186], and increasing the expression of MAPK phosphatase-1 (MKP-1).
Consequently, the latter inhibits p38 activation and reduces pro-inflammatory cytokine
production in human monocytes/macrophages, as demonstrated when stimulated with
lipopolysaccharides (LPS) [187].

3.1. Vitamin D Deficiency Increases Infection Vulnerability

Individuals with hypovitaminosis D are at a heightened risk of developing COVID-19
(and other infections) and experiencing unfavorable clinical outcomes [157,158,188,189]. In
addition to vitamin D’s robust anti-inflammatory, anti-oxidant, and antimicrobial prop-
erties [148,176], intracellularly-generated calcitriol offers other beneficial effects. These
include enhanced cell repair, reduced apoptosis [190], and the protection of epithelial and
vascular endothelial cells [191]. In addition, it mitigates pregnancy-associated complica-
tions [179,180] and reduces all-cause mortality [192]. As a result, maintaining vitamin D
sufficiency helps in rapid recovery and reduces complications and death from SARS-CoV-2
infection [157,193].

Studies reported that calcitriol inhibits the production of pro-inflammatory cytokines via
T cells. Moreover, when combined with IL-2, 1,25(OH)2D3, it promotes the regulatory func-
tion of T cells, thereby contributing to immune regulation and homeostasis [194]. Numerous
studies, including meta-analyses, have shown an inverse correlation between serum vitamin
D levels and the severity of COVID-19 [125,129,157,158,189,195]. Therefore, it is unsurprising
that vitamin D deficiency aggravates complications from COVID-19 [157,158,188,189].

Hypovitaminosis D and SARS-CoV-2 infections weaken epithelial cell gap junctions,
potentially facilitating the passage of substances, fluids, and microbes across membranes
and allowing viral dissemination [196]; when combined with other micronutrients like
selenium and zinc, vitamin D provides a protective effect and enhances the physiological
functions of tight cell gap junctions in epithelial cells [197]. This synergy improves the
effectiveness of the tissue barrier, particularly in preventing the entry and propagation of
microbes, particularly viruses [198,199].

3.2. Hypovitaminosis D Causes Immune Cell Dysfunction

Vitamin D deficiency leads to immune dysfunction, heightening susceptibility to in-
fections and autoimmune disorders [4]. Low vitamin D reduces ACE-2 expression and
increases viral loads, replication, and dissemination [200]. It also increases the potential
of mutations (also after COVID-19 vaccines) [201–203] and could promote the naturally
evolving gain of functions in viruses. For instance, dominant mutations enhance the affin-
ity between the spike protein receptor-binding domain (RBD) and the ACE-2 receptor
molecules [203], as seen in variants like Delta and Omicron, resulting in heightened infec-
tivity (R0) [204,205], as illustrated in recent dominant mutants such as Omicron BA.2 [204].

Natural and vaccine-mediated neutralizing antibodies bind either to or near the ACE-2
binding region of the RBD [206]. Consequently, critical mutations in the viral RBD interfere
with their recognition by neutralizing antibodies, leading to immune evasion. Moreover,
Omicron variants BA.4 and BA.5 and other newly described dominant mutations notably
occur in the L452R and F486V regions of the RBD, impairing the immune neutralization of
viruses [197]. These mechanisms have been documented using sera from individuals who
have received triple vaccination [205].

3.3. Vitamin D Insufficiency and Chronic Diseases

Epidemiological and case-control studies reported strong associations between vitamin
D deficiency and several immune-related chronic diseases, such as type-1 diabetes [207,208],
type-2 diabetes [209], connective tissue disorders [210], inflammatory bowel disorders [211],
chronic hepatitis [212], asthma [213], respiratory infections [45], and cancer [214,215].
However, interventional studies have yielded weak data primarily due to poor study
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designs [5,216–218]. With a dysfunctional immune system and low ACE-2 expression, this
is unsurprising.

Aging and chronic diseases [219,220] have a higher prevalence of hypovitaminosis D,
and most of these conditions have reduced ACE-2 expression [29,221]. Since ACE-2 has
protective functions, it is predictable that its lower expression in aging and co-morbidities
increases SARS-CoV-2-associated complications and deaths [220]. Additionally, the lower
expression of ACE-2 is reported in chronic conditions such as hypertension, obesity, and
diabetes [197], which are also associated with an increased risk of complications from
SARS-CoV-2 infection [157,158,188,189,222,223].

