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Simple Summary: A group of fungal parasites called Nosema infects various insects, including bees,
wasps, butterflies, moths, and even some crustaceans. These parasites are harmful because they can
weaken or kill their hosts, posing a significant threat to beneficial insects. Our aim is to understand
how Nosema genomes have evolved and to find potential ways to control them. These parasites were
discovered to have much smaller genomes compared to free-living organisms like yeast, missing
about half of the genes, especially those involved in energy production and certain cellular processes,
suggesting they rely heavily on their hosts to survive. Interestingly, we found evidence that Nosema
species have jumped between hosts in their evolutionary history, including butterflies, wasps, and
bees. Additionally, we identified specific regulatory DNA sequences common in highly active genes,
indicating potential roles in controlling gene expression. Understanding these genomic features can
help us develop strategies to manage Nosema infections, which is valuable for protecting bees and other
pollinators, as well as wasps that act as natural biological control agents for agricultural pests. This
research provides important insights into protecting insect populations that are crucial for ecosystems
and agriculture, thereby supporting food production and maintaining healthy ecosystems.

Abstract: Nosema is a diverse fungal genus of unicellular, obligate symbionts infecting various arthro-
pods. We performed comparative genomic analyses of seven Nosema species that infect bees, wasps,
moths, butterflies, and amphipods. As intracellular parasites, these species exhibit significant genome
reduction, retaining only about half of the genes found in free-living yeast genomes. Notably, genes
related to oxidative phosphorylation are entirely absent (p < 0.001), and those associated with endocy-
tosis are significantly diminished compared to other pathways (p < 0.05). All seven Nosema genomes
display significantly lower G-C content compared to their microsporidian outgroup. Species-specific
5~12 bp motifs were identified immediately upstream of start codons for coding genes in all species
(p ≤ 1.6 × 10−72). Our RNA-seq data from Nosema muscidifuracis showed that this motif is enriched in
highly expressed genes but depleted in lowly expressed ones (p < 0.05), suggesting it functions as a
cis-regulatory element in gene expression. We also discovered diverse telomeric repeats within the genus.
Phylogenomic analyses revealed two major Nosema clades and incongruency between the Nosema species
tree and their hosts’ phylogeny, indicating potential host switch events (100% bootstrap values). This
study advances the understanding of genomic architecture, gene regulation, and evolution of Nosema,
offering valuable insights for developing strategies to control these microbial pathogens.

Keywords: fungal genomics; microsporidia; telomeric repeats; genome reduction; cis-regulatory
motif; codon bias
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1. Introduction

Microsporidia are a diverse group of unicellular parasites that infect a wide range of
animals [1,2] and are either classified within the fungi or are closely related to them [3,4].
A common feature of microsporidian genomes is their significant reduction in size [5–7],
reflecting their adaptation to intracellular parasitism at the molecular, cellular, and bio-
chemical levels [8–10]. More than 1400 microsporidia from over 200 genera have been
reported to date. As a genus of microsporidia, Nosema parasitizes a diverse array of insects
and other arthropod hosts, leading to a disease known as nosemosis [11,12].

The most extensively studied Nosema species are N. apis and N. ceranae, which infect the
European honey bee, Apis mellifera, and the Asian honey bee Apis cerana, respectively. These
parasites invade the midgut and reproduce within intestinal cells, leading to various nega-
tive consequences, including damaged immune system barriers [13–15], reduced foraging
activity, decreased colony strength, increased mortality, and shortened lifespans [16–18]. In
the domesticated silkworm Bombyx mori, N. bombycis, another Nosema parasite, has caused
significant reductions in silk production, resulting in substantial economic losses [19].
Nosema has also been found to infect other beneficial insects, including parasitoid wasps of
the genus Muscidifurax (Hymenoptera: Pteromalidae), which serve as biological control
agents for agricultural pest flies [20]. N. muscidifuracis infects the parasitoid wasp species
Muscidifurax zaraptor and M. raptor, causing ~50% reduction in longevity and ~90% re-
duction in fecundity [21]. Understanding the evolutionary dynamics of Nosema parasites
can inform the development of improved management and control strategies, potentially
leading to positive impacts on ecosystem health, agricultural productivity, and global
food security.

Since the pioneering genomic investigations into bee-infecting Nosema species, seven
Nosema genomes have been assembled and annotated from a diverse range of hosts: the
amphipod Gammarus duebeni [22], silk moth Bombyx mori [19], the Chinese tussar moth
Antheraea pernyi [23], the cabbage butterfly Pieris rapae [24], the Asian honey bee Apis
cerana [25–27], the European honey bee Apis mellifera [28], and, recently, our work on
the microsporidium infecting the parasitoid wasp genus Muscidifurax [29]. The availabil-
ity of these Nosema genomes enables comparative genomic analyses to investigate the
evolutionary characteristics within the diverse Nosema genus.

In this study, we utilized the recently assembled Nosema genomes and conducted
evolutionary and comparative genomic analyses. Building on findings from bee-infecting
Nosema species, we investigated whether these results could be generalized across the
entire genus. Our findings offer new insights into the evolution of telomeric repeat motifs,
GC content, gene expression regulation, host switching, and codon usage bias across these
genomes. The findings of this research could inform potential management strategies
for nosemosis, particularly with regard to our discovery of a putative regulatory motif
associated with the regulation of gene expression.

2. Materials and Methods
2.1. Source of Genome Data

The genome data analyzed in this study include the following genome assemblies
(Table S1): Encephalitozoon cuniculi [8,30], Nosema apis BRL 01 [28], Nosema muscidifuracis [29],
Nosema ceranae BRL 01 [25], Nosema ceranae PA08 [26], Nosema ceranae BRL [27], Nosema
bombycis CQ1 [19], Nosema granulosis Ou3-Ou53 [22], Nosema antheraeae YY [23], and Nosema
sp. YNPr [24].

