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Simple Summary: Vibrio alginolyticus is a Gram-negative bacterium that can infect aquatic animals
such as fish, shrimp and shellfish, causing huge economic losses to aquaculture households and
posing a potential threat to human health. The purpose of this study was to explore the antibacte-
rial effect and mechanism of fermented pomegranate peel polyphenols as a new environmentally
friendly antibacterial agent on V. alginolyticus. The results showed that fermented pomegranate
peel polyphenols could exert antibacterial activity by inducing oxidative stress in V. alginolyticus,
destroying the integrity of cell membrane and cell wall and inhibiting motility, biofilm formation
and metabolic activity. This research will provide an important foundation for the application of
fermented pomegranate peel polyphenols as a new and efficient antibacterial agent to control the
infection of V. alginolyticus in live shrimp and other seafood.

Abstract: Vibrio alginolyticus frequently breaks out in aquatic animal breeding operations involving
shrimp, and it can endanger human health through food and wound infections. The antibacte-
rial effect and mechanism of fermented pomegranate peel polyphenols (FPPPs) on V. alginolyticus
were investigated. The results indicated that FPPPs had a strong inhibitory effect on the growth
of V. alginolyticus, and their minimum inhibitory concentration (MIC) and minimum bactericidal
concentration (MBC) were 2 and 4 mg/mL. FPPPs significantly reduced biofilm formation and biofilm
metabolic activity in V. alginolyticus, down-regulated the expression levels of lafA, lafK, fliS and flaK
genes involved in flagellar synthesis and inhibited swimming and swarming motility (p < 0.05).
Meanwhile, under the treatment of FPPPs, the activities of catalase (CAT) and superoxide dismutase
(SOD) in V. alginolyticus were significantly reduced, and the levels of reactive oxygen species (ROS)
and extracellular malondialdehyde (MDA) were significantly increased (p < 0.05). FPPPs also resulted
in a significant increase in alkaline phosphatase (AKP) activity, protein and nucleic acid content,
as well as conductivity from V. alginolyticus cultures. Scanning electron microscopy (SEM) images
further revealed that V. alginolyticus treated with FPPPs showed leakage of intracellular substances,
abnormal cell morphology and damage to cell walls and cell membranes, with the severity of the
damage in a clear dose-dependent manner. Therefore, FPPPs can be used as a promising food-grade
antibacterial agent, notably in seafood to control V. alginolyticus.

Keywords: Vibrio alginolyticus; fermented pomegranate peel polyphenols; antimicrobial activity;
biofilm; oxidative stress

1. Introduction

Vibrio is a genus of Gram-negative bacteria widely found in reservoirs, rivers, seas
and other aquatic environments [1]. Most of these vibrios are non-pathogenic, and only
a small percentage cause infectious diseases in aquatic animals or humans [2]. However,
the outbreak and epidemic of vibriosis caused by this part of Vibrio not only cause harm
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to aquatic animals but also seriously affect human health [3,4]. Vibrio alginolyticus is a
halophilic marine Vibrio in the genus Vibrio, and its number is among the highest in
seawater vibrio [5]. V. alginolyticus, as a common opportunistic pathogen affecting and
contaminating aquaculture aquatic products, is capable of causing massive mortality in
marine fish, shrimp and shellfish [6–8]. In addition, humans can cause superficial wounds
and eye and ear infections after contact with water contaminated with V. alginolyticus [9,10].
Meanwhile, human consumption of undercooked aquatic food carrying V. alginolyticus can
even lead to diarrhea, gastroenteritis and septicemia [11–13]. Therefore, V. alginolyticus is a
harmful bacterium that causes huge economic losses to aquaculture households and poses
a potential threat to human health.

Antibiotics can effectively prevent and control Vibrio, but long-term use will destroy the
water environment and make pathogenic bacteria evolve drug resistance, and drug residues
even endanger human health [14,15]. Hence, the development of environmentally friendly
and safe new antibacterial agents has become an extremely urgent problem to be tackled in
the field of aquaculture and the food industry. In recent years, medicinal plants and their
extracts have received widespread attention for their favorable antimicrobial effects, such as
cinnamaldehyde [16], shogaol [17], blueberry extract [18] and Fructus Schisandrae Chinensis
extract [19]. Additionally, previous studies have shown that medicinal plants are rich in
an assortment of active ingredients and nutrients [20–22]. They have the advantages of
being natural, effective, inexpensive, non-toxic (or low toxicity) and less harmful to aquatic
animals and the water environment, and it is not easy to generate drug resistance [23,24].
Therefore, it is reasonable and valuable to use them as antibacterial agents.