Therefore, the fundamental vulnerability in aging and co-morbidities may lie in
hypovitaminosis and the low expression of ACE-2, illustrating the interlink between the
mentioned chronic conditions and increased infection vulnerability. These data support
that the synergistic adverse effects of hypovitaminosis D and reduced ACE-2 expression in
patients with chronic diseases heighten risks for symptomatic COVID-19, complications,
and deaths [220,221].

3.4. Co-Morbidities and Disease Vulnerability

Over the last 20 years, over 8000 clinical research articles have been published illus-
trating a robust inverse association between serum 25(OH)D concentrations and disease
vulnerability, severity, and deaths from various diseases [224,225], especially from in-
fections [4,226,227]. Despite the country’s location, gross national products, healthcare
expenditure, or access to healthcare, older people with co-morbidities [18] and institution-
alized people have shown to have the highest prevalence of severe vitamin D deficiency
(e.g., serum 25(OH)D concentrations less than 12 ng/mL) [162,228,229].

Co-morbidities are strongly associated with low serum 25(OH)D and ACE-2 lev-
els [230]. These groups include nursing home residents, developmental disability centers,
group homes, incarcerated people, and routine night shift workers [29]. They have the
highest rates of hypovitaminosis D and experience complications [231], ICU admissions,
and deaths from SARS-CoV-2—this was observed vividly during the early part of the
COVID-19 pandemic [125,232–237]. One common factor in the groups mentioned above
is the low expression of ACE-2 [220,231]. Therefore, supplementing them with sufficient
vitamin D daily (or once a week) dampens the RAS system (thus subduing inflammation)
and enhances the ACE-2 expression, reducing disease severity and co-morbidity [220,231].

Such an approach has significantly reduced symptomatic SARS-CoV-2 infections, com-
plications, and deaths [13,234,236,238,239]. However, this expectation failed to materialize
during the pandemic because health agencies neglected this important natural defense
mechanism [240]. This failure to boost the immune systems with simple remedies like
vitamin D, the denial of natural immunity, disallowing the use of early repurposed thera-
pies, and reliance on vaccination alone to control the pandemic [241,242] have increased
hospitalizations and deaths from COVID-19 [193,231,243].

4. Effects of SARS-CoV-2 on the Immune System

Having hypovitaminosis D pre-pandemic or pre-infection increases the risks and
vulnerability of SARS-CoV-2 [130]. Moreover, vitamin D deficiency at the time of diagnosis
of SARS-CoV-2 infection significantly increased disease severity and mortality [13,43,55,56].
In contrast, vitamin D sufficiency is protective against severe COVID-19 disease and
death [13,46,57,58]. These data support the satisfaction of Bradford Hill’s criteria for
establishing that hypovitaminosis D increases the risks of complications from
SARS-CoV-2 [18,59,244,245]. Evidence also supports that vitamin D deficiency is a cause of
vulnerability, severity, and mortality from the SARS-CoV-2 virus [13,43,46–50].

The RBD of the SARS-CoV-2 spike protein interacts with membrane-bound ACE-2
receptors [246–248]. Subsequently, the serine protease TMPRSS2 cleaves the spike protein
into two functional subunits: S1 and S2. Following this cleavage, the S2 subunit undergoes
a conformational change, enabling fusion with the host cell membrane and facilitating en-
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docytotic internalization [103,249,250]. The Two-Pore Segment Channel 2 (TPC2) molecules
in the endo-lysosomal system also facilitate the entry of SARS-CoV-2 into human cells [249].
This process is activated by ionized calcium (Ca2+), subsequently activating nicotinic acid
adenine-dinucleotide phosphate (NAADP) intracellular messengers [251].