2.2. Telomeric Repeat Identification

The TRIP (Telomeric Repeats Identification Pipeline) [31] was utilized to de novo
predict the candidate telomeric repeat motifs (TRMs) from the publicly available short-
read sequencing data of Nosema genomes (Table S2). With PacBio long-read assembly, the
telomeric repeat motifs of N. muscidifuracis were identified from the repetitive regions at
the termini of several contigs (Table S3). To confirm the telomeric repeats, we extracted
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and aligned the sequences of assembled telomeric and subtelomeric regions in the N.
muscidifuracis genome (Supplementary Materials S1). A phylogenetic tree based on 27
nucleotide sequences of ~20 Kb subtelomeric regions was constructed to determine the
evolutionary relationships of the conserved subtelomeric sequences (Supplementary Ma-
terials S2). Encephalitozoon TRMs were identified from long-read genome assemblies of E.
cuniculi (NCBI Assembly accession number GCA_027571585), E. hellem (GCA_029215505),
and E. intestinalis (GCA_024399295). At least 100 tandem repeat units are required at the
chromosomal termini for TRM calls (Table S4).

2.3. Functional and Pathway Annotation of Nosema Muscidifuracis Proteins

The pathway annotation was performed using 2783 annotated genes in N. muscidifu-
racis and 5886 genes in Saccharomyces cerevisiae (S. cerevisiae, accession number: GCA_002571
405.2) [32]. Assignments to genes in the metabolic and regulatory pathways were per-
formed by the KEGG’s internal annotation tools (https://www.kegg.jp/, accessed on
4 March 2022) [33,34]. GhostKOALA was used to assign the most appropriate K numbers
to the query genes by the GHOSTX program [35] and KOALA (KEGG Orthology And
Links Annotation) algorithm [36], which is based on the sequence similarity search against
the structured KEGG GENES database [37]. Subsequently, a set of K numbers was linked to
KEGG pathway maps using the KEGG Mapper Reconstructed tool. The number of genes in
selected KEGG pathways in N. muscidifuracis [29] and S. cerevisiae genomes were manually
counted according to the KEGG pathway maps (Table S5 and Supplementary materials).
Statistical significance was evaluated using the Chi-squared test.

2.4. Motif Discovery in 5′ Regulatory Regions in Nosema Muscidifuracis Genome

In microsporidia, the regulatory motifs of transcript initiation sites appear to be
concealed in a short cis-regulatory region located upstream of the gene, a consequence of
their compact and gene-dense genomes [38,39]. To identify the potential regulatory motifs
in the 5′ context of N. muscidifuracis coding sequences, 200 bp sequences upstream of the
start codon for all genes were extracted from the N. muscidifuracis genome. MEME version
5.4.1 [40] was applied to search for novel 5′ motifs using all gene sets (n = 2718) with the
maximum motif width of 12 positions. To characterize the motif in Nosema species, the
same analysis was performed in other Nosema genomes and E. cuniculi. We utilized MEME
to identify the motifs located upstream of the start codon in a small, conserved gene set
(n = 449 shared orthologous genes; Table S6 and Data S4) and other predicted genes in seven
Nosema species and E. cuniculi (Table S7). The RNA-seq data described in our previous
research were utilized to provide further evidence supporting the identified regulatory
motifs. Average RNA-seq coverage across regions 200 bp upstream (−200 bp) and 500 bp
downstream (+500 bp) was plotted for 2155 protein-coding genes in N. muscidifuracis. The
presence of motifs in groups of genes with varying expression levels was analyzed to
determine the relationship between predicted motifs and gene expression.

2.5. Phylogenetic Analyses

To infer the evolutionary history of Nosema genomes, we investigated the phylogenetic
relationships between N. muscidifuracis and other microsporidian species. Homologous
orthologs were determined for 10 strains across 7 Nosema species: N. ceranae BRL 01 [25],
N. ceranae PA08 1199 [26], N. ceranae BRL [27], N. apis BRL 01 [28], N. bombycis CQ1 [19],
N. granulosis Ou3-Ou53 [22], N. antheraeae YY [23], Nosema sp. YNPr [24], N. muscidifuracis
Mzar, and N. muscidifuracis Mrap [29], along with the outgroup species Encephalitozoon
cuniculi (E. cuniculi) [8,30]. The orthologs within the Nosema genus were extracted from
OrthoDB v10.1 [41] using TaxonKit [42]. The genomic data of five Nosema strains and E.
cuniculi were downloaded from NCBI (Table S1). The genomic data of N. antheraeae YY
was downloaded from the SilkPathDB database [23], and the protein sequence of Nosema
sp. YNPr was provided by Dr. Xu Jinshan via personal communication [24]. To identify
the orthologs in these microsporidia genomes, a BLASTp search was conducted using the

https://www.kegg.jp/
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protein sequences from the N. ceranae (PA08 1199 strain) with a minimum of 20% sequence
identity (E-value < 1 × 10−5). These orthologs in PA08 were subsequently validated using
reciprocal best BLAST hits. A total of 449 orthologs among these eleven genomes were
identified. Subsequently, MAFFT v7.407 [43] was utilized to align the protein sequences
of orthologs among the above genomes (FFT-NS-2 algorithm). The protein alignments
were concatenated into a single super-sequence (Data S5) to construct the phylogeny
using the Jones–Taylor–Thornton (JTT) protein model with RAxML v8.2 [44]. A total of
1000 rapid bootstrap replicates were performed to evaluate the branch supports. The
phylogenetic tree (Supplementary Materials) was visualized in FigTree v1.4.4 software
(http://tree.bio.ed.ac.uk/software/figtree/, accessed on 10 November 2022). In addition,
individual protein trees for the 449 orthologs were generated using the same approach
as the concatenated tree, and the topology frequencies among these were compared to
the concatenated topology. The topology and branch times of the host phylogeny were
determined from published phylogenetic studies of the relevant taxa that combine fossil and
molecular data for Apis [45], Hymenoptera [46], Lepidoptera [47,48], and Arthropoda [49].

