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Simple Summary: This study investigates the effects of dietary curcumin on gut dysbiosis and
impaired gut integrity caused by a high-fat, high-sugar diet (HFHSD) in aged male mice. Our
results show that curcumin supplementation increases beneficial gut microbes and decreases harmful
bacteria, leading to reduced gut inflammation and improved expression of markers of gut barrier
integrity. Additionally, curcumin supports bile homeostasis in the context of aging and HFHSD
consumption. These findings suggest that curcumin could be a promising dietary intervention for
improving gut health in obesity and aging.

Abstract: The gut microbiome plays a critical role in maintaining gut and metabolic health, and its
composition is often altered by aging and obesity. This study aimed to investigate the protective
effects of curcumin on gut dysbiosis, gut barrier integrity, and bile acid homeostasis in aged mice fed
a high-fat, high-sugar diet (HFHSD). Eighteen- to twenty-one-month-old male C57BL/6 mice were
divided into groups fed a normal chow diet or HFHSD, with or without curcumin supplementation
(0.4% w/w) for 8 and 15 weeks. We assessed body weight, food intake, insulin sensitivity, gut mi-
crobiota composition, and gene expression in the gut and liver and performed histological analysis
of gut tissues. Curcumin supplementation prevented HFHSD-induced weight gain and metabolic
disturbances. In the gut, curcumin-treated mice showed a higher abundance of beneficial bacterial
genera, such as Lachnospiraceae, Akkermansia, Mucispirillum, and Verrucomicrobiota, alongside a lower
abundance of harmful bacterial genera like Desulfobacteria, Alistipes, and Muribaculaceae compared to
control. This shift in gut microbiota was associated with improved gut integrity, as demonstrated by
increased expression of the tight junction protein occludin and reduced levels of the pro-inflammatory
marker interleukin-1β in the ileum. Additionally, curcumin modulated hepatic gene expression
involved in bile acid homeostasis, suggesting a positive effect on liver health. Curcumin supplemen-
tation can alleviate the negative effects of aging and an HFHSD on the gut microbiome, improve gut
barrier integrity, and maintain bile acid homeostasis. These findings highlight curcumin’s potential
as a dietary intervention for managing obesity- and age-associated gut health issues.
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1. Introduction

The composition of the gut microbiome plays a crucial role in regulating both gut
and metabolic health [1]. This is demonstrated by the observation that obese individuals
exhibit a distinct microbiota composition, characterized by reduced diversity compared
to lean individuals, with significant differences in functional potential between these
groups [2]. The influence of the gut microbiome on metabolic outcomes has been further
substantiated by fecal microbiota transfer studies. In these studies, germ-free mice that
receive fecal microbiota from obese donors develop an obese phenotype, whereas the
transfer of microbiota from healthy donors to patients with metabolic syndrome results
in improved biomarkers of metabolic health [1,3]. These divergent outcomes are largely
attributed to the microbiome’s effects on gut barrier function, endotoxin production, dietary
fiber fermentation to produce short-chain fatty acids (SCFAs), bile acid homeostasis, and
other microbial-derived metabolites that affect inflammation and energy metabolism [4–6].
Thus, modulating or controlling the composition of the gut microbiota could be a promising
strategy to maintain gut health and mitigate metabolic diseases.

Several factors influence the composition of the gut microbiota, including perinatal
microbial exposure, host genetics, immunity, antibiotic use, and diet [7]. Among these, diet
is a major modifiable factor capable of inducing significant changes in the gut microbiome.
Variations in gut transit time, pH, macronutrient composition, and the presence of phyto-
chemicals in different diets can lead to substantial differences in microbial colonization [7–9].
For instance, mice fed a high-fat diet show an increased relative abundance of Firmicutes
and a decrease in Bacteroidetes compared to control mice [10], while a high-fiber diet leads
to an increase in fiber-degrading microbes such as Bifidobacterium and Lactobacillus [11].
The types of bacteria present in the gut greatly influence host health. Resistant starches,
non-starch polysaccharides, and oligosaccharides that are indigestible by the host undergo
microbial degradation in the gut to produce SCFAs, primarily acetate, propionate, and
butyrate [7]. These metabolites support host health through various mechanisms, including
promoting glucose and lipid homeostasis, modulating the immune system, protecting
neurons, reducing inflammation, and offering protection against colorectal cancer, dia-
betes, and cardiovascular diseases [12,13]. SCFAs also improve intestinal barrier function
by regulating the expression of tight junction proteins and enhancing the production of
antimicrobial peptides [14].

A high-fat diet (HFD), representative of a Western-style diet, negatively impacts gut
health by increasing intestinal permeability, damaging the intestinal mucosal barrier, re-
ducing the expression of tight junction proteins, stimulating the release of hydrophobic
bile acids, increasing the translocation of lipopolysaccharide (LPS) and the activation of
toll-like receptor 4 (TLR4), and promoting oxidative stress in epithelial