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Simple Summary: Recent high-throughput technologies such as transcriptomics, proteomics, and
metabolomics have allowed progress in understanding biological systems at different levels of detail.
Even so, it is necessary to integrate multiple omics data sets to achieve a comprehensive under-
standing of the subject under study. In this article, we review the methods used for integrating
transcriptomics, proteomics, and metabolomics data and summarize them in three approaches:
combined omics integration, correlation-based integration strategies, and machine learning inte-
grative approaches. Our goal is to showcase the uses and limitations of each approach, allowing
researchers to choose the more appropriate tool for each scenario to extract a comprehensive view of
a biological system.

Abstract: With the advent of high-throughput technologies, the field of omics has made signifi-
cant strides in characterizing biological systems at various levels of complexity. Transcriptomics,
proteomics, and metabolomics are the three most widely used omics technologies, each providing
unique insights into different layers of a biological system. However, analyzing each omics data set
separately may not provide a comprehensive understanding of the subject under study. Therefore,
integrating multi-omics data has become increasingly important in bioinformatics research. In this
article, we review strategies for integrating transcriptomics, proteomics, and metabolomics data,
including co-expression analysis, metabolite–gene networks, constraint-based models, pathway
enrichment analysis, and interactome analysis. We discuss combined omics integration approaches,
correlation-based strategies, and machine learning techniques that utilize one or more types of omics
data. By presenting these methods, we aim to provide researchers with a better understanding of
how to integrate omics data to gain a more comprehensive view of a biological system, facilitating
the identification of complex patterns and interactions that might be missed by single-omics analyses.

Keywords: omics data; transcriptomics; metabolomics; proteomics; omics integration; multi-omics

1. Introduction

Omics data result from the use of large-scale instruments used in biology. They can
contain measurements of different biomolecules, their functions, and interactions [1]. They
have become an essential tool in modern biology and biomedicine [2,3]. Transcriptomics,
proteomics, and metabolomics are three major omics fields that provide different types of
biological information.

As an indirect measure of DNA activity [4], transcriptomics measures the expres-
sion levels of a set of RNA transcripts (mRNA, non-coding RNA, etc.) in a cell or tissue,
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i.e., the transcriptome. Produced according to the instructions from mRNA, proteins
and enzymes, typically > 2 kDa, are the functional products of genes and play several
roles in cellular processes [5], being the macromolecule responsible for direct interactions
among cells and tissues, besides maintaining the cellular structure [6]. Proteomics then
focuses on the identification and quantification of a set of proteins, the proteome [7]. Smaller
molecules (≤1.5 kDa), referred to as metabolites, are intermediate or end products of
metabolic reactions and regulators of metabolism [8], but are not analyzed with the in-
strumental methodologies used in proteomics. Metabolomics comprehensively analyzes
these molecules, trying to describe and quantify the molecular composition of a sample
(the metabolome). Additionally, a big branch of metabolomics is the study of the lipidic
composition of a sample, its lipidome, and for that, the “Lipidomics” term is used [8]. By
indirectly measuring how a gene is acting, transcriptomics covers the upstream processes
of metabolism, while proteomics is the intermediate step, defining protein structure and
biocommunication. Metabolomics focuses on the regulators and the ultimate mediators of
a metabolic process (usually smaller molecules not more than 1.5 kDa) [9]. Together, these
omics technologies offer a comprehensive and streamlined view of biological processes.

Integrating multiple omics data sets is a challenging but necessary task to fully under-
stand complex biological systems. Data integration can provide novel biological insights
and reveal previously unknown relationships between different molecular components.
Moreover, it can help identify biomarkers and therapeutic targets for various diseases. Sev-
eral methods have been developed for integrating omics data, including correlation-based
approaches, machine learning algorithms, and network-based analyses [4,10–12]

In this article, we will review and discuss different methods for integrating transcrip-
tomics, proteomics, and metabolomics data. We will discuss the strengths and limita-
tions of each method and provide examples of their applications in various biological
contexts. Also, we will cite strategies and articles that use these omics in machine learning-
based studies. By doing so, we hope to contribute to the development of effective strate-
gies for omics data integration and pave the way for new discoveries in biomedical and
biotechnology research.

2. Methods for Integrating Multi-Omics Data

Integrating omics data from several domains is critical for gaining complete knowledge
of biological systems. To uncover critical regulatory pathways and networks, transcrip-
tomics data can be combined with proteomics or metabolomics data. Many methodolo-
gies for integrating transcriptomics and proteomics data have been developed, including
correlation-based approaches and pathway and co-expression analysis. Merging proteomics
data with metabolomics data is also a potential strategy for biomarker development and
disease diagnosis, since it can uncover alterations in metabolic pathways linked to dis-
ease states. Co-expression analysis and network-based techniques have been utilized
successfully in the integration of transcriptomics and metabolomics. Overall, integrating
omics data can be a significant tool for deciphering complicated biological systems and
discovering novel treatment targets [3,10,12–16].