2.6. GC Content Evolution and Codon Usage Bias

Considering the extremely low GC content in the N. muscidifuracis genome, we character-
ized the codon usage patterns of N. muscidifuracis genes. The codon usage of the protein-coding
sequences was analyzed by CodonW software version 1.4.2 (http://codonw.sourceforge.net/,
accessed on 15 October 2022) [50]. Various indices of codon usage bias were calculated, includ-
ing the frequency of the synonymous codons at the third position of each base T, C, A, and G
(T3s, C3s, A3s, and G3s), the average GC content of the first and second positions (GC12), GC
content at the third position of synonymous codons (GC3s), GC content of the protein-coding
gene (GC), the frequency of optimal codons (Fop), codon adaptation index (CAI), codon
bias index (CBI), and the frequency of the synonymous codons for each amino acid. These
calculations were systematically conducted across all Nosema species and E. cuniculi (Table S8
and Supplementary Materials). A comparative analysis of codon usage bias was performed
to determine potential variations and similarities in the genetic coding preferences. To infer
the ancestral states of the genome-wide G-C content in the Nosema genus, we employed a
Bayesian approach using the random walk and MCMC models implemented in the software
BayesTraits V4.1.3 [51]. A total of 2 million iterations were executed with a burn-in of 10,000,
and every 11,000th iteration was sampled.

3. Results
3.1. Telomeric Repeat Motif (TRM) Characterization Revealed a Canonical TTAGG Motif and a
Novel Composite TAGG/TTAGG Telomere
3.1.1. TTAGG Is Likely to Be the Ancestral Form of TRM in Nosema and Microsporidian
Species

The telomeric repeat motifs (TRMs) in the fungal parasite genus Nosema have not been
specifically characterized or reported in the literature. To investigate telomere evolution
within this genus, we performed de novo TRM prediction across multiple Nosema species
(Table S1) based on short-read genome sequencing data (see Section 2). In N. ceranae, we
identified TTAGG as the TRM candidate. For the remaining Nosema species with low
sequencing depth, no TRM candidates were detected (Table S2). To determine if TTAGG
is the typical TRM in microsporidia, we analyzed the chromosomal termini of publicly
available long-read assemblies of three Encephalitozoon species, a microsporidian genus
infecting vertebrate (see Section 2). All 11 chromosomes in E. hellem and E. intestinalis,
as well as 10 out of 11 chromosomes in E. cuniculi, have TTAGG as the TRM (Table S3),
suggesting that it is likely the ancestral form in microsporidia.

3.1.2. A Novel Composition 4 bp/5 bp Form of TRM in N. muscidifuracis

In N. muscidifuracis, a species that infects parasitoid wasps, two TRMs were identified:
the canonical TTAGG and a novel 4 bp tandem repeat TAGG. The TAGG TRM is the most

http://tree.bio.ed.ac.uk/software/figtree/
http://codonw.sourceforge.net/
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abundant, accounting for 75.3% of N. muscidifuracis telomeres (Table S4). The TAGG and
TTAGG types of TRMs were detected at 19 chromosome ends among 28 contigs (Figure 1A
and Data S1), exhibiting significantly higher GC content at the ends of chromosomes
(Figure 1B). The 5 bp TTAGG motifs are interspersed among the predominant TAGG
repeats (Figure 1C), forming a composite type of telomeric repeats. A third repeat type,
TAGGG, is also present in the telomeric region, albeit at an extremely low abundance of
1.5% (Figure 1D).
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Figure 1. A novel type of telomere in the Nosema Muscidifuracis genome. (A) Presence of telomeric
sequences at the termini of 28 N. Muscidifuracis genome contigs. (B) Plot of GC content along
contig14 showing the high GC content at telomeric regions. (C) Sequence alignment at the telomere-
subtelomere boundaries, showing the novel composite 4 bp and 5 bp telomeric repeat motifs. (D) Total
length and relative abundance of telomeric repeat motifs (TAGG, TTAGG, and TAGGG) in telomeric
regions. (E) Phylogenetic tree of 27 subtelomeric sequences from different genomic contigs in N.
muscidifuracis. (Yellow shading, subtelomeric region. Red color, positions that are not identical across
all contigs. Purple shading: TTAGG repeats in telomeric region. Green shading: TAGG repeats in
telomeric region).

3.1.3. Two Major Types of Highly Conserved Subtelomeric Regions in N. muscidifuracis

When the N. muscidifuracis subtelomeric regions were characterized and aligned,
we discovered that ~20 Kb subtelomeric regions immediately adjacent to the telomeric
repeats are highly conserved (Figure 1C). Phylogenetic analysis revealed two major types
of conserved subtelomeric sequences in N. muscidifuracis (Figure 1E and Supplementary
Materials). These findings suggest diverse routes of telomere and subtelomere evolution in
this species.

3.2. Extensive Genome Reduction in Nosema Highlights Loss of Mitochondrial Genes and
Metabolic Pathways
3.2.1. Retention of Certain Essential Biological Pathways Despite Severe Genome
Reduction

By analyzing multiple Nosema species, we conducted a more detailed exploration of
genome reduction processes within this genus than what was reported in previous literature.
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Compared to the genome of the free-living yeast Saccharomyces cerevisiae [52,53], Nosema
species only possess about one-third to one-half of the genes. This significant reduction
indicates that Nosema has undergone extensive genome contraction during its evolution.
The reduction in genome size is presumably achieved through the loss of genes involved in
metabolic pathways and cellular processes that are no longer essential for survival. Despite
a significant genome reduction, functional annotation of N. muscidifuracis proteins revealed
that more than 50% of the genes in several critical pathways are preserved (Table S5 and
Supplementary Materials). These pathways include DNA replication, mismatch repair,
tight junction formation, RNA polymerase function, Wnt signaling, and basal transcription
factors (Figure 2A). The retention of these pathways suggests that, even with a significantly
reduced genome, Nosema species maintain essential cellular functions necessary for their
survival and replication within host cells.
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Figure 2. Functional pathway specific genome reduction in Nosema muscidifuracis. (A) Gene
number in 23 pathways in Nosema muscidifuracis and Saccharomyces cerevisiae (Chi-squared test,
*, p < 0.05; ***, p < 0.001). (B) KEGG pathway analysis of Nosema muscidifuracis mitochondrial proteins
suggested that the entire electron transport chain and eukaryotic F-type ATPase were completely
missing in the mitochondrial oxidative phosphorylation metabolic pathway. The enzymes/proteins
that are present in the N. muscidifuracis genome are shaded in red.
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3.2.2. Significant Gene Loss in Oxidative Phosphorylation Pathway Coincides with the
Absence of Mitochondrial Genes and the Organelle

A notable genomic feature of microsporidia is the absence of mitochondria, which have
been transformed into highly modified and reduced organelles known as mitosomes [54].
In N. muscidifuracis, we observed a significant loss of genes associated with the oxidative
phosphorylation pathway (0 in Nosema and 41 in yeast; Figure 2B), which aligns with the
complete absence of mitochondrial genes and the organelle itself. Genes encoding the
mitochondrial electron transport complexes, whether typically located in the mitochondrial
or nuclear genomes, were completely absent (p < 0.001, Chi-squared test; Figure 2B). Fur-
thermore, the mitochondrial F-type ATPase was absent from the oxidative phosphorylation
metabolic pathway (Figure 2B). The lack of these genes indicates that Nosema species have
entirely lost the capability for mitochondrial respiration and ATP production through
this pathway.