4.1. Physiology and Pathological Pathways of the RAS Axis

In the RAAS system, the enzyme renin (the rate-limiting step of RAS) activates an-
giotensinogen into angiotensin-I, and ACE-1 generates Ang-II (Figure 2). Renin catalyzes
the formation of pro-peptide Ang-I and promotes the expression of ACE-1. Increased
Ang-1 (relatively inactive molecules) leads to the increased synthesis of Ang-II via
ACE-1—a potent vasoconstrictor peptide (Figure 2). Ang-II directly elevates peripheral
vascular resistance and hypertension (especially pulmonary). Moreover, it also activates
pro-coagulatory pathways, inflammatory cytokines, and interstitial fibrosis via the Ang-II
receptor type 1 (AT1) receptors [93,100]. Figure 2 illustrates the normal, physiological, and
alternative pathological pathways of the RAS.

 

Figure 2. Pathological and physiological responses of the renin-angiotensin system. Peach and
green boxes illustrate the renin-angiotensin system’s regulatory and counter-regulatory physiologic
pathways. When excess angiotensin-II (Ang-II) is synthesized, as in the case of hypovitaminosis
D and SARS-CoV-2 infection, this leads to the over-activation of the AT1 receptors (AT1-R) with
pathological manifestations, as indicated in the peach colored boxes [⇑ = increased; ⇓ = reduced;
ARDS = acute respiratory distress syndrome; RAS, renin-angiotensin system; ACE, angiotensin-
converting enzyme; ACE-2, angiotensin-converting enzyme 2; Ang 1–7, angiotensin 1–7; Ang-
I, angiotensin-I; Ang-II, angiotensin-II; AT1R, type 1 angiotensin-II receptor; MasR, MAS proto-
oncogene receptor. PHT, pulmonary hypertension].

The risk of the dysregulation of the RAS is high in hypovitaminosis D, which has less
control over the enzyme renin. Severe coronaviral infections can lead to a cytokine storm,
causing lung injury with ARDS and initiating coagulatory abnormalities [77]. SARS-CoV-2
primarily affects lung tissues, pneumocytes, alveolar interstitium, and capillaries. The
alveolar epithelial cells, the port of entry of SARS-CoV-2, have high concentrations of
ACE-2 receptors on their membranes [252]. ACE-2 expression is down-regulated with
the viral infection, and the ACE-2/Ang(1–7)/Mas receptor (MasR) axis is suppressed [77],
which augments the classic RAS, leading to diffuse inflammations and associated adverse
effects. This cascade of events can cause severe inflammation, oxidative stress, and lung
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damage, leading to fluid extravasation into soft tissues, causing pulmonary edema and
fibrosis [93,252].

4.2. Renin-Angiotensin System Related to SARS-CoV-2

As mentioned above, calcitriol is a crucial regulator of the RAS axis, mainly by sup-
pressing renin gene expression, a rate-limiting step of synthesis of Ang-II via cyclic AMP
(cAMP)-dependent PKA signaling [74]. Calcitriol independently increases the expression of
ACE-2 [253], reducing Ang-II and increasing the generation of Ang(1–7), suppressing the for-
mation of the CRE-CREB-CBP complex [70] and keeping RAS activity under control [197].
Meanwhile, certain viral infections like SARS-CoV-2 stimulate RAS activity, aggravating
the situation in those with vitamin D deficiency and making them more vulnerable to
developing cytokine storms [19,70].

SARS-CoV-2 infection in individuals with severe vitamin D deficiency markedly
increases the vulnerability to severe complications, including ARDS and death [254–256].
Low ACE-2 concentrations in such persons [256] significantly increase the susceptibility
to contract viruses, especially coronaviruses, and develop complications [117,146]. Once
infected, coronaviruses indirectly increase the renin and, reduce ACE-2 and soluble ACE-2
concentrations. The latter is partly caused by the consumption (i.e., internalization and
destruction) of membrane-bound ACE-2 receptors [59]. Low ACE-2, in conjunction with
the over-activation of the RAS [55], leads to the excess and uncontrolled production of
Ang-II, leading to severe adverse effects, increasing complications, the risk for cytokine
storms, and death [19,197].

Also, widespread inflammation and oxidative stress injure the pulmonary epithe-
lial and vascular endothelial cells and their basement membranes [257], impairing tight
junction, with virus dissemination and fluid leakage into soft tissues [257], including the
lungs, pericardium, intestine, and brain [29,196,258]. Pulmonary epithelial damage causes
hypoxia and increases the risk of pneumonia and ARDS [69,70]. The endothelial abnor-
malities lead to micro-thrombosis, embolization, and intravascular thrombosis [259,260].
Figure 3 illustrates the RAS axis in a normal physiological state, in an activated state with
hypovitaminosis D, and in the presence of SARS-CoV-2 infection [19].