Pomegranate (Punica granatum L.) is a fruit with high nutritional value, primarily
distributed in subtropical and temperate regions [25]. In China, pomegranate has a long
history of cultivation and rich planting resources and is a kind of plant which is avail-
able for medicine and food [26]. Pomegranate peel accounts for more than 40% the of
pomegranate fruit and is typically discarded as a by-product of processing [27]. Neverthe-
less, pomegranate peel contains a variety of bioactive substances, among which polyphenols
are the main phytochemicals [28,29]. Numerous studies have proved that pomegranate peel
polyphenols (PPPs) can be used for lowering blood lipids and for anti-oxidation, anti-tumor,
anti-inflammatory and antibacterial purposes [30–33]. These health benefits are attributed
to the presence of polyphenol compounds such as punicalagin, ellagitannins, gallotannins
and anthocyanins in PPPs [34,35]. Natural plant-derived foods are rich in polyphenols, but
their bioavailability is low [36]. In the process of fermentation, beneficial microorganisms
can secrete tannase, esterase, phenolic decarboxylase, glycosidase and other substances. At
the same time, tannic acid, proanthocyanidins, gallic acid esters and other macromolecular-
bound phenols were metabolized into quercetin, kaempferol, gallic acid and other free
phenols to improve the biological activity and bioavailability of polyphenols [37]. The PPPs
in this study were extracted by a factory process. Briefly, pomegranate peel is cleaned and
crushed before fermentation, then extracted and concentrated with ethanol, and finally
dried to obtain PPPs. Among them, fermentation has a similar effect with enzymatic
hydrolysis, which can improve the efficiency of extracting polyphenols by destroying the
cell wall of plants and promoting the release of bioactive components in pomegranate peel.
Moreover, in our previous study, it was found that dietary supplementation with fermented
pomegranate peel polyphenols (FPPPs) in feed can improve the survival rate of Pacific
white shrimp (Litopenaeus vannamei) after infection with V. alginolyticus without negatively
affecting their growth performance (unpublished article). This result is not only related
to the fact that FPPPs can improve the antioxidant capacity and immunity of Litopenaeus
vannamei, but it also may be related to the bacteriostatic effect of FPPPs on V. alginolyticus.

However, it is not known whether FPPPs have an antibacterial effect on V. alginolyticus,
and there are few studies on the effect of PPPs on marine bacteria. Therefore, this experi-
ment studied the antibacterial effect of FPPPs on V. alginolyticus and explored its possible
antibacterial mechanism by measuring the growth curve, oxidative stress indexes, extra-
cellular leakage content and bacterial morphology of V. alginolyticus treated with FPPPs.



Biology 2024, 13, 934 3 of 16

Furthermore, the effects of FPPPs on the biofilm formation, biofilm metabolic activity and
motility of V. alginolyticus were also assessed. The results will provide a crucial foundation
for the control of V. alginolyticus by FPPPs as a new environmentally friendly antibacterial
agent in aquaculture and the food industry.

2. Materials and Methods
2.1. Bacterial Samples and Culture Conditions

Vibrio alginolyticus strain ZK2406 (GenBank accession number PP905135) was isolated
and preserved from diseased Litopenaeus vannamei in a shrimp farm in Jiangmen City,
Guangdong Province, China, by the Innovative Institute of Animal Healthy breeding,
Zhongkai University of Agriculture and Engineering. Unless otherwise stated, V. alginolyti-
cus was cultured in lysogeny broth (LB, Hope Bio-Technology Co., Ltd., Qingdao, China)
liquid medium or LB solid agar plates containing 3% NaCl (w/v) at 30 ◦C throughout
the study.

2.2. Reagents

The fermented pomegranate peel polyphenols (HPLC ≥ 60%) used in this study
were purchased from Shaanxi Ciyuan Biotechnology Co., Ltd. (Xi’an, China). The main
components of FPPPs were α-punicalagin (268.42 mg/g), β-punicalagin (274.27 mg/g),
ellagic acid (18.78 mg/g), epicatechin (8.78 mg/g), catechin (3.31 mg/g) and gallic acid
(1.34 mg/g). FPPPs was dissolved in dimethyl sulfoxide (DMSO, Sigma, St. Louis, MO,
USA) and vortexed for 30 s at room temperature and then diluted with LB liquid medium to
prepare an FPPPs stock solution with a concentration of 32 mg/mL that was stored at 4 ◦C.
The final concentration of DMSO in the FPPPs stock solution was 0.1% (v/v), which had
no apparent effect on the growth of V. alginolyticus. The FPPPs stock solution was diluted
with LB liquid medium and the double dilution method to the appropriate concentration
specified in each experiment. In addition, different concentrations of FPPPs used in this
experiment had no significant effect on the pH of LB medium.