3.2.3. Significant Reduction in the Endocytosis Pathways

Endocytosis represents another pathway that exhibits a significant reduction in the
number of genes, with 11 genes identified in Nosema compared to 50 in yeast (p < 0.05,
Chi-squared test; Figure 2 and Figure S1). With a limited number of genes associated
with endocytosis, Nosema has a reduced ability to independently acquire certain molecules,
resulting in a heavy reliance on absorbing nutrients directly from host cell cytoplasm. On
the other hand, by expressing fewer transmembrane proteins, Nosema may utilize the host’s
endocytic pathways, and avoid triggering the host’s innate immune defense mechanisms.

3.3. A Conserved Regulatory Motif Upstream of Nosema Protein-Coding Genes
3.3.1. Discovery of a Highly Over-Represented 12 bp Motif in N. muscidifuracis

Previous studies on bee-infecting Nosema species have identified potential regulatory
motifs containing the cytosine triplets TTTTTTTACCCC [25] and ACCCTT [28]. Through
motif prediction in the 5′ regulatory regions of N. muscidifuracis (see Section 2), we discov-
ered that a single 12-base pair motif, TTTTTTTACCCC, is highly overrepresented (E-value
= 1.6 × 10−256; Figure 3A). Within this motif, the sequence consisting of a single adenine
followed by a cytosine quadruplet (ACCCC) was highly significant, occurring much more
frequently than would be expected by chance (p < 0.001). Interestingly, genome distribution
analyses revealed that the 2712 occurrences of this motif are predominantly located within
20 base pairs upstream of the start codon of protein-coding genes. (Figure 3B).

3.3.2. Positive Association of the Presence of TTTTTTTACCCC Motif with Gene Expression

Although the C-rich motif was previously suspected to regulate gene expression in
earlier studies, the actual relationship between the motif and gene expression has yet to be
clarified. RNA-seq coverage analyses revealed that the TTTTTTTACCCC motif is located
immediately upstream of expressed transcripts in N. muscidifuracis (Figure 3C). To assess
the relationship between this motif and gene expression levels, we analyzed its prevalence
in groups of genes categorized as highly, moderately, and lowly expressed. Our findings
showed that more than 90% of the highly expressed genes contain the TTTTTTTACCCC
motif, whereas only about 55% of non-expressed genes have this motif (p < 0.05, Chi-
squared test; Figure 3D). This association between the presence of the motif and higher gene
expression levels supports the hypothesis that TTTTTTTACCCC is a candidate regulatory
motif for active gene expression.
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Figure 3. A motif associated with translation start sites and gene expression levels in Nosema
muscidifuracis. (A) A sequence motif enriched upstream of N. muscidifuracis genes, containing a
homopolymer of seven thymine (T) nucleotides, followed by an adenine (A) and three consecutive
cytosine (C) nucleotides. (B) Distribution of the motif upstream of the gene regions. The x-axis
measures the distance from the first nucleotide of the motif to the start codon in bases, and the y-axis
indicates the number of detected motifs. (C) Average RNA-seq coverage across protein-coding gene
regions in N. muscidifuracis. (D) The percentage of genes with the motif in gene groups with different
expression levels.

3.3.3. Conservation of CCC-Containing Motif in Nosema and Microsporidian Species

To determine whether the TTTTTTTACCCC motif is also present in other Nosema and
microsporidian species, we conducted a de novo search of 5′ motifs in six additional Nosema
genomes and Encephalitozoon cuniculi (Table S1) in 449 shared orthologous genes (Data S4).
Using the same parameters as in our analysis of N. muscidifuracis, we identified a shared
motif pattern. Notably, all seven Nosema species’ motifs contain a 3 bp or 4 bp cytosine
homopolymer core (CCC or CCCC; Figure 4), which is extremely rare in A-T-rich Nosema
genomes (Figure 4). In addition, six of the seven Nosema species have a leading thymine
stretch (TTTTTT or TTTTTTT), whereas Nosema apis lacks this feature (Figure 4). When
we performed the same analysis using non-orthologous predicted genes, the conserved
CCC/CCCC cores were still identifiable within the significant motifs (Figure 4 and Table S7).
Such C homopolymers were not detected in the outgroup species E. cuniculi (Figure 4).
Our findings indicate that the cytosine-rich motif is conserved across the Nosema genus,
reinforcing its potential role in the regulation of gene expression.

3.4. Phylogenomic Analysis of Microsporidian Genomes Revealed Nosema Host Switch Events

We constructed a phylogenetic tree using the sequences of 449 orthologous protein-
coding genes from Nosema genomes (Table S1 and Supplementary Materials), with E.
cuniculi serving as an outgroup to investigate their evolutionary relationships (Figure 4 and
Supplementary Materials). As expected, the three strains of N. ceranae clustered together
on the same branch, and the two strains of N. muscidifuracis were closely related (Figure 4).
Interestingly, there are two major groups, Clade A and Clade B, which are supported by
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strong (100%) bootstrap values. Further support of the validity of these two clades is that
they differ in their genome-wide GC content (20–25% GC for Clade A and 28–32% for
Clade B; see Section 3.5). However, the topology of the Nosema phylogenetic tree is not
completely congruent with the host phylogeny. Most notably, the cabbage butterfly (Pieris
rapae) Nosema is most closely related to the Nosema found in the bee Apis cerana, and this
association has 100% bootstrap support (Figure 4). Furthermore, the cabbage butterfly
Nosema is embedded in Clade A (Figure 4) with four hymenopteran Nosema (A. mellifera,
Muscidifurax zaraptor, M. raptor, and A. cerana), and this clade has 100% bootstrap support,
whereas the other two Nosema associated with Lepidoptera (Bombyx mori and Antheraea
pernyi) occur in a separate strongly supported Clade B (100% bootstrap value, Figure 4),
and are more closely related to a Nosema found in crustaceans (again with 100% support).
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Figure 4. Phylogenomic analysis revealed a host switch event and conserved sequence motifs in
Nosema. A maximum-likelihood tree of N. muscidifuracis isolated in parasitoid wasps Muscidifurax
zaraptor (NosMusMzar) and M. raptor (NosMusMrap) with other Nosema was constructed based
on 449 shared proteins. The Nosema species/strains included are N. apis strain BRL01 (NosApis),
N. ceranae strain PA08 1199 (NcerPA08), N. ceranae strain BRL (NcerBRL), N. ceranae strain BRL01
(NcerBRL01), the tussar moth Antheraea pernyi Nosema strain YNPr (NosYNPr), N. antheraeae strain YY
(NosYY), N. bombycis strain CQ1 (NosBomCQ1), and N. granulosis strain Ou3-Ou53 (NosGranOu53).
The Encephalitozoon cuniculi GB-M1 strain (Ecuniculi) was included as the outgroup. The bootstrap
value is indicated by dots, with red representing a support level of 100/100. The length of each
branch is indicated beneath the branches. The sequence logos displayed the conserved motifs located
upstream of the start codons, as predicted by MEME using 449 shared orthologous genes and other
gene models in the seven Nosema species and E. cuniculi. Genome-wide average G-C content for each
species is displayed beneath their respective logos. The inferred ancestral G-C content, along with
the standard deviation, is labeled near the nodes and shaded in orange.

Analyses of individual protein trees further support the cabbage butterfly host shift.
A total of 444 proteins (98.9%) cluster the cabbage butterfly Nosema with the hymenopteran
Nosema strains, whereas only 3 (0.7%) join it with the other two lepidopterans. Therefore, the
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data strongly support a host shift involving the P. rapae Nosema. The most likely direction of
this shift is from a hymenopteran Nosema into the butterfly, although directionality cannot
be resolved at this time. Two lepidopteran Nosema are found in the moths (An. pernyi and B.
mori), and these cluster together in Clade B with 100% bootstrap support. Their hosts belong
to the superfamily Bombycoidea, whereas P. rapae is in the superfamily Papilionoidea, with
an estimated divergence time from the two moths of 100 million years [47]. Interestingly, B.
mori and An. pernyi form a group with the crustacean Gammarus duebeni Nosema with 100%
bootstrap support, whereas the Hexapoda (including insects) and Crustacea are estimated
to have diverged 506 million years ago [49]. There are likely to be additional host shifts
involved here, although there are insufficient numbers of well-assembled Nosema genomes
to resolve the details at this time.

Finally, a host shift involving the two Nosema found in the bees A. mellifera and A.
cerana is likely. The bootstrap value for the clade combining A. cerana Nosema with the
strains found in the two parasitoid wasp species M. zaraptor and M. raptor is strongly
supported (100%), with the second Apis Nosema found in A. meliferra as an outgroup. The
parasitic wasps belong to the Chalcidoids, which diverged from the lineages leading to
honey bees approximately 247 MYA [46], whereas the two Apis species are estimated to
have diverged only 23.7 MYA [45]. To exclude the possibility of potential artifacts caused
by concatenation, we examined the 449 individual gene trees. Of these, 89.5% (402/449) of
A. cerana Nosema have Muscidifurax as their closest hymenopteran relative, whereas only
10.5% have the host congener Apis mellifera as the closest hymenopteran neighbor. This
phylogenetic incongruency indicates that Nosema parasites have likely moved between
bee and wasp hosts at least once in the past; however, the direction of this transfer is not
yet resolved.

The two Apis Nosema grouped together relative to the parasitoid Nosema for 12 individ-
ual proteins. They may represent genetic exchanges of the Nosema with shared Apis hosts,
or convergent evolution. Here, we highlight protein OG398, whose closest BLAST hit is the
Myg1-like protein in E. cuniculi (88% sequence identity, E-value = 3 × 10−18). Myg1 encodes
a 3′-5′ RNA exonuclease regulating the spatial segregation of organellar RNA processing
and serving as a coordinator of nuclear-mitochondrial translational crosstalk [55]. It is
involved in ribosome assembly and cytoplasmic translation by processing pre-rRNA, and
it modifies the 3′ ends of mitochondrial rRNA (mito-rRNA) and messenger RNA (mRNA),
thereby influencing mitochondrial translation. Based on protein sequence homology, we
speculate that OG398 may play a role in hijacking and rebalancing the host’s mitochondrial
translation to meet their own energy needs. Further studies of these and similar discordant
protein topologies may be warranted in the future, especially once more Nosema genome
assemblies are available.

3.5. Evolution of GENOME-Wide G-C Content and Codon Usage Bias
3.5.1. Potential Directional Shift from GC-Rich to AT-Rich Genomes in Nosema Evolution

Microsporidian pathogens infecting mammals, such as E. cuniculi, have a high G-
C content with nearly 50% GC [8]. Similarly, Nematocida displodere, a microsporidian
parasite of Caenorhabditis elegans, has a genome-wide G-C content of 49.2% [56]. Another
microsporidian species, Antonospora locustae, which infects locusts, has an average genome
G-C content of 42.0% [57], suggesting many microsporidia have relatively high G-C content.
In contrast, the published genomes of Nosema species have reported much lower G-C
contents, ranging from 25% to 35%. Based on the Nosema phylogeny, we inferred the
ancestral states of G-C content on the nodes and found a significant reduction in genome-
wide G-C content in Nosema muscidifuracis and Nosema apis (Figure 4), suggesting a tendency
of decreasing G-C content during Nosema evolution.

3.5.2. Significant Codon Bias in A-T Rich Nosema Genomes

Since the Nosema genomes are gene-dense, a reduction in G-C content significantly
impacts their protein-coding genes. We examined the G-C content at the third codon
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position (GC3) and the first two codon positions (GC12) in three species: N. muscidifuracis,
N. ceranae, and E. cuniculi. Our analysis revealed that E. cuniculi has an 11.6% higher GC12
compared to the two Nosema species (43.7% vs. 32.1%). Moreover, the GC3 in E. cuniculi
is significantly higher at 40%, which distinctly separates its genes from those of Nosema
(Figure S3). These results are consistent with what was reported in a previous study [25].

N. muscidifuracis exhibits a significantly lower G-C content (22.6%) compared to N.
ceranae (25.4%). The GC12 values are comparable between N. muscidifuracis (31.9%) and N.
ceranae (32.4%), which may reflect the selective constraints at the first two codon positions.
However, the GC3 in N. muscidifuracis (14.1%) is significantly lower than that in N. ceranae
(17.3%), which may contribute to the differences observed in their overall nucleotide
composition (Figure 5A). When all seven Nosema species are compared, those with lower
overall G-C content tend to exhibit lower GC3/GC ratios (Figure 5A). There is a linear
relationship between GC3 and total GC (R2 = 0.957; Figure 5B), indicating that low-GC
Nosema species prefer to use codons that end with A or T. This preference indicates a codon
usage bias toward A/T at the third codon position in species with lower G-C content.
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Figure 5. Codon bias and evolution toward AT-rich genomes in Nosema. (A) Boxplot of GC3 (G-C
content at the 3rd codon position) over G-C content at all condo positions, rank ordered by the
genome average G-C content in Encephalitozoon cuniculi (Ecuni), Nosema granulosis (NgOu53), Nosema
bombycis (NosBom), Nosema antheraeae (NosYY), Nosema ceranae (Ncer), Nosema sp. YNPr (NosYNPr),
Nosema muscidifuracis (Nmus), and Nosema apis (Napis). (B) The correlation between coding region G-
C content (x-axis) and GC3/GC (y-axis). (C) Proportion of codon usage for glutamic acid and tyrosine
in eight microsporidian genomes. The proportion of arginine codon usage across eight microsporidian
genomes. (D) Proportion of codon usage for alanine and threonine in eight microsporidian genomes
(Chi-squared test, ***, p < 0.001). (E) Proportion of codon usage for arginine in eight microsporidian
genomes. (F) Proportion of STOP codon usage in eight microsporidian genomes.



Biology 2024, 13, 952 12 of 19

3.5.3. Species-Specific Usage Preference of Degenerative Codons

When analyzing degenerative codons, we discovered an overall codon bias toward
the A/T at the third position (Figure S4), with the degree of bias closely correlated with the
genome-wide G-C content (Figure 5C). However, we also observed differential preferences
for A or T at four-fold degenerate sites in each Nosema species. For example, the codons for
alanine and threonine are significantly more biased toward uracil (U) at the third position
in N. muscidifuracis (with a G-C content of 31.9%), while a larger proportion of codons with
an A at the third position is observed in N. apis (p < 0.001; Figure 5D).

3.5.4. CpG Avoidance in Arginine Encoding Codons

Arginine is encoded by six codons, four of which begin with the CpG dinucleotide.
When comparing the usage of CGA/CGU codons to AGG codons, which have the same
G-C content, we observed that AGG is overrepresented in five Nosema species and in E.
cuniculi (Figure 5E). This preference indicates a tendency to avoid the CpG dinucleotide
context in arginine codons. The depletion of CpG sites is presumably due to spontaneous
deamination processes occurring in the genome. In this process, methylated cytosines can
deaminate to thymine, leading to mutations that reduce the frequency of CpG dinucleotides
over time.

3.5.5. Usage Bias of STOP Codons in Nosema Species Compared to Encephalitozoon

A usage bias of stop codons was observed in Nosema species. Specifically, among the
three stop codons (UAG, UGA, and UAA), there appears to be no preference in E. cuniculi
(Figure 5F). In contrast, the low G-C content Nosema species exhibit varying degrees of bias
toward using UAA as the stop codon (Figure 5F). This suggests that Nosema species with
lower genome-wide G-C content preferentially utilize UAA to terminate protein synthesis,
whereas such STOP codon usage bias is not present in E. cuniculi.

4. Discussion
4.1. Discovery of Host Shift Events in Nosema Species

Host shifts are prevalent in microsporidia, and all four clades of microsporidia con-
tain species that infect both insects and humans [3]. Host shifts frequently disrupt co-
phylogenetic patterns between parasites and their hosts, leading to incongruences in their
evolutionary trees [58]. Studies of microsporidian parasites Dictyocoela roeselum and Nosema
granulosis in amphipods revealed coevolution and co-diversification with host species,
whereas Dictyocoela muelleri and three species of Cucumispora showed recent colonization,
indicating recent spreading and potential host shift [59,60]. Typically, host switch events
occur among phylogenetically related hosts rather than between distantly related ones [61].
Until now, no significant host shift event had been identified within the Nosema genus. In
this study, we discovered potential host shift events involving Nosema species infecting
bees and wasps through phylogenomic analysis of multiple Nosema genomes. This finding
suggests that host switching between distantly related host taxa can occur, serving as a
potential mechanism for Nosema diversification. After transitioning to a different host,
genetic adaptations might be necessary to overcome challenges related to host recognition,
energy and metabolite utilization, immune tolerance, transmission, and proliferation in
a new environment. We identified a few genes that may have undergone co-evolution
following a host switch, including Myg1, which is involved in nuclear-mitochondrial trans-
lational crosstalk. Determining the gain and loss of specific genes remains challenging due
to the insufficient quality of several available Nosema genomes. This highlights the need
for improved genome assemblies in future research to gain a deeper understanding of the
genetic adaptations associated with host shifts.

4.2. CCC-Containing Motifs Are Conserved in Multiple Nosema Species

One significant finding of this study is the conservation of CCC motifs across various
Nosema species and their association with active gene transcription. Although CCC motifs
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have been previously reported in bee-infecting Nosema, Encephalitozoon, and Antonospora [30],
our study confirms their broader presence within the Nosema genus and reveals a direct
association with gene expression. A total of three different motifs were found to be present
upstream of the microsporidian gene models: the AAATTT-like signal, the CCC-like signal,
and the GGG-like signal [30]. Among these identified motifs, AAATTT and GGG were only
found in selected ribosomal genes using 5′ RACE, and we did not discover any of these
motifs reaching statistical significance in Nosema species.

CCC-like signal-containing motifs have been identified in two bee-infecting Nosema
species. Specifically, the motif TTTTTTTACCCC was identified in N. ceranae [25], and the
ACCCTT motif has been reported in N. apis [28]. The N. ceranae study also identified a
CCC motif in E. cuniculi genes, but it did not reach statistical significance [25]. Our study
did not find any CCC-containing motifs in E. cuniculi, which is consistent with the lack of
statistical significance observed in the literature [25]. We did identify such CCC motifs in N.
ceranae (TTTTTTTACCCC, identical to [25]) and N. apis (ACCCT, one bp shorter compared
to [51]), thereby confirming previous findings. In addition, we discovered significant
CCC-containing motifs in all five other Nosema species examined (N. ceranae, N. bombycis,
N. granulosis, N. antheraeae, and Nosema sp. YNPr), indicating that the CCC motif serves as
a key regulatory signal throughout the entire genus. This finding highlights the importance
of CCC motifs beyond just bee-infecting Nosema species, suggesting a fundamental role in
gene regulation across diverse Nosema hosts.

4.3. Association Between CCC-Containing Motifs and Active Transcription Suggests a Direct Role
in Gene Regulation

Previous studies have demonstrated that CCC-containing motifs are located imme-
diately upstream of the coding start site, suggesting a potential role in regulating gene
expression [30]. In this study, we found that these CCC-containing motifs are located within
20 bp upstream of the start codon, demarketing the translation initiation site. Our RNA-seq
data further demonstrated, for the first time, that these motifs are positively correlated with
active transcription, supporting their role as cis-regulatory elements in gene expression
regulation. The exact mechanism of their function, however, requires further investigation.

4.4. Evolution of CCC-Containing Motifs in Relation to Genome-Wide G-C Content in Nosema
Species

Although CCC-containing motifs are ubiquitously present in Nosema species, we
discovered variation in the number of consecutive Cs across the two Nosema clades. Given
the generally AT-rich nature of Nosema genomes, homopolymers of C are unlikely to occur
by chance. In Nosema clade A, which has a lower genome-wide G-C content (ranging from
18.8% to 24.8%), all motifs contain three consecutive Cs with information content > 0.5 bit. In
Clade B, where G-C content is higher (28.1% to 31.6%), the motifs contain four consecutive
Cs (CCCC). We hypothesize that the ancestral motif core was CCCC, which evolved into
CCC in clade A as the G-C content decreased. This suggests that the evolution of motif cores
may be linked to genome-wide G-C content, indicating coordinated evolution between
specific regulatory motifs and overall G-C composition in Nosema lineages. Additional
well-assembled and annotated Nosema genomes are needed to further test this hypothesis.

4.5. Insights into Telomere Evolution in Nosema and Microsporadia

Previous studies have shown that telomeric repeat motifs (TRMs) in most species fol-
low the classical pattern of TxAyGz, such as TAGG, TTAGG, TTAGGG, and TTTAGGG [62].
In this study, we examined three published Encephalitozoon genomes with chromosome-
level assemblies and found that TTAGG is the conserved TRM, which matches the canonical
TRM found in insect hosts [63]. In N. ceranae, TTAGG has also been identified as the TRM
candidate, suggesting that TTAGG might be the shared TRM among microsporidians.

In N. muscidifuracis, we discovered TTAGG repeats at the chromosomal termini; how-
ever, these repeats accounted for only approximately 20% of the telomeric regions. Instead,
a variant that is one base pair shorter, TAGG, is the predominant TRM form found in
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the telomeres of this species. Based on phylogenetic parsimony, we propose that the
TTAGG repeat is the ancestral form, while the TAGG repeat is a derived variant that has
become dominant in the telomeres of N. muscidifuracis. This novel composite form of
four-base-pair (TAGG) and five-base-pair (TTAGG) repeats has not been reported in any
other microsporidian genomes, providing new insights into telomere evolution.

The exceptional completeness of the N. muscidifuracis genome enabled a comprehen-
sive analysis of its subtelomeric regions. These regions were found to be highly conserved
and form two distinct clades, suggesting that they may have different evolutionary histories.
Further investigations are needed to understand how the composite TRM is maintained
and how subtelomeric regions have evolved in N. muscidifuracis and other Nosema species.

4.6. Directional AT-Rich Evolution of Nosema Genomes

Significant variation in genome-wide G-C content has been observed among fungal
species [64]. The evolution of G-C content is influenced by various evolutionary forces,
including natural selection, constraints imposed by the host environment, population
bottlenecks, random genetic drift, and others [65–67]. The vertebrate microsporidian
Encephalitozoon cuniculi has nearly 50% G-C content, exceeding that of its host genomes. In
contrast, Nosema species are typically AT-rich, exhibiting lower G-C content compared to
their host genomes, consistent with previous reports on bee-infecting Nosema species.

Using ancestral state inference through a Bayesian approach, we discovered a signifi-
cant reduction in G-C content in N. apis and N. muscidifuracis within the bee–wasp–butterfly
Nosema clade. Among the species we examined, N. granulosis has the highest G-C con-
tent (32%) and infects the amphipod Gammarus, which first appeared in the Cretaceous
period [68]. In contrast, Nosema apis, with the lowest G-C content (18.8%), infects eusocial
bees that began to diversify tens of millions of years later in the Paleogene period [46].
Although the exact timing of Nosema infection acquisition in these host species remains
uncertain, our findings suggest an evolutionary trajectory toward lower G-C content in
these parasites.

The AT-rich nature of the Nosema genome may confer an advantage by allowing the
parasite to utilize the more abundant ATP and TTP nucleotides available in host cells for
their own genome replication and reproduction. Given that Nosema species lack nucleotide
synthesis pathways and rely entirely on host metabolites for DNA replication [69], utilizing
these readily available nucleotides could enhance their replication efficiency. However, the
exact evolutionary forces driving this shift toward an AT-rich genome remain unclear and
require further investigation.

4.7. Systematic Analysis of Codon Usage Revealed Common and Species-Specific Patterns in
Nosema

Codon usage bias has been studied in Nosema and other microsporidian species [24,25,27,28].
We conducted a systematic analysis of codon bias across Nosema species and identified
several common features. All Nosema species exhibit a global bias toward AT-rich codons.
Specifically, the G-C content at the third codon position (GC3) is significantly lower than at
the first two codon positions (GC12), and this reduction correlates well with the species’
overall G-C average across many codon positions. This suggests that the evolutionary
trend toward AT-rich genomes in Nosema is achieved, at least in part, through G/C-to-A/T
synonymous substitutions at the third codon positions. Additionally, we observed CpG
avoidance in arginine codons and a bias toward using the AT-rich UAA stop codon in all
Nosema species.

Despite overall similarities in the codon usage bias toward AT-rich codons among
Nosema species, the specific patterns are not identical across all species examined. In N. apis,
studies have identified a significantly higher G-C content in coding regions (25%) compared
to the genome average (18.8%) [28]. Similarly, N. muscidifuracis shows a genome-wide G-C
content of 22.6% versus 25.3% in its coding regions, as found in this study. However, this
disparity between coding and genome-wide G-C content does not hold in N. bombycis or N.
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antheraeae, where the G-C content is similar in both coding and intergenic regions. These
findings suggest varying levels of G-C reduction in coding versus intergenic regions among
different Nosema species. In addition, the degree of codon bias is not always correlated with
the genome-wide G-C content. For instance, for the codons encoding alanine (GCA/U)
and threonine (ACA/U), N. apis prefers codons ending with adenine (A), whereas N.
muscidifuracis favors those ending with uracil (U). This indicates the presence of species-
specific preferences, which may reflect adaptations or evolutionary histories unique to
each species.

4.8. Implications of Severe Genome Reduction and Lack of Mitochondria in Nosema

Monocercomonoides is the first known eukaryote lacking mitochondria [70], and in
microsporidia, mitochondria have deteriorated into numerous tiny structures known as
mitosomes [71]. These mitosomes have limited metabolic functions and are involved in
processes such as iron–sulfur cluster assembly and lipid metabolism [72]. Microsporidia
are derived from lineages that originally contained mitochondria, indicating that the loss
of mitochondria is a secondary evolutionary event [70,73–76]. From our analysis of N.
muscidifuracis, we found that mitochondrial rRNA, tRNA, and protein-coding genes are
absent, and genes involved in the complexes of the electron transport chain are completely
missing. This suggests that Nosema species may take advantage of host metabolism to
survive as intracellular parasites [77].

Coupled with the loss of mitochondria, Nosema species exhibit severe genome reduc-
tion [78–81], presumably due to their highly specialized morphology and life cycle [9,82].
Endocytosis was identified as another major pathway experiencing significant gene loss in
Nosema in this research. Previous studies have shown that microsporidian cells can exploit
the host endocytosis pathways to exit intestine cells for spreading [83–85], reducing their
need for genes related to this process compared to free-living fungi. This reduction high-
lights the extensive genome contraction these parasites have undergone as they adapt to an
intracellular lifestyle. The loss of endocytosis-related genes suggests that Nosema species
rely heavily on their hosts for nutrient uptake and cellular processes, further emphasizing
their dependence on host metabolism for survival and proliferation. The selective gene loss
indicates an evolutionary strategy where non-essential genes are lost, while vital processes
are conserved to support their intracellular parasitic lifestyle. By analyzing more Nosema
species, we can gain a more detailed understanding of which pathways are critical and
how genome reduction has shaped their evolution.

5. Conclusions

In this study, our phylogenomic analyses of genome-available Nosema species uncov-
ered incongruences between the Nosema tree and their host phylogenies, revealing host
shift events involving butterflies, bees, and wasps. We found that TTAGG is likely the an-
cestral telomeric repeat motif in Nosema and other microsporidians; however, evolutionary
fluidity exists in certain Nosema species that possess composite TTAGG/TAGG repeats.
Additionally, cytosine-rich motifs upstream of protein-coding genes, linked to high gene
expression, indicate a potential cis-regulatory function. Our findings expand on previous
Nosema genome studies by shedding light on gene regulation, genome reduction, telomere
evolution, host shifts, and codon usage bias. These insights have practical applications for
managing nosemosis by targeting conserved regulatory motifs. Future research should fur-
ther investigate the functions of these motifs, enhance genome completeness, and examine
genetic adaptations to host shifts, supporting efforts to control these parasites and protect
vital insect populations.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biology13110952/s1, Table S1. Accessions for genome assemblies
used in this study. Table S2. Short-read genome sequencing data in Nosema species used for telomeric
repeat motif identification. Table S3. Encephalitozoon telomeric repeat motifs inferred from long-read
genome assemblies. Table S4. Summary of the TRM call and composition of TAGG, TTAGG, and
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TAGGG repeat units in the telomere of Nosema muscidifuracis. Table S5. The number of genes in major
functional pathways identified in Nosema muscidifuracis and Saccharomyces cerevisiae. Table S6. Motif
sequences and significance identified in 449 shared orthologous genes in seven Nosema species and
an outgroup species Encephalitozoon cuniculi. Table S7. Motif sequences and significance identified in
predicted genes of seven Nosema species and Encephalitozoon cuniculi, excluding 449 shared ortholo-
gous genes. Table S8. Summary of codon usage in Encephalitozoon cuniculi and seven Nosema species.
Figure S1. Presence and absence of genes in the endocytosis pathway in Nosema muscidifuracis and
Saccharomyces cerevisiae. Figure S2. A maximum-likelihood tree of Myg1-like gene in seven Nosema
genomes and the outgroup Encephalitozoon cuniculi. Figure S3. G-C content analysis of protein genes
in N. muscidifuracis, N. ceranae, and E. cuniculi. Figure S4. Proportion of codon usage in seven Nosema
species and Encephalitozoon cuniculi.
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