We divide the methods of omics integration into three major approaches: combined
omics integration, correlation-based integration strategies, and machine learning integra-
tive approaches (Figure 1). Combined omics integration approaches attempt to explain
what occurs within each type of omics data in an integrated manner, generating indepen-
dent data sets. Correlation-based strategies apply correlations between the generated omics
data and create data structures to represent these relationships, such as networks. Finally,
machine learning strategies utilize one or more types of omics data, potentially incorpo-
rating additional information inherent to these data sets, to comprehensively understand
responses at the classification and regression levels, particularly in relation to diseases.
These methods enable a comprehensive view of biological systems, facilitating the identifi-
cation of complex patterns and interactions that might be missed by single-omics analyses.
By leveraging these integrative approaches, researchers can achieve deeper insights into the
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molecular mechanisms underlying health and disease, ultimately aiding in the discovery
of novel biomarkers and therapeutic targets.
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Figure 1. Strategies for integrating omics data. Methods are based on correlation-based approaches,
which identify associations between different types of data; machine learning algorithms, which can
predict outcomes and identify patterns across data sets; and combined individual approaches, which
map the interactions and relationships between molecular components.

In this article, we focus on non-approximate strategies for cell-to-cell communication,
such as single-cell RNA-seq (scRNA-seq), due to their level of resolution and ability to
detect communication between individual cells. Bulk analysis assumes that cells are
identical and can model the exchange between cells and the environment [17]. However,
we will provide excellent recent reviews that present strategies for integrating multi-omics
data from single-cell data [17–25].

2.1. Correlation-Based Methods

Correlation-based strategies involve applying statistical correlations between different
types of generated omics data to uncover and quantify relationships between various
molecular components. These methods, summarized in Table 1, then create data structures,
such as networks, to visually and analytically represent these relationships. By mapping
out these correlations, researchers can identify patterns of co-expression, co-regulation, and
functional interactions that occur across different omics layers. This approach allows for
the detection of complex interdependencies and the construction of interaction networks
that highlight key molecules and pathways involved in biological processes.



Biology 2024, 13, 848 4 of 21

Table 1. Summary of methods and strategies for integrating transcriptomics, proteomics, and
metabolomics data using the correlation-based approach.

Integration Approach Strategy or Method Possible Omics Data Main Idea

Correlation-based Gene co-expression analysis Transcriptomics and
metabolomics

Identify co-expressed gene
modules with metabolite

similarity patterns under the
same biological conditions

Gene–metabolite network Transcriptomics and
metabolomics

Perform a correlation network of
genes and metabolites

Similarity Network Fusion Transcriptomics, proteomics,
and metabolomics

Builds a similarity network for
each omics data separately, and
subsequently, all networks are

merged, and the edges with high
associations in each omics
network are highlighted

Enzyme and metabolite-based
network Proteomics and metabolomics

Identify a network of
protein–metabolite or

enzyme–metabolite interactions
using genome-scale models or

pathways databases

2.1.1. Gene Co-Expression Analysis Integrated with Metabolomics Data

Co-expression analysis is a powerful approach for identifying genes with the same
expression pattern that may participate in the same biological pathways or have the same
biological function [26,27]. One strategy for integrating transcriptomics and metabolomics
data is to perform a co-expression analysis on transcriptomics data and identify gene
modules that are co-expressed. These modules can then be linked to metabolites identified
from metabolomics data to identify metabolic pathways that are co-regulated with the
identified gene modules [28–34].

To further understand the relationship between co-expressed genes and metabo-
lites, the correlation between metabolite intensity patterns and the eigengenes of each
co-expression module can be calculated. Eigengenes are representative expression profiles
for each module that summarize the overall expression pattern of the genes within the
module. By correlating these eigengenes with metabolite intensity patterns, it is possi-
ble to identify which metabolites are most strongly associated with each co-expression
module [35–39]. Additionally, you can use the normalized metabolomics data directly in
Weighted Correlation Network Analysis (WGCNA) [27], conducting a module–sample rela-
tionship analysis (in this case, module–metabolite relationship), and identify relationships
between module eigengenes and metabolite intensity.

This approach can provide important insights into the regulation of metabolic path-
ways and the formation of specific metabolites. For example, if a particular co-expression
module is strongly correlated with the production of a specific metabolite, it suggests that
the genes within the module are involved in regulating the metabolic pathway leading
to that metabolite. By combining transcriptomics and metabolomics data, it is possible
to identify key genes and metabolic pathways involved in specific biological processes or
disease states and to develop targeted interventions to modulate these processes, taking
into account that the biological conditions of both omics analyses must be the same.

2.1.2. Gene–Metabolite Network

A gene–metabolite network is a visualization of the interactions between genes and
metabolites in a biological system. Generating and analyzing these networks involves col-
lecting gene expression and metabolite abundance data, integrating the data, constructing
the network, analyzing it, and interpreting the results. Gene–metabolite networks can help
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identify key regulatory nodes and pathways that are involved in metabolic processes and
can be used to generate hypotheses about the underlying biology.