4.3. Regulation of Inflammation by Vitamin D via the RAS

Vitamin D is a potent negative endocrine regulator in the RAS through a canonical
pathway [197]. It achieves this by inhibiting the cAMP response element-binding protein
(CREB), a key transcription factor for renin gene regulation [74]. Vitamin D-driven sup-
pression of renin [261] reduces RAS activity, such as lowering the molecular expression
of ACE-1 and Ang-II while increasing the expression of ACE-2 [74,253]. These effects
have been observed both in vitro and in vivo [253]. Notably, low serum levels of 25(OH)D
concentrations are inversely correlated with higher RAS activity, elevated plasma renin
activity, and Ang-II levels, contributing to increased blood pressure [262–264].

In studies using LPS-exposed rat lung tissue, calcitriol increased ACE-2 expression
while reducing renin, angiotensin II, ACE, and AT1 receptor expression. Additionally,
calcitriol exhibited a dose-dependent reduction in the permeability of blood vessels in rat
lungs, mitigating damage induced by LPS [253]. Activating the ACE-2/Ang(1–7)/MAS
axis by vitamin D further enhances the production of ACE-2 and Ang(1–7) concentrations.
Ang(1–7)’s vasodilatory, anti-inflammatory, and anti-thrombotic effects help counteract
hypertension, inflammation, and coagulatory abnormalities [265–267] (Figure 2), mitigating
the adverse effects caused by SARS-CoV-2 and its spike protein.

As previously mentioned, vitamin D also blocks viral entry, strengthens immunity by
tightening epithelial gap junctions, and inhibits SARS-CoV-2 transcription enzymes [60],
thereby combating the viral infection. Vitamin D deficiency over-activates the RAS with
the inefficient counter-regulatory activation of ACE-2/angiotensin(1–7)/Mas axis [100,268],
increasing the risks for ARDS [197]. Consequently, vitamin D deficiency is a critical
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component that exacerbates COVID-19 via the over-activation of RAS with an excess
generation of Ang-II [197].

 

Figure 3. This diagram outlines the status of the renin-angiotensin axis (RAS) axis: (A) physiological
status, (B) pathological/activated status in the presence of vitamin D deficiency, and (C) following



Biology 2024, 13, 831 14 of 32

SARS-CoV-2 infection. RAS axis homeostasis is disrupted by hypovitaminosis D. SARS-CoV-2 or
other coronal viral infections markedly activate the RAS, leading to pathologically elevated levels of
angiotensin -II and the suppression of ACE-2. This hyperactivation of the RAS leads to increased
complications and mortality (↑ = increased; ↓ = reduced; ACE: angiotensin-converting enzyme;
ARB: angiotensin receptor blockers; AT1R: type 1 angiotensin-II receptor; ARDS: acute respiratory
distress syndrome).

Vitamin D and inhibitors of ACE-1 and Ang receptor blockers work together indirectly
to decrease renin synthesis, thereby reducing the activity of the RAS and the synthesis of
Ang-I and Ang-II [66]. Angiotensin receptor blockers (ARBs) also inhibit the generation
of Ang-II and decrease the stimulation of the angiotensin-1 (AT1) receptor. It has also
been proposed that CD147/Basigin receptors bind to epitopes on the spike protein-S of the
SARS-CoV virus, facilitating viral entry through endocytosis [269]. Therefore, blocking
CD147/Basigin could be a target for drug development against COVID-19 [270]. More-
over, vitamin D indirectly regulates SARS-CoV-2 by modulating ACE-2 and CD147 re-
ceptor molecules [271,272]. The involvement of vitamin D and ACE-2 in modulating the
SARS-CoV-2 virus [197] and its effects on the RAS are illustrated in Figure 4.

 

Figure 4. Vit D strengthens innate and adaptive immune systems. This summary outlines the
correlation between vitamin D, angiotensin-converting enzyme-2 (ACE-2), angiotensin-converting
enzyme inhibitors (ACEi), and angiotensin II receptor blockers (ARBs) concerning severe acute
respiratory syndrome coronavirus-2 (SARS-CoV-2) and their impact on COVID-19 morbidity and
mortality (↑ = increased; ↓ = reduced; RAS: renin-angiotensin-system; CVS: cardiovascular system;
ACE: angiotensin-converting enzyme; ARB: angiotensin receptor blockers; AT1R: type 1 angiotensin-
II receptor; ARDS: acute respiratory distress syndrome; HTN: hypertension).

Figures 3 and 4 illustrate multiple mechanisms of SARS-CoV-2 that dysregulated
the RAS, reducing ACE-2 and increasing Ang-II levels. Vitamin D, ARBs, and ACEi
can intervene positively in these cycles initiated by the virus, particularly in individuals
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with severe vitamin D deficiency. Vitamin D plays a crucial role by modulating the RAS,
inhibiting Ang-II synthesis, and up-regulating ACE-2 expression, which mitigates the
harmful effects of SARS-CoV-2 [19].

Ang-II type 1 receptor blockers (ARBs) and ACEi medications influence RAS, poten-
tially mitigating the dysregulation caused by SARS-CoV-2 [19]. Together, these interven-
tions aim to dampen the vicious cycles initiated by the virus, potentially reducing the
morbidity and mortality associated with COVID-19, especially in individuals with severe
vitamin D deficiency. ACEi and ARBs are indicated clinically in hypertension and other
cardiovascular diseases [197]. These agents have been shown to mitigate acute lung injury
by restoring the balance between two regulatory processes. Preclinical and clinical studies
support the evidence of RAS disequilibrium in COVID-19 and the beneficial role of RAS
modulation [252].

5. ACE-2 Receptor, Vitamin D, and SARS-CoV-2

Following the internalization of the ACE-2 receptor complex, the SARS-CoV-2 virus
replicates using the host’s cell machinery [273]. The increased infectivity (R0) of SARS-CoV-2
and its mutants is attributed partly to the heightened affinity of their spike proteins to cell
surface ACE-2 receptors [204,274]. Therefore, ACE-2 receptors are potential targets for drug
development to prevent SARS-CoV-2 from entering human cells [249,251,274]. Respiratory
tract epithelial cells co-expressing ACE-2 and TMPRSS2 molecules are the primary targets
for SARS-CoV-2 entry [275]. The blockage of TMPRSS2 could serve as a molecular target
for new drug development to prevent cellular access by COVID-19 [276].

5.1. Reduction in Viral Load through Soluble ACE-2

In the circulation, soluble ACE-2 molecules bind with SARS-CoV-2, facilitating the
transport of these complexes to natural killer (NK) cells and macrophages for subse-
quent destruction [59]. This neutralization of viral particles prevents them from reaching
membrane-bound ACE-2 receptors in lung and vascular epithelial cells. Since viruses
cannot replicate outside of host cells, the binding of SARS-CoV-2 to soluble ACE-2 in the
extra-cellular fluid could inhibit the replication of SARS-CoV-2 [37]. Contrary to earlier
publications, the in vivo up-regulation of ACE-2 does not exacerbate but mitigates the
effects of SARS-CoV-2 [277,278].

Studies have demonstrated that soluble ACE-2 can reduce viral load in vitro and
protect against infection in preclinical models. For instance, Monteil et al. (2020) showed
that human recombinant soluble ACE-2 (hrsACE-2) significantly blocked the initial stages
of SARS-CoV-2 infections in engineered human blood vessels and kidney organoids, high-
lighting its potential as a therapeutic agent [104]. In contrast, some research indicated
pharmacological strategies to reduce ACE-2 expression, such as using ursodeoxycholic
acid (UDCA) to reduce the infection rate of SARS-CoV-2 by targeting the farnesoid X
receptor (FXR) [279]. Further research is ongoing to evaluate the efficacy and safety of
soluble ACE-2 in clinical settings, aiming to offer a novel approach to mitigate the impact
of COVID-19 [59].

Nevertheless, it is notable that the levels of soluble ACE-2 required to inhibit
SARS-CoV-2 infection may be above physiological levels. Soluble ACE-2 could enhance
SARS-CoV-2 [19] infection at physiological levels by forming a complex with the virus
that enters cells via endocytosis through the AT-1 surface receptor [280]. Overall evidence
suggests that while increased ACE-1 activity may be harmful, the increased expression
of ACE-2 is beneficial in controlling coronaviruses [281,282]. Therefore, discontinuing
ACE inhibitors (ACEi) and angiotensin receptor blockers (ARBs) solely due to COVID-19
infection is not recommended [19].

5.2. Reduction Consequences of the Lower Expression of ACE-2

SARS-CoV-2 also reduces ACE-2 expression, further hampering protective physi-
ological functions of the ACE-2/angiotensin(1–7)/Mas axis [100,268] and increasing the
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risk for pulmonary and cardiac complications [278]. Despite using the ACE-2 receptor
by SARS-CoV-2 S-protein to enter human cells, up-regulation does not increase infection
vulnerability [19,278]. Meanwhile, hypovitaminosis D not only reduces ACE-2 synthesis
but also exacerbates the over-production of Ang-II [19,283]. These increase the risks for
abnormal coagulation and interstitial fibrosis [93]. The increased Ang-II creates patho-
logic vasoconstriction, causing pulmonary hypertension (Figure 4), and liberates excessive
amounts of harmful cytokines, causing systemic inflammation that could lead to cytokine
storms [18].

Young children have been observed to have lower expression levels of ACE-2 in
their nasal respiratory tract epithelia than adults [197]. Except for those who are immuno-
suppressed or have hypovitaminosis D, children have stronger innate immunity. Conse-
quently, they are less susceptible to severe COVID-19 complications [284]. The binding
process of SARS-CoV-2 also involves cell-membrane-bound heparan sulfate proteoglycans
(HSPG). Lactoferrin, a nutrient found in mammalian milk, interferes with SARS-CoV-2 bind-
ing to HSPG and membrane-bound ACE-2 receptors, potentially reducing coronaviruses’
entry into human host cells [285].

SARS-CoV-2 infection significantly reduces ACE-2 concentrations [197] and disrupts
the balance of ACE-2/ACE-1 ratio. It, initiating a pathological cycle, worsens in those
with hypovitaminosis D. Besides, SARS-CoV-2 up-regulates metallopeptidase ADAM17
molecules, enhancing the RAS activity and increasing the production of the inflammato-
genic Ang-II [286–290].

Unlike epithelial and immune cells, erythrocytes and platelets lack membrane-bound
ACE-2 receptors [291]. However, the interaction of the spike protein with CD147 receptors
on platelets and erythrocyte membranes can lead to platelet aggregation and erythrocyte
abnormalities [271,292]. SARS-CoV-2-induced damage to gap junctions and epithelial
barriers results in the loss of epithelial cell integrity, which is aggravated in the presence of
hypovitaminosis D. This damage also affects endothelin function, impairing gas exchange
in pulmonary epithelia [100,248,276–278,284,285,293].

5.3. Restriction of Generic Medication Use and Conflicts of Interest

Despite the availability of over 200 independent RCTs and extensive data on vitamin D re-
lated to preventing and treating COVID-19 [200,294], regulatory agencies withheld approvals
for the use of vitamin D [240,295]. Preventing access and use of widely available, cost-effective,
generic agents, such as vitamin D and ivermectin [296,297], may have proven detrimental to
patient welfare [193,242,295], increasing hospitalizations and deaths [48,132,240].

The actions mentioned above may have been driven by the desire to maintain Emer-
gency Use Authorization (EUA) for vaccines and anti-viral agents [298]. However, this
created a scenario for the approval and use of COVID-19 vaccines and anti-viral agents
under (EUA), but not widely available, cost-effective generic agents like vitamin D and
ivermectin [48,193,242,298]. The lack of approvals for repurposed early therapies may have
harmed people [48,132,240,294,296,297,299].

5.4. ACE-2—A Double-Edged Sword in SARS-CoV-2 Infection

Whether ACEi and ARBs play a harmful or helpful role in COVID-19 remains contro-
versial [300,301]. Theoretically, it has been suggested that increased ACE-2 membrane recep-
tors on epithelial cells could potentially increase the cellular entry of SARS-CoV-2 [274,302].
Consequently, it has been hypothesized that the increased ACE-2 receptors resulting from
ARBs, ACEi, or vitamin D up-regulation might enhance SARS-CoV-2 entry via epithelial
cells [278], thereby increasing cellular infection [248]. However, subsequent data did not
support the view that ACEi and ARBs increase the risk of SARS-CoV-2 infection or worsen
COVID-19 outcomes [19,277,281].

Soluble ACE-2 can effectively mimic the membrane-bound ACE-2, to which the
SARS-CoV-2 spike protein binds, sequestering the virus and inhibiting its ability to infect
host cells. The excess synthesis of ACE-2 soluble receptor spills into the bloodstream,
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potentially decoying and removing the SARS-CoV-2 virus and reducing viral load. Because
of the mechanisms of action, soluble ACE-2 has emerged as a potential therapeutic strategy
to neutralize SARS-CoV-2 (and other coronaviruses) in the bloodstream by acting as a
decoy that binds the virus and prevents it from entering human cells [19]. These findings
collectively highlight the potential of soluble ACE-2 and other ACE-2-targeted therapies in
mitigating the impact of COVID-19 [197].

5.5. Importance of Strengthening the Immune System to Overcome Infections

The body’s initial defense against invading pathogens is the innate immune system
that relies on adequate vitamin D levels to function effectively [13,51]. Ensuring vitamin D
sufficiency in the population is a quick and cost-effective approach to promoting a robust
immune system. Additionally, optimal immune function requires other micronutrients,
such as magnesium, zinc, omega-3 fatty acids, vitamin K2, resveratrol, and quercetin [67],
and comprehensive mental and physical health support. By addressing these nutritional
and lifestyle factors, individuals can enhance their immune response and overall well-being.

The mentioned approach would ensure the maintenance of a robust innate immune
system by preserving sufficient vitamin D, calcitriol receptors (CTR/VDR), and CYP27B1
expression through the production of calcitriol within immune cells [5,105]. The combined
deficiencies of vitamins D and K2 could elevate the risk of cardiovascular events, adverse
cardiac remodeling [303], and mortality and add to all-cause mortality compared to in-
dividuals with adequate levels of both vitamins. Therefore, maintaining sufficient levels
of both vitamins D and K is crucial for overall health and reducing the risk of adverse
outcomes [304].

Strengthening the immune system is crucial for protecting against SARS-CoV-2 in-
fections and reducing the risk of high viral loads, which can lead to viral mutations with
greater infectivity and immune evasion capabilities [193,242]. Numerous RCTs and meta-
analyses have concluded that vitamin D supplementation protects against acute respiratory
tract infections, particularly in individuals with profound hypovitaminosis D [305]. Main-
taining adequate physiological levels of 25(OH)D supports a robust immune function that
reduces the risk of respiratory infections, including those caused by SARS-CoV-2 [189].

6. Discussion

Numerous studies have explored the complex interactions between vitamin D and
the immune system. However, it is essential to note that this article has focused on
highlighting selected critically relevant studies. As previously mentioned, vitamin D is
crucial in modulating and strengthening innate and adaptive immune systems. It achieves
this by up-regulating or down-regulating the transcription of target genes [12] through the
calcitriol receptor (CTR). Additionally, vitamin D prevents the weakening of epithelial cell
barriers [190], induces the expression of antimicrobial peptides such as cathelicidin, and
up-regulates MKP-1 to inhibit inflammatory cytokines [306]. Furthermore, in conjunction
with interleukin-2, vitamin D promotes T cell regulation, further contributing to immune
system modulation [194].

Strengthening the immune system protects against SARS-CoV-2 infections and greater viral
loads, preventing the survival of viral mutations with greater infectivity and immune evasion
capabilities. In addition to these general immune benefits, vitamin D and lumisterol inhibit
SARS-CoV-2 transcription enzymes, reducing viral replication and infection [307]. Studies,
including meta-analyses, have concluded that vitamin D supplementation protects from acute
respiratory tract infection, especially in those with profound hypovitaminosis D [307].

Vitamin D counteracts the vasoconstriction, pulmonary hypertension, coagulation,
and interstitial fibrosis caused by SARS-CoV-2 by inhibiting the transcription factor CREB to
down-regulate renin [93], the rate-controlling step of the RAS system, resulting in reduced
Ang-II production [66]. Secondly, vitamin D up-regulates ACE-2 [253], which counteracts
Ang II. Converting Ang II into Ang(1–7) by ACE-2 makes less Ang-II available. This reduces
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Ang-II levels and causes the production of Ang(1–7), which, via its MAS receptor, exhibits
vasodilatory, anti-inflammatory, and anti-thrombotic effects to prevent pulmonary injuries.

Vitamin D enhances the expression of ACE-2, but some have raised concerns that
this could exacerbate the disease caused by SARS-CoV-2, as the virus exploits membrane-
bound ACE-2 to invade epithelial cells [274,308–310]. However, as described above, this
potential risk is mitigated by the excess synthesis of ACE-2 molecules, which spill over
into the bloodstream as ACE-2-soluble decoy receptors. These soluble ACE-2 receptors
bind to SARS-CoV-2 viruses and escort them to natural killer cells and macrophages
for destruction [256]. This process has been confirmed in in vitro systems [104]. If this
also occurs in vivo, this process will help reduce infection and viral load, minimizing
complications and deaths from SARS-CoV-2 [19,286,311,312].

Therefore, rather than the associated risk of facilitating an increased entry of
SARS-CoV-2 viruses, the up-regulation of ACE-2 by vitamin D sufficiency may reduce
viral load, thus mitigating the effects of SARS-CoV-2 and decreasing the risks of complica-
tions from SARS-CoV-2 [259,313,314]. However, further investigation is required to gain
an in-depth understanding and confirm if soluble ACE-2 is inhibitory at physiological
levels [280]. These anti-viral processes are enhanced by having sufficient cofactors like
magnesium, iodine, and selenium, which help maintain tight cell junctions in epithelial
cells [198]. Vitamin D-mediated tight gap-junctions help to preserve cellular function and
prevent excessive fluid diffusion and viral spread across cell membranes [59].

ACE-inhibiting enzymes and ARBs can prove beneficial by reducing Ang-II production
and AT1 receptor activation and up-regulating soluble ACE-2 [277,281]. However, we note
limited studies on the direct relationship between vitamin D and SARS-CoV-2 replication.
In conclusion, overall data support that vitamin D sufficiency, ACE inhibitors, and ARBs
reduce the risk of COVID-19, associated complications, and deaths [19,259,286,313].

7. Conclusions

The authors recommend ensuring the vitamin D sufficiency of patients with supple-
mentation to rapidly raise and maintain serum 25(OH)D concentrations above 50 ng/mL
for a robust immune system to protect against coronavirus [51], especially COVID-19,
and other viral diseases (e.g., dengue) to mitigate morbidity/complications and mortal-
ity. Vitamin D is required for effective innate and adaptive immune system function and
counteracts the pathological effects of over-stimulated RAS by SARS-CoV-2. Its beneficial ac-
tions include lowering renin and up-regulating ACE-2, which lowers Ang II and increases
vasodilator Ang(1–7). The latter also has anti-inflammatory and anti-coagulant proper-
ties to mitigate the harmful effects of SARS-CoV-2, especially in the lungs and vascular
system—vitamin D’s upregulation of soluble ACE-2 assists in the elimination of
SARS-CoV-2, thus reducing viremia. ACEi and ARBs appear to contribute to partly reliev-
ing the adverse effects of SARS-CoV-2.
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Glossary/Abbreviations

1,25(OH)2D 1,25-dihydroxyvitamin D
25(OH)D 25-hydroxy vitamin D
ACE-1 Angiotensin-converting enzyme-1
ACE-2 Angiotensin-converting enzyme-2;
Ang(1–7) Angiotensin(1–7)
Ang-I Angiotensin-I
Ang-II Angiotensin-II
AT1R Type 1 angiotensin-II receptor
BMI Body mass index
CVD Cardiovascular disease
IU International Units
MA Meta-analysis
MasR MAS proto-oncogene receptor
NIH National Institutes of Health
PTH Parathyroid hormone
RCTs Randomized controlled clinical trials
RAS Renin-angiotensin system
SARS-CoV-2 Severe acute respiratory syndrome coronavirus-2
SR Systematic reviews
T2D Type 2 diabetes mellitus
TMPRSS2 Transmembrane protease serine-2
UVB Ultraviolet-B
VDBP Vitamin D binding protein
VDR Vitamin D (calcitriol) receptor
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