2.3. Determination of MIC and MBC

Minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations
(MBCs) of FPPPs against V. alginolyticus were detected using the standard broth microdilu-
tion method as partially modified by Yadav et al. and García-Herridia et al. [38,39]. The
activated V. alginolyticus in LB liquid medium was diluted with phosphate-buffered saline
(PBS) to a cell concentration of about 106 CFU/mL. The 106 CFU/mL bacterial solution
was obtained by establishing the standard curve of bacterial colony-forming units-optical
density at 600 absorbance value and diluting the bacterial liquid. Serial dilutions of the
32 mg/mL stock solution of FPPPs were carried out using LB liquid medium to obtain
samples containing FPPPs at 4, 2, 1, 0.5, 0.25 and 0 mg/mL, respectively. In a sterile
96-well microtiter plate, 180 µL of LB liquid medium containing different concentrations of
FPPPs was first added, and then 20 µL of V. alginolyticus solution with a concentration of
106 CFU/mL was added. After incubation at 30 ◦C for 24 h, the optical density (OD) was
measured at 600 nm using a Varioskan Lux Multimode microplate reader (Thermo Fisher
Scientific, Dartford, UK). The lowest FPPPs concentration resulting in a lack of visible
V. alginolyticus growth was considered the MIC. Liquid in the wells with a drug concen-
tration greater than or equal to the minimum bacteriostatic concentration was selected to
spread the plates, and the lowest drug concentration with less than 5 colonies on the plate
was defined as the MBC.

2.4. Determination of Growth Curve

The growth curve was plotted to detect the killing kinetics of FPPPs against V. alginolyti-
cus using the method of Liu et al. [40]. Briefly, V. alginolyticus suspensions (106 CFU/mL)
were inoculated at 1% volume into LB broth medium containing FPPPs at concentrations of
0, 1/8MIC, 1/4MIC, 1/2MIC and MIC, respectively. All samples were incubated at 30 ◦C



Biology 2024, 13, 934 4 of 16

for 200 rpm, and the cell density was continuously monitored at OD 600 nm for 24 h and
the growth curve was drawn.

2.5. Determination of Biofilm Formation Ability

According to the method described by Qian et al. with modifications, the inhibitory
effect of FPPPs on the biofilm formation ability of V. alginolyticus was determined by crystal
violet staining [41]. The V. alginolyticus solution was diluted to the same OD600 value and
20 µL was pipetted onto a 96-well plate. Then, 180 µL LB broth medium containing FPPPs 0,
1/8MIC, 1/4MIC, 1/2MIC and MIC concentrations was added to the bacterial suspension
and mixed evenly. After 48 h of static culture at 30 ◦C, the medium was discarded, washed
with PBS and then incubated with 200 µL 1% crystal violet solution at room temperature
for 20 min. After staining, the dye was aspirated and each well was rinsed 3 times with
PBS and allowed to dry naturally. Finally, 200 µL of 33% glacial acetic acid was added to
dissolve the biofilm, and OD was measured at the wavelength of 570 nm.

2.6. Determination of Biofilm Metabolic Activity

Determining the metabolic capacity of biofilms by measuring the metabolic activity of
the cells in the biofilm has been a reasonable and widely research method [42]. The effect of
FPPPs on the biofilm metabolic activity of V. alginolyticus was detected by a Cell Counting
Kit-8 (CCK-8) assay [43]. The suspension of V. alginolyticus was inoculated into 96-well
plate (200 µL/well) containing LB broth medium and incubated at 30 ◦C for 24 h; then the
medium was discarded and the free bacteria were washed away with PBS. Then, 200 µL LB
medium containing different concentrations of FPPPs was added. After 24 h of incubation
at 30 ◦C, the medium was discarded and washed with PBS. Lastly, 180 µL PBS and 20 µL
CCK-8 were added to each well, and OD was measured at 600 nm after incubation at 30 ◦C
for 4 h protected from light.

2.7. Determination of Cell Wall Integrity

Alkaline phosphatase (AKP) usually exists in the periplasm, and the effect of FPPPs
on the cell wall integrity of V. alginolyticus was evaluated by measuring the activity of
extracellular AKP [44]. Bacterial suspensions (OD600 = 1.0) were added to LB broth medium
containing FPPPs at concentrations of 0, 1/8MIC, 1/4MIC, 1/2MIC and MIC and then
incubated at 30 ◦C for 8 h. In the end, 1 mL culture solution was centrifuged at 3500× g for
10 min, and the activity of AKP in the supernatant was detected by a commercial detection
kit of Nanjing Jiancheng Bioengineering Insitute (Nanjing, China).

2.8. Determination of CAT, SOD and ROS

The intracellular catalase (CAT) and superoxide dismutase (SOD) activities and reac-
tive oxygen species (ROS) levels of V. alginolyticus after treatment with different concen-
trations of FPPPs were determined according to the methods of Shivaprasad et al. and
Li et al. [45,46]. The bacterial solution obtained after treatment with different concentrations
of FPPPs for 8 h was centrifuged at 3500× g for 10 min. Bacterial precipitates were col-
lected, washed and resuspended with PBS; then, bacteria were lysed with a SCIENTZ-IID
ultrasonic cell crusher (SCIENTZ, Ningbo, China), and cellular debris was removed by
centrifugation. The activity of CAT and SOD in the supernatant was determined by a
CAT assay kit and SOD assay kit of Nanjing Jiancheng Bioengineering Insitute (Nanjing,
China), respectively. Intracellular ROS levels were measured by Dichlorodihydrofluores-
cein diacetate (DCFH-DA) (Nanjing Jiancheng Bioengineering Insitute, Nanjing, China).
The bacterial precipitates after FPPPs treatment were collected and washed with PBS and
incubated in PBS containing DCFH-DA (10 µM) for 40 min. Eventually, 200 µL of the mixed
solution was pipetted onto a 96-well plate and the fluorescence intensity was measured
(excitation 488 nm, emission 525 nm).
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2.9. Determination of MDA Content

Bacterial suspensions (OD600 = 1.0) were added to LB broth medium containing FPPPs
at concentrations of 0, 1/8MIC, 1/4MIC, 1/2MIC and MIC, and then incubated at 30 ◦C
for 8 h. In the end, 1 mL culture solution was centrifuged at 3500× g for 10 min, and the
content of malondialdehyde (MDA) in the supernatant was determined by a commercial
detection kit of Nanjing Jiancheng Bioengineering Insitute (Nanjing, China).

2.10. Determination of Nucleic Acid and Protein Leakage

The nucleic acid and protein of the biological macromolecules contained in the bacterial
cell content have strong absorption of light at 260 and 280 nm, respectively [47]. Therefore,
the content of extracellular nucleic acid and protein of V. alginolyticus can be estimated by
measuring the absorbance at 260 and 280 nm. According to the steps described by Liu et al.,
the colorimetric method was used to determine the content of nucleic acid and protein
released from V. alginolyticus under FPPPs treatment [48]. The V. alginolyticus suspension
(OD600 = 1.0) was treated with FPPPs at 0, 1/8MIC, 1/4MIC, 1/2MIC and MIC for 8 h at
30 ◦C. After centrifugation at 3500× g for 10 min, the supernatant was obtained, and the
content of extracellular nucleic acid and protein was determined at 260 nm and 280 nm. In
addition, the total protein assay kit (Bicinchoninic Acid, BCA method) of Nanjing Jiancheng
Bioengineering Insitute (Nanjing, China) was used to quantitatively determine the released
protein content according to the instructions.

2.11. Determination of Conductivity

Studies have confirmed that when the cell membrane is injured, the electrolyte in
the cell will flow out, resulting in changes in the conductivity of the extracellular culture
medium. Conductivity was determined with reference to Lee et al [49]. Different concen-
trations of FPPPs were applied to the V. alginolyticus suspension (OD600 = 1.0) grown
overnight in LB medium. After incubation at 30 ◦C for 8 h, the supernatant was obtained
by centrifugation at 3500× g for 10 min. The conductivity of the supernatant was measured
using a DDS-307A conductivity meter (INESA, Shanghai, China).

2.12. Motility

Swimming and swarming abilities play a crucial role for Vibrio in infecting host cells,
and a loss of motility may affect bacterial adhesion and impair biofilm formation [50,51].
The effect of FPPPs on the swimming and swarming ability of V. alginolyticus was deter-
mined on solid LB plates containing 0.3% and 1.5% agar [52]. Different concentrations of
FPPPs were added during the preparation of two solid media, so that the final concen-
trations of FPPPs were 0, 1/8MIC, 1/4MIC, 1/2MIC and MIC, respectively. Then, 5 µL
of V. alginolyticus suspension (OD600 = 1.0) was aspirated in the center of the plate and
incubated at 30 ◦C for 24 h. Subsequent photographs were taken using a gel imaging
system and the diameters of the swimming circle and swarming circle were detected.

2.13. RNA Extraction and Gene Expression Analysis

V. alginolyticus was treated with different concentrations of FPPPs, and the bacteria
were collected after 8 h of culture at 30 ◦C. The total RNA of V. alginolyticus was extracted
using a Bacterial Total RNA Extraction Kit (Tiangen, Beijing, China). Then, the purity
and concentration of each RNA were detected by a NanoDrop One microvolume-uv-
spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA), and the integrity of
total RNA was detected by 1% agarose gel electrophoresis. Finally, the total RNA (1000 ng)
extracted in the previous step was reverse transcribed using an Evo M-MLV Mix Kit
with DNA Clean for gPCR from Accurate Biotechnology (Hunan) Co., Ltd. (Changsha,
China). The complementary DNA (cDNA) template of the product obtained by reverse
transcription was stored in a refrigerator at−20 ◦C for subsequent fluorescence quantitative
PCR (qPCR).
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The primers were designed according to published articles and are listed in Table 1 [53].
Real-time quantitative PCR was performed using CFX Connect Real-Time PCR Detection
Systems (Bio-Rad Laboratories, Hercules, CA, USA) with a Taq Pro Universal SYBR qPCR
Master Mix Kit (Vazyme Biotech Co., Ltd., Nanjing, China) to detect the expression levels of
lateral and polar flagellum synthesis regulation in V. alginolyticus. The qPCR reaction system
and conditions were operated in accordance with the product instructions. Ultimately, the
relative expression of each gene mRNA was analyzed by the 2−∆∆Ct method with 16s rRNA
(16s) as the internal reference.

Table 1. Primer sequences of genes used in real-time quantitative PCR.

Primer Name Forward Primers (5′-3′) Reverse Primers (5′-3′) Source

16s AAAGCACTTTCAGTCGTGAGGAA TGCGCTTTACGCCCAGTAAT [45]
lafA CGCAGGTATCGGTGAAATCA CCGAAGTCTGCACGAGAGCTA [45]
lafK GAATCGGGAACGGGTAAAGAA GGTGAACGCGCCTTTTACAT [45]
fliS CTGGTGCGATTGAGCGCCTTATTCA CGTCGATCAGCTGAGGCTCATTTTG [45]
flaK GTATCAAACACGGAAGCAAACG TTCTAGGAGCTCAGGCGGTATT [45]

2.14. SEM Observation

The effects of FPPPs on the cell morphology and cell membranes of V. alginolyticus
were analyzed using scanning electron microscopy (SEM) [54]. V. alginolyticus was treated
with different concentrations of FPPPs (0, 1/2MIC and MIC), and the organisms were
collected by centrifugation at 3500× g for 10 min after incubation at 30 ◦C for 8 h. The
organisms were washed using PBS and then resuspended in 2.5% glutaraldehyde solution
and stored at 4 ◦C for 12 h. After centrifugation, the samples were dehydrated sequentially
for 10 min with different dilutions of ethanol solutions (30, 50, 70, 80, 95 and 100%). Finally,
the samples were vacuum placed on a sputtered gold-plated SEM scaffold and observed
with a SU8100 scanning electron microscope (Hitachi, Tokyo, Japan).

2.15. Statistical Analysis

All experiments were conducted in at least triplicate. All the data were tested for
normality and homogeneity of variance, followed by one-way analysis of variance and
Duncan’s multiple range test. p < 0.05 suggested significant difference. The results are
shown as means ± SD (n = 3), and SPSS 26.0 (IBM, New York, NY, USA) was used for
statistical analysis.

3. Results
3.1. Inhibition of FPPPs on V. alginolyticus

The MIC and MBC of FPPPs against V. alginolyticus were 2 and 4 mg/mL, respectively.
Based on the MIC, five FPPPs concentrations were designed to explore the effects on the
growth of V. alginolyticus, and the results are shown in Figure 1. On the whole, the growth
rate of V. alginolyticus in the control group without FPPPs treatment was relatively fast;
V. alginolyticus was in a growth retardation phase from 0 to 4 h, in a log phase from 4 to
10 h and in a stable growth phase after 10 h. FPPPs at 1/8MIC, 1/4MIC and 1/2MIC could
partially inhibit the growth of V. alginolyticus, and FPPPs at the MIC could completely
inhibit the growth of V. alginolyticus.

3.2. Inhibition of FPPPs on Biofilm Formation of V. alginolyticus

V. alginolyticus can form biofilms when cultured in 96-well plates, so the amount of
biofilm formation can be detected by measuring the OD value of the decolorized solu-
tion after the elution of crystal violet. As shown in Figure 2A, the biofilm formation of
V. alginolyticus in the control group was more, whereas the FPPPs-treated cells exhibited a
significant dose-dependent inhibition of biofilm formation.
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3.3. Inhibition of FPPPs on Biofilm Metabolic Activity of V. alginolyticus

CCK-8 can be reduced to a water-soluble orange-yellow formazan by dehydrogenases
in bacterial cells, and its color depth is proportional to the metabolic activity of the cells. In
this experiment (Figure 2B), the metabolic activity of V. alginolyticus biofilm in the group
treated with FPPPs was significantly lower than that in control group (p < 0.05). With the
increase of the concentration of FPPPs, the inhibitory effect on the metabolic activity of
pathogenic bacteria biofilm was enhanced.

3.4. Effect of FPPPs on AKP Activity of V. alginolyticus

As shown in Figure 2C, the activity of the extracellular AKP of V. alginolyticus was
increasing with increasing concentrations of FPPPs in the treatment group. As a result,
FPPPs significantly enhanced the permeability of V. alginolyticus cell wall, which may be
associated with its capability to disrupt the integrity of the cell wall.

3.5. Effect of FPPPs on Oxidative Stress Indexes of V. alginolyticus

The activities of intracellular CAT and SOD enzymes were significantly reduced and
the level of ROS was significantly increased in V. alginolyticus treated with FPPPs in this
experiment (Figure 3A–C). Moreover, the content of extracellular MDA of V. alginolyticus
also increased with the increase in FPPPs concentration (Figure 3D). These above indices
indicate that FPPPs can induce oxidative stress in V. alginolyticus.
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3.6. Effects of FPPPs on Protein and Nucleic Acid Leakage of V. alginolyticus

As shown in Figure 4, the results of the determination of extracellular proteins us-
ing the protein assay kit (BCA method) were consistent with the absorbance method
(Figure 4B,C). FPPPs at concentrations from 1/8MIC to MIC could significantly increase
the content of extracellular protein and nucleic acid of V. alginolyticus (Figure 4A) (p < 0.05).
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3.7. Effect of FPPPs on the Conductivity of V. alginolyticus Culture Medium

In the experiment, the conductivity of the extracellular medium of the control group
without FPPPs was 20.56 ms/cm (Figure 4D). However, the conductivity of the extracellular
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medium of V. alginolyticus increased to 22.26, 22.58, 23.02 and 23.54 ms/cm after treatment
with 1/8MIC to the MIC of FPPPs.

3.8. Inhibition of FPPPs on the Motility of V. alginolyticus

The results of motility showed that FPPPs dose-dependently reduced the swimming
and swarming ability of V. alginolyticus compared with untreated group, while the MIC of
FPPPs almost completely inhibited its motility (Figure 5A,B). Similarly, the 1/2MIC and
MIC of FPPPs also significantly down-regulated the expression levels of lafA and lafK genes
involved in lateral flagellar synthesis and fliS and flaK genes involved in polar flagellar
synthesis (Figure 5C) (p < 0.05).
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3.9. Effect of FPPPs on Cell Morphology of V. alginolyticus Under SEM

SEM images showed that the cell surface of V. alginolyticus treated without FPPPs
was smooth, full in appearance and normal in shape (Figure 6A). The cell surface of the
1/2MIC FPPPs treatment group began to shrink and distort with some depressions, and
there was slight adhesion between the cells (Figure 6B). The cell shape distortion of FPPPs
treated with MIC was more serious, and the cell surface showed more obvious shrinkage
and collapse (Figure 6C). Additionally, the leakage of intracellular substances as well as the
imagery of cell aggregation and overlap were also observed.
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4. Discussion

V. alginolyticus, as part of the normal microbiota of the aquatic environment, is not only
recognized as a major pathogen in many outbreaks of Vibrio disease in marine organisms
but is also an important pathogenic microorganism globally associated with seafood that
can cause foodborne illness in humans [8]. In the natural environment, bacteria of the
genus Vibrio can form a self-protective biofilm on the surface of seafood or during food
transportation and processing, which not only makes it easier for the bacteria to withstand
the stresses of the external environment but also provides an ideal platform for them to
invade and infect other organisms more easily [55,56]. In addition, due to the characteristics
of the bacterial biofilm, which leads to a high level of drug resistance, antibiotics that pollute
the environment and easily cause side effects such as environmental drug residues are
gradually replaced or banned [57,58]. Therefore, we have necessity to search for new safe
antibacterial agents, which should not only have the effect of killing bacteria but also need
to be able to pass through biofilm and not be blocked or neutralized by the biofilm.

Polyphenols have been widely reported to inhibit the growth of microorganisms, but
there are relatively few studies on the bacteriostatic properties of PPPs, and only a few
relevant papers have been published [59,60]. Belgacem et al. found that pomegranate peel
extract has a good bacteriostatic effect on Listeria monocytogenes and fruits (apple, pear
and melon), and they believe that this strong bacteriostatic ability may come from the
polyphenols in pomegranate peel extract [61]. Coincidentally, Yemis et al. also confirmed
that pomegranate peel extract contains polyphenols with antibacterial activity against
Cronobacter sakazakii, so pomegranate peel can be used as a source of natural antibacterial
agents [62]. Further, Chen et al. investigated the bacteriostatic effect of PPPs with a purity
of 83.3% on the bacteriostatic effect of Ralstonia solanacearum [30]. They demonstrated that
PPPs had a good antibacterial effect on Ralstonia solanacearum, which was even stronger
than that of ellagic acid, catechin, gallic acid and other monomers in PPPs. Additionally,
PPPs significantly inhibited the reproduction, motility and biofilm formation of Ralstonia
solanacearum, even severely disrupting the morphological structure of the bacteria to the
point of impairing the integrity of their cell membranes and cell walls. So far, the effect
of FPPPs or PPPs on the antibacterial activity of V. alginolyticus and even pathogenic
microorganisms in seawater and its mechanism have not been studied.

In this study, the bacteriostatic effect of FPPPs on V. alginolyticus was evaluated for
the first time, and the results showed that FPPPs had a good bacteriostatic effect on
V. alginolyticus with the MIC of 2 mg/mL. Meanwhile, the 1/8MIC to MIC of FPPPs enor-
mously inhibited the growth of V. alginolyticus, and FPPPs at the MIC can even completely
inhibit the growth of V. alginolyticus. Similarly, Liu et al. also confirmed that vanillic
acid had good antibacterial activity against V. alginolyticus with the MIC of 1.0 mg/mL,
and vanillic acid at the 1/2MIC and MIC had excellent inhibition on the reproduction of
V. alginolyticus throughout the growth cycle [63]. In addition, plants or plant extracts such
as Fructus schisandrae, Rhizoma coptidis and citral have been successively reported to have
good bacteriostatic efficacy against V. alginolyticus [64–66]. However, since FPPPs are com-
posed of a variety of monomers, we cannot be sure which monomer or monomers play the
main antibacterial role. Fortunately, there has been a great deal of research demonstrating
that monomers such as ellagic acid, catechins, gallic acid and chlorogenic acid have ex-
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cellent antibacterial properties against all types of bacteria, especially punicalagin [67–70].
Unfortunately, due to the limitations of the experiment, we cannot discuss in detail the
antibacterial ability of each chemical component in FPPPs in this study, but this may be a
very meaningful research direction and the focus of our subsequent research in the future.
In order to prevent the interference of different batches of commercial FPPPs on the experi-
mental results, we purchased FPPPs twice at different time periods and determined their
MIC against V. alginolyticus. The results of the two experiments showed that the MIC of
FPPPs to V. alginolyticus was 2 mg/mL. Moreover, we learned from the merchants selling
FPPPs that the polyphenol content was strictly determined according to the prescribed
requirements when each batch of FPPPs was produced in the factory, and the production
place of pomegranate is also consistent. Therefore, we believe that FPPPs between different
batches will not affect the results and conclusions of this study. In addition, the effect of
FPPPs as an antibacterial agent for food preservation on human health needs further study.

The flagellar-mediated motility of Vibrio is usually closely related to the formation
of biofilm, bacterial colonization and virulence [71]. V. alginolyticus has two different
types of flagellar systems, the unipolar flagellum involved in its swimming in the liquid
environment and the lateral flagellum involved in its swarming on solid surfaces [72]. The
FPPPs in this study down-regulated the expression levels of the flagellar synthesis-related
genes lafA, lafK, fliS and flaK in V. alginolyticus while drastically inhibiting the swimming and
swarming ability of V. alginolyticus. Moreover, the biofilm formation and biofilm metabolic
activity of V. alginolyticus treated with FPPPs were significantly reduced. Previous studies
have revealed that the motility of bacteria plays an essential part in the adhesion phase
and biofilm formation on solid surfaces [73]. At the same time, antimicrobial-induced
reductions in bacterial biofilm formation are often accompanied by cellular inactivation
in the biofilm [74]. Coincidentally, Cao et al. confirmed that citral reduced the formation
of Vibrio parahaemolyticus biofilms and inhibited the expression of the genes lafA, flaA
and flgM involved in flagellar-mediated motility, as well as the swimming and swarming
abilities [75]. Similarly, Liu et al. showed that vanillic acid inhibited the motility of V.
alginolyticus by down-regulating the expression levels of the lafA, lafK, fliS and flaK genes
while reducing its biofilm-forming ability [63]. Based on the above results and analysis, we
speculated that FPPPs may inhibit the swimming and swarming ability of V. alginolyticus
by down-regulating the expression levels of the lafA, lafK, fliS and flaK genes that mediate
flagellar synthesis, thus affecting the biofilm formation ability and biofilm metabolic activity
of V. alginolyticus.

Bacteria may suffer oxidative stress during survival, which can damage their normal
cellular structure, and ROS and MDA are important indicators of oxidative stress [76].
Excessive ROS can cause injury to important biological molecules such as proteins, lipin
and nucleic acids in cells, thus affecting the basic functions of cells and eventually leading to
cell death [77]. MDA is the product of lipid peroxidation, and its massive accumulation may
lead to the injury of cell membrane structure and function, resulting in the variation of its
permeability [78]. On the contrary, antioxidant mechanisms are key to the bacterial response
to oxidative stress, and a range of antioxidant enzymes such as CAT and SOD can mitigate
oxidative damage by scavenging free radicals and thereby reducing oxidative damage [79].
We found that the activities of CAT and SOD in V. alginolyticus treated with FPPPs decreased
obviously, while the ROS level and MDA content increased substantially. Coincidentally,
Li et al. found that the intracellular ROS level and hydrogen peroxide concentration
of Vibrio mimicus cultured with high-purity epigallocatechin gallate increased, and SOD
activity decreased in a dose-dependent tendency [46]. Likewise, Lan et al. investigated
the inhibitory mechanism of chitosan caffeic acid graft (CS-g-CA) against Pseudomonas
fluorescens, and they concluded that CS-g-CA exacerbates the production of ROS and lipid
peroxides in Pseudomonas fluorescens, which disrupts the respiratory and metabolic systems
of the bacteria as well as the membrane integrity [47]. As a consequence, we believe that
FPPPs can exert its antibacterial effect by inducing oxidative stress of V. alginolyticus.
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The Majority of bacteria are protected from external environmental damage by a robust
and elastic cell wall composed of peptidoglycan, but AKP will leak out of the cell after it is
damaged [80]. The cell membrane is a natural barrier composed of phospholipids and vari-
ous proteins to protect cells and participates in basic activities such as material exchange,
cell metabolism and protein synthesis [81]. However, when the bacterial membrane is
damaged, the permeability will increase, resulting in the leakage of intracellular proteins,
nucleic acids, ions and respiratory chain disorder [82]. Now we found that the content
of extracellular protein and nucleic acid and the conductivity of extracellular solution in
V. alginolyticus increased after being cultured with FPPPs. This indicates that the intracellu-
lar proteins, nucleic acids and ions of V. alginolyticus have leaked, which may be related
to the damage of bacterial cell membranes. In order to further verify our hypothesis, we
also observed V. alginolyticus by SEM. Similarly, SEM images revealed that FPPPs severely
damaged the cell wall and membrane of V. alginolyticus and produced cell content leakage,
cell distortion, cell aggregation overlap and other phenomena. Similar conclusions were
reached by Palamae, who demonstrated that a chitooligosaccharide–catechin conjugate
disrupted Vibrio parahaemolyticus cell morphology as well as the integrity of the cell mem-
brane and caused an increase in the conductivity and MDA content of cell cultures, as well
as intracellular ion leakage [83]. Our findings were also in agreement with the previous
SEM findings of Vibrio parahaemolyticus exposed to linalool and Melissa officinalis L. essential
oil, which showed severe cell damage, disruption of the cell membrane and wall integrity,
and leakage of intracellular substances [84,85]. Such results implies that FPPPs can inhibit
the growth of V. alginolyticus through the mechanism of damaging cell membranes and
cell walls as well as disrupting the normal morphology of cells. At the same time, it is
precisely because FPPPs has the function of damaging the cell membrane of V. alginolyticus,
which further aggravates the oxidative stress of V. alginolyticus and leads to the increase of
MDA, a lipid peroxidation product of cell membrane. In summary, the antibacterial mode
of FPPPs against V. alginolyticus is not only derived from a single mechanism of action but
involves the cascade reaction of the entire bacterial cell.

5. Conclusions

This study demonstrated that FPPPs had a strong antibacterial effect on V. alginolyticus,
and the MIC was 2 mg/mL. FPPPs can induce oxidative stress in V. alginolyticus and destroy
the integrity of cell membrane and wall, leading to the leakage of intracellular substances
such as proteins, nucleic acids and ions. Moreover, FPPPs can reduce the swimming
ability and swarming ability of V. alginolyticus by down-regulating the expression of genes
involved in flagellar synthesis and inhibit the formation and metabolic activity of biofilm.
These findings provide an important foundation for the application of FPPPs as a new and
efficient antibacterial agent to control the infection of V. alginolyticus in live shrimp and
other seafood.
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