To generate a gene–metabolite network, researchers must first collect gene expression
and metabolite abundance data from the same biological samples. These data are then
integrated using Pearson correlation coefficient (PCC) analysis or other statistical methods
to identify genes and metabolites that are co-regulated or co-expressed [40–42]. For example,
Nikiforova et al., 2005, exhibited a systematic procedure to construct a gene–metabolite
network based on the profiles of transcripts and metabolites [43]. Also, gene–metabolite
networks are constructed using visualization software, such as Cytoscape [44] or igraph [45],
with genes and metabolites represented as nodes in the network and connected with edges
that represent the strength and direction of their interactions.

Once the network is constructed, it can be analyzed using network analysis tools to
identify key regulatory nodes and pathways that are involved in metabolic processes [46–50].
Furthermore, a gene–metabolite network could be constructed with genes and metabolites
specifically deregulated, to focus on the process that is modulated by each biological condi-
tion. Validation and interpretation of the network can then be performed by comparing it
to known metabolic pathways and regulatory networks and using pathway analysis, gene
ontology analysis, and functional enrichment analysis to identify enriched pathways and
processes. Afterwards, you may select genes present in metabolic pathways or biological
processes and obtain the mRNA levels of these genes by real-time qRT-PCR.

One interesting way of constructing a metabolite–gene network is based on the corto
package developed by Mercatelli D. et al. (2020) [51]. First, the metabolite and gene data
are combined into a single matrix, with only the metabolites designated as “centroids” or
hubs in the resulting co-occurrence network. To determine significant edges in the network,
you may set the minimum Pearson correlation coefficient p-value to 0.05 or a chosen cut-off.
To test the significance of each edge in the network, it is necessary to conduct 100 or more
bootstraps. The R code snippet below describes the implementation of this method, with
“full_matrix” as the input matrix, and “metabolites” as a vector containing the metabolite
names, as proposed by Cavicchioli M.V. et al. (2022) [52].

2.1.3. Similarity Network Fusion (SNF)

Similarity Network Fusion (SNF) [53] is a computational approach for integrating
various data types [54,55]. In essence, SNF merges diverse measurements, such as mRNA
expression, protein abundance, miRNA expression, metabolomics, clinical data, question-
naires, and image data, among others, for a given set of samples, like patients. Essentially,
it starts by creating a sample similarity network for each data type and then combines these
networks iteratively using a unique network fusion technique. By operating in the sample
network space, SNF effectively circumvents issues related to different scales, collection
biases, and noise in various data types.

For example, let us say that we have transcriptomics data from N patients (treated vs.
control) and metabolomics data from the same patients. The SNF algorithm constructs a
similarity network for each omics data set separately, where each node represents a patient,
and the edge intensity connecting two patients indicates the level of association based
on that omics data set. Subsequently, both networks are merged, and edges with high
associations in each omics network are highlighted. Clustering can be performed to identify
phenotypic associations among patients and cancer types, for instance. Furthermore, patient
information (such as weight, survival time, among others) can be added to the nodes to
enhance information visualization. Looking at the final network and examining each edge
and its source (whether it is supported by one or more omics datasets), we can see how
each omics dataset supports each group of patients. This allows for comparisons between
different diseases. We highlight that there are limitations in the SNF method, such as
dependence on pre-processing, noise in the input data, and computational complexity.
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2.1.4. Enzyme and Metabolite-Based Network

In this approach, we utilize the available metabolomics and proteomics data to identify
a network of protein–metabolite or enzyme–metabolite interactions using genome-scale
models or pathways databases and then combine it with omics data such as fold changes
to visualize the enriched pathways. There are two main strategies to define such networks,
based on either proteomics or metabolomics data in the first step.

Let us start with the proteomics-based strategy. First, we identify the reactions in
which the identified proteins participate in the genome-scale model, which can be in the
GPR in AND or OR operator. Then, we determine the metabolites that are consumed
(met-c) and produced (met-p) in those reactions. This information is used to construct a
protein–metabolite network, where the protein is derived from the identification of the
GPR, and the metabolites are the reactions that the protein is involved in (met-c and met-p).
Additional details such as compartments, reactions ID, and fold changes can be included to
enhance the network.

The second strategy relies on metabolomics data, which require standardization of the
metabolite names or IDs in the database. Using the identified metabolites, along with the
genome-scale model, we identify all the reactions in which those metabolites participate
and annotate the proteins belonging to the GPR, in AND or OR operator. Then, we assemble
the protein–metabolite network using this interaction information.

Both strategies are based on omics data with the addition of genome-scale models as
the foundation for assembling the network structure. Although the associations from the
Kyoto Encyclopedia of Genes and Genomes (KEGG) can be used directly, we expand to a
whole genome-scale model. The first strategy yields a larger network due to the greater
number of identifications that proteomics data provide compared to metabolomics data.

MetaBridge [56] is a powerful web-based tool that aims to integrate metabolomics
with proteomics data. The tool achieves this by utilizing data from two key databases:
the MetaCyc metabolic pathway database [57] and KEGG. MetaBridge maps metabolite
compounds to interacting upstream or downstream enzymes in enzymatic reactions and
metabolic pathways and generates a list of enzymes that can be integrated with proteomics
or transcriptomics data using protein–protein interaction (PPI) networks. The resulting
PPI network can be used for integrative multi-omics analyses, allowing users to identify
key proteins and pathways that are differentially regulated across the data sets and also
integrate the fold change per protein and select specific submodules from it. By providing
a user-friendly interface and detailed protocols, MetaBridge makes it easy to perform
integrative multi-omics analyses and gain insights into complex biological systems.

2.2. Combined Omics Approaches

Combined omics integration approaches, as summarized in Table 2, seek to explain
the phenomena occurring within each type of omics data through a comprehensive and
integrated framework. These methods generate independent data sets for each omics
layer, such as transcriptomics, proteomics, and metabolomics, and then combine them to
provide a full view of a biological system. This integrated analysis can reveal insights that
would not be apparent when examining each omics data set in isolation, thus enabling
the identification of novel interactions, pathways, and regulatory mechanisms that drive
biological functions and disease states. Here, we will discuss different strategies and the
necessary care for integrating omics data.
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Table 2. Summary of methods and strategies for integrating transcriptomics, proteomics, and
metabolomics data using the combined omics approach.

Integration Approach Strategy or Method Possible Omics Data Main Idea

Combined omics
Pathway enrichment from

differentially expressed genes
and metabolites

Transcriptomics and
metabolomics

Identify pathways enriched in both
types of omics data and perform a

post-analysis with these results

Integrating genome-scale
models with omics data

Transcriptomics and
metabolomics

Integrate metabolic and
transcriptomic data to create
content-specific models and
perform specific metabolic

simulations

Gecko models Proteomics and metabolomics

Integrate proteomics data into an
enzyme model, which can be

validated with metabolomics data
under the same biological

conditions.

Differentially expressed genes
and proteins

Transcriptomics and
proteomics

Identify similarities between the
lists of differentials in the two omics

data sets

Observing delays between
omics data

Transcriptomics and
proteomics

Identify whether there is a temporal
delay in the acquisition of omics

data based on gene expression and
protein abundance

Interactome analysis Transcriptomics and
proteomics

Identify functional relationships
between different proteins and

genes using interactome databases
and fold-change values

2.2.1. Pathway Enrichment from Differentially Expressed Genes and Metabolites

One strategy for integrating transcriptomics and metabolomics data is to perform
KEGG enrichment analysis on differentially expressed genes (DEGs) identified from tran-
scriptomics data and then link the enriched pathways to the metabolites identified from
metabolomics data. This approach can reveal the metabolic pathways that are most af-
fected by changes in gene expression and provide insights into the underlying biological
mechanisms. Additionally, fold-change information from DEGs can be integrated with
metabolomics data to identify metabolites that are significantly changed in abundance and
may play a key role in the observed changes in gene expression.

DEG pathway enrichment may be performed using the clusterProfiler [58] or GSEApy [59]
packages, for example. One way to convert a gene name to Entrez Gene ID, which provides
unique integer identifiers for genes and other loci, or KEGG ID to perform the enrichment
through the clusterProfiler is through the genekitr package using the transId() function
with the argument transTo = “entrez”. The MetaboAnalyst platform [60] may be used to
enhance metabolic pathways with identified metabolites. Furthermore, information from
gene expression, such as fold changes, and metabolite intensity analysis can be integrated
into metabolic pathway figures using the Pathview package [61].

Additionally, it is possible to analyze the correlation between the abundance of metabo-
lites and the expression of genes or transcripts across various biological conditions using
integrated pathway analysis. To perform this analysis, it is necessary to include multiple
time points or a large number of biological conditions. The association cut-off for this
analysis is based on a p-value < α and Pearson coefficients > β, which can be plotted to
determine the extent to which relevant metabolites are correlated with relevant mRNA tran-
scripts. To carry out this analysis, Multi-Omics Factor Analysis (MOFA) [62] is a suitable
approach for determining the degree to which changes in metabolite abundance and mRNA
expression variables are related [63–65]. In addition, correlation analysis can be applied to
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determine the degree of relationship between metabolite intensities/concentrations and
gene expression, but this must be carried out with normalized (post-processing) data. Data
normalization in the post-processing of metabolomics data is usually provided, especially
if the statistical analyses are conducted in MetaboAnalyst.

Also, if a multivariate analysis is chosen, such as Principal Component Analysis
(PCA), it is important to understand the factors that can lead to failure of the analysis of
variance. We point out that data integration through concatenation can become complex
when the data sets to be merged differ significantly in size. Not only do metabolomics and
transcriptomics data sets differ significantly in size, but they are also generated using vastly
different technologies [66]. This means that the data sets have distinct structures, unique
patterns of expected values, dissimilar distributions of underlying noise, and varying levels
of variance. With that in mind, the best proposal is to carry out a PCA biplot for the
metabolites and another for the genes, identify the most correlated metabolites and genes
either with each biological condition or with each principal component (PC1 or PC2), and
then associate this result with the pathway that both belong to.

2.2.2. Integrating Genome-Scale Models with Metabolomics and Transcriptomics Data

Integrating transcriptomics data, genome-scale models (GEMs), and metabolomics
data can provide a comprehensive understanding of cellular metabolism and its reg-
ulation [67]. One approach to integrating these data types is to generate condition-
specific models (CSMs) that incorporate the transcriptomics data and use them to simulate
metabolic fluxes in different situations [68–72]. Here, we describe a strategy for generat-
ing CSMs using GEMs and transcriptomics data and then integrating these models with
metabolomics data.

The first step in this strategy is to generate a GEM that represents the metabolic net-
work of the organism of interest. The GEM should include all the reactions and metabolites
involved in cellular metabolism and should be curated and validated using experimen-
tal data. Once the GEM is generated, it can be used to simulate metabolic fluxes under
different conditions.

Next, transcriptomics data can be used to generate CSMs that incorporate the expres-
sion levels of genes under different conditions. This can be achieved using constraint-
based modeling techniques such as flux balance analysis (FBA) [73] or parsimonious FBA
(pFBA) [74]. CSMs can be generated by constraining the fluxes through the reactions in
the GEM based on the expression levels of the corresponding genes. MEWpy [75] is a
package that covers a wide range of metabolic and regulatory modeling approaches, as
well as phenotype simulation and Computational Strain Optimization (CSO) algorithms.
This makes it a useful tool for generating transcriptome-based simulations with FBA
or pFBA.

Once the CSMs are generated, they can be used to simulate metabolic fluxes in different
conditions and predict the metabolic phenotypes of a cell. However, to fully understand
the regulation of cellular metabolism, it is important to also integrate metabolomics data
into the models.

One way to integrate metabolomics data into CSMs is to use the former to constrain
the fluxes through the exchange reactions that correspond to the measured metabolites. It
is essential to normalize the exchange reactions based on metabolite concentrations in a
metabolic model. For example, if an organism cannot consume the entire concentration
of a metabolite in 24 h, you can estimate the upper exchange flux as follows: [Concentra-
tion]/(1 gDW × 24 h). Moreover, one possibility is using linear programming techniques
to find the flux distributions that are consistent with both the transcriptomics and the
metabolomics data, and this approximation is used to insert the exchange reaction fluxes.
We highlight that there are limitations in the method, such as noise and data variabil-
ity, differences in temporal scales between the omics data, incomplete annotations in the
metabolic model, and limitations in experimental validation.
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2.2.3. Gecko Models

In recent years, the integration of omics data into genome-scale metabolic models
(GEMs) has become a powerful approach for exploring the relationship between genotype
and phenotype for different organisms [76–78]. GEMs allow for the prediction of metabolic
behavior and can be used to design experiments and engineer biological systems. One
such tool that has enabled the integration of proteomics data into GEMs is the GECKO
toolbox [79]. GECKO models take into account enzyme and proteomics constraints to
study phenotypes that are constrained by protein limitations [80–83]. With the GECKO
toolbox, it is possible to generate enzyme-constrained models (ecModels) for a variety of
organisms, including budding yeasts such as Saccharomyces cerevisiae and humans, as well
as build your own model. These models can be used to study the long-term adaptation of
organisms to stress factors and nutrient-limited conditions.

The GECKO models simplify the process of limiting the metabolic fluxes in any GEM
that contains enzymatic data, reducing the variability of constraint-based modeling results
and improving predictions. This approach is executed by representing enzymes as entities
with limited capacities in the corresponding reactions in the model, thereby extending the
genome-scale modeling. In traditional genome-scale modeling, a stoichiometric matrix is
defined that represents the whole metabolism, with columns indicating each reaction’s
stoichiometry, and rows indicating the mass balance for each metabolite. With GECKO, this
approach is expanded by adding new rows to the matrix to represent the enzymes and new
columns to represent each enzyme usage. Kinetic information, in the form of kcat values, is
included as stoichiometric coefficients to convert the metabolic flux in mmol/gDWh to the
required enzyme usage in mmol/gDW. The protein level is included as an upper bound
for each enzyme usage, ensuring that the desired constraint on each flux is respected.

To create your own GECKO model, kcat values of reactions, the molecular weight of
proteins, and protein activity information will be required and can be directly changed
and included in your GEM, because different metabolic groups have different kcat val-
ues and molecular weight distribution [80]. All molecular and enzymatic parameters
could be automatically retrieved from the BRENDA database [84] and/or the UNIPROT
database [85].

The GECKO toolbox is dependent on MATLAB and other packages. There is an option
in Python to work with GECKO models using the MEWpy package. Both require ecModels
and normalized proteomics data.

2.2.4. Strategies for Integrating Proteomics and Transcriptomics Data

The integration of proteomics and transcriptomics data has become a crucial part
of modern Systems Biology research. The combination of these two omics data types
can provide a more comprehensive understanding of biological systems. Here, we will
elaborate on the three strategies for integrating proteomics and transcriptomics data.

One of the challenges in integrating transcriptomics and proteomics data is the dif-
ficulty in obtaining the same sets of differentially expressed genes and differentially ex-
pressed proteins. This is often due to differences in the timing of sample collection for
RNA and protein analysis. RNA samples are typically collected at the transcription stage,
whereas protein samples are collected at the translation stage. As a result, there can be
significant differences in the expression patterns of genes and proteins between these two
stages. Furthermore, RNA and protein stability can also differ, which can further complicate
the comparison between these two types of data.

To overcome this challenge, it is important to carefully plan the experimental design
and sample collection protocols. Ideally, the samples for both RNA and protein analysis
should be collected at the same time point and under the same conditions. If this is not
possible, researchers can try to account for the differences between RNA and protein data by
using statistical methods to normalize the data or by applying machine learning algorithms
to identify patterns of expression that are consistent across both data sets.
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Differentially Expressed Genes and Proteins

The first strategy for integrating proteomics and transcriptomics data is Venn diagram
analysis or Jaccard index calculation. In this strategy, differentially expressed genes (DEGs)
and differentially abundant proteins (DAPs) are identified in the same biological conditions
from both types of omics data. A Venn diagram is then used to identify overlapping
genes and proteins, which can provide insights into the mechanisms underlying a certain
biological condition. This strategy can be particularly useful for identifying key pathways
or processes that are regulated by both proteins and transcripts. However, it is important to
ensure that the transcription and translation processes are aligned at the time of collection
to avoid false positives.

There are articles that show that there is not a great intersection between DEGs and
DAPs [86–95], and others showing a successful intersection [96–100]. This discrepancy is
based on the following: (i) induced and repressed proteins behaving differently, revealing
regulatory and kinetic differences in protein synthesis and turnover; (ii) taking into account
the transcription–translation delay when comparing protein and mRNA levels during
dynamic adaptation; (iii) protein variation being mainly influenced by mRNA concentration
in a new steady state [99]. Furthermore, if there is a significant overlap between DEGs and
DAPs or if there is a GO/KEGG enrichment common to both, using the intersection list is
the most appropriate approach. If there are many differences, the most common strategy
is to construct a Venn diagram of the GO processes and KEGG pathways to identify the
similarities and differences.

Observing Delays between Omics Data

The second strategy for integrating proteomics and transcriptomics data is scatter
plot analysis. This strategy involves plotting the log of the genes fold change by the log of
the proteins fold change. By observing the scatter plot, we can identify whether there is a
correlation between the proteomics and the transcriptomics data. A positive correlation in
the scatter plot suggests agreement in data extraction and provides a better understanding
of the mechanisms underlying the biological condition. Scatter plot analysis can also be
useful for identifying genes or proteins that do not have a direct correlation between their
expression and protein levels based on the problems as cited before.

When we scatter plot the log fold change from a differential genes expression test
(logFCt) versus the log fold change of the protein levels (logFCp), we can observe different
patterns that can provide insights into the agreement or disagreement between the tran-
scriptomics and the proteomics data. In this case, the logFCt and logFCp values increase or
decrease together (Figure 2A), meaning that the genes and proteins are co-regulated in the
biological system. This pattern suggests that there is a good agreement between the tran-
scriptomics and the proteomics data and the protein abundance changes can be explained
by changes in gene expression. If you see a concentration of points above (Figure 2B)
and below (Figure 2C) the 45-degree line in the scatterplot of logFCt versus logFCp, it
means that there is a disagreement between the changes in gene expression and protein
levels for some genes/proteins. In other words, the gene expression and protein levels
of these genes/proteins do not show a consistent pattern across the biological condition
studied. This could be due to various factors such as post-transcriptional regulation, protein
stability, or differences in the sampling and processing methods between the two omics
(transcriptomics and proteomics) data sets.

The R package ReactomeGSA [101] includes a function named “plot_correlations()”
which generates a comparative scatter plot of transcriptomics and proteomics data, allowing
for a quick assessment of the similarity between the two data sets at the pathway level.
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Interactome Analysis

The third strategy for integrating proteomics and transcriptomics data is interactome
analysis. With this strategy, we could generate an interactome from differentially abundant
proteins (DAPs) or differentially expressed genes (DEGs), identify submodules and hubs,
and apply the fold change in gene expression to the interactome. This approach can help to
identify functional relationships between different proteins and genes, providing a more
comprehensive understanding of a biological system. Interactome analysis can also help to
identify potential targets for further analysis, such as drugs or therapies.

First, from the list of DEGs, for example, we can generate an interactome using a
protein–protein interaction (PPI) database, such as BioGRID [102] or STRING [103]. From
the generated interactome, we can extract network metrics and identify hub genes and also
submodules. With the application of the fold change in gene expression in the network,
we can identify submodules with a predominance of a biological condition and apply
biological enrichment to support such predominance.

Second, we can integrate this type of analysis based on co-expression analysis as
well. Once the co-expression modules have been identified, it is possible to construct an
interactome network that represents the interactions between the proteins encoded by these
genes. The interactome can then be visualized and analyzed using network analysis tools
such as Cytoscape, which allows for the identification of subnetworks, central nodes, and
pathways that are enriched for the genes of interest, as well as of potential drug targets or
biomarkers for diseases.

2.3. Machine Learning Methods Based on Omics Data

In this section, we will explore various methods that utilize omics data such as tran-
scriptomics, proteomics, and metabolomics data for supervised and unsupervised machine
learning algorithms (Figure 3). Supervised learning methods involve machine learning
algorithms that use known data–outcome pairs as examples, whereas unsupervised meth-
ods operate on data sets without an outcome variable or prior knowledge of relationships
between observations, dealing with unlabeled data. These strategies employ different
methodologies and can involve the use of one, two, or three types of omics data. Ad-
ditionally, numerous studies and reviews have extended this discussion to cover other
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strategies and provide valuable tools to apply these methodologies with a greater emphasis
on machine learning and multi-omics data [4,6,104–108].
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2.3.1. Transcriptomics Data

Gene expression data can provide insights into the complex interplay between genes
and cellular processes. With the advent of high-throughput technologies such as microar-
rays and RNA sequencing, it is now possible to generate large-scale gene expression data
sets for a wide range of biological systems. In recent years, machine learning algorithms
have emerged as a powerful tool for analyzing gene expression data. By leveraging the
computational power of machine learning, researchers can uncover complex patterns and
relationships within data that would be difficult or impossible to detect using traditional
statistical methods, such as unsupervised machine learning methods.

In the literature, numerous studies have demonstrated the successful application of
classification methods to predict cancer and cell types by utilizing gene expression data
from microarray or bulk RNA-Seq data [109–115] and single-cell transcriptomics [116–122].
The process of employing gene expression data commences with the selection of suitable
data sets, which can be accessed from databases like GEO [123], TCGA [124], and SRA [124].
Subsequently, pre-processing is carried out on the corresponding metadata for the clas-
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sification algorithms, such as data from patients with or without cancer. Following this,
the data set may or may not undergo a feature selection process followed by the applica-
tion of a sampling technique to reach the final classification model, but a cross-validation
step is essential. Each of these steps uses different data sets, pre-processing steps, model
training and prediction algorithms, along with different k-fold cross-validation values,
leading to varying values of accuracy, sensitivity (measuring the proportion of true pos-
itives accurately identified), and specificity (measuring the proportion of true negatives
accurately identified).

It should be noted that the accuracy of machine learning classifiers using RNA-Seq data
is dependent on various factors such as the type of sequencer used, the library preparation
method, and the sample preparation technique. As a result, these classifiers exhibit varying
levels of accuracy, with better performance observed at the transcript level compared to the
gene level [125].

Biomedical researchers need to confirm the biological significance of the list or cluster
of genes associated with a particular condition or developmental process that have been
identified through comprehensive data analysis. To achieve this, they must evaluate
the false-positive rate and conduct an autonomous biological validation. Northern blots
and PCR-based methods are commonly employed to verify gene expression data, and
these methods have the advantages of being able to screen through a large number of
candidates relatively rapidly and perform quantitative measurements. Additionally, in
situ hybridization and immunohistochemistry are used to determine the precise tissue in
which the candidate genes are expressed [126]. Although these methods are not typically
quantitative or high-throughput, they can be used to screen a large number of candidate
genes and, in some cases, be performed in a quantitative manner.

2.3.2. Proteomics Data

With the advent of high-throughput technologies, such as mass spectrometry (MS)
and protein microarrays, it is now possible to identify and quantify thousands of pro-
teins in a single experiment. However, the sheer volume and complexity of proteomics
data presents a challenge for traditional statistical and computational methods. Machine
learning algorithms offer a promising solution for analyzing and interpreting these data,
enabling researchers to extract meaningful information about protein function, interactions,
and disease mechanisms. In this section, we will discuss how machine learning algo-
rithms can be applied to proteomics data, including feature selection, classification, and
clustering methods.

According to the literature, the machine learning algorithms used for proteomics data
are based on retention time prediction, MS/MS spectrum prediction, the identification
of peptides, biomarker identification, bias reduction during data processing, secondary
structure prediction, protein toxicity prediction, protein function, and protein interac-
tions [127–142]. Considering a comprehensive and reliable data integration, processing
proteomics data and utilizing machine learning algorithms to accurately identify and
analyze proteins require a consolidated pipeline. Due to the complexity of proteomics
data, a comprehensive approach to data processing, normalization, quality control, fea-
ture extraction, and statistical analysis is necessary [7]. Without a consolidated pipeline,
the analysis of proteomics data can be prone to errors and inconsistencies, leading to
inaccurate results.

Identifying a biomarker from machine learning models based on proteomics data
poses several challenges, including the need for validation in independent tests and the
demonstration of clinical utility. These challenges are crucial in the translation of a promis-
ing biomarker candidate into a clinical tool. Validating the findings in independent tests is
essential to ensure that the identified biomarker is reliable and reproducible. Demonstrating
its clinical utility is also necessary to prove that the biomarker can effectively diagnose,
monitor, or predict disease outcomes. These challenges highlight the importance of rigorous
testing and validation before the implementation of any biomarker-based clinical assay.
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2.3.3. Metabolomics Data

Machine learning has been applied to metabolomics data to identify biomarkers
associated with diseases, understand metabolic pathways, contribute to the development
of biotechnologies, and predict drug responses. PCA is one of the most widely used
techniques to analyze metabolomics data, where metabolites are reduced into principal
components that represent the majority of the variability in the data. PCA can identify
metabolites that are significantly associated with different biological conditions, such as
healthy and disease states, and can be used to cluster samples based on their metabolic
profiles [143–148].

The variable in projection (VIP) score from the partial least-squares–discriminant anal-
ysis (PLS-DA) is another important method in metabolomics data analysis that can be used
to identify relevant metabolites associated with a particular biological condition [149–155].
The VIP score is a measure of the contribution of each metabolite to the separation between
two groups and is calculated by applying a supervised learning algorithm to the data, such
as the PLS-DA algorithm. The MetaboAnalyst online platform is an example of a tool that
allows researchers to apply VIP score analysis to their metabolomics data, as well as to
perform other statistical and machine learning analyses.

Metabolomics data have been widely used in machine learning models to predict
different types of cancer as well, as they provide valuable information about metabolic
pathways altered in cancer cells. For instance, recent studies used metabolomics data
in combination with machine learning algorithms to distinguish between different types
of cancer, including lung, breast, non-Hodgkin’s lymphoma, and ovarian cancer, and
non-cancer conditions, such as coronavirus disease (COVID-19), type-2 diabetes, acute
myocardial ischemia, schizophrenia, and autism in relation to gestational age [156]. More-
over, the identification of biomarkers in several of these cited studies has the potential
to improve disease diagnosis, treatment, and monitoring. It allows for the discovery of
complex relationships between metabolites and biological conditions that may not be easily
detected through traditional methods.

Transcriptomic data are still used to predict metabolite concentrations using machine
learning models. Auslander N. et al. (2016) [157] demonstrated that the levels of a wide
range of metabolites in breast cancer can be successfully predicted from the transcriptome.
The authors developed a Support Vector Machine (SVM) classifier to identify reaction-gene–
metabolite (RGM) triplets where the gene and metabolite involved in the same reaction
showed a significant association, whether positive or negative.

Selecting the suitable ML algorithm (including linear regression, logistic regression,
support vector machines, k-nearest neighbors, decision trees, random forests, neural net-
works, and deep learning) plays a critical role in the achievement of a metabolomics study.
It is crucial for researchers to be knowledgeable about the advantages of various ML ap-
proaches and to choose the most appropriate one based on their requirements to obtain
accurate and easily understandable results [156,158].

3. Conclusions

In conclusion, integrating multiple omics data types is a powerful approach that can
provide a more comprehensive understanding of biological systems. Transcriptomics, pro-
teomics, and metabolomics offer complementary views of biological processes at the RNA,
protein, and metabolite levels, respectively. By combining these data types, researchers can
gain insights into complex biological phenomena that may not be possible with any single
omics data type alone.

There are several strategies for integrating omics data, including co-expression anal-
ysis, pathway analysis, and network analysis. Each strategy has its strengths and weak-
nesses, and the choice of the approach will depend on the specific research question
being addressed.

Overall, the integration of omics data is a rapidly evolving field, with new methods
and tools being developed to address the challenges of analyzing and interpreting large
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and complex data sets. As technology continues to advance, the integration of omics data is
likely to become even more important for understanding molecular mechanisms in biology.

In this article, we reviewed several methods for integrating omics data and provided
examples of their application in various biological contexts. Moreover, we explored the
applications of omics data in machine learning studies. We hope that this review will
inspire further research in this field and lead to new insights into the complex interplay
between genes, proteins, and metabolites in living systems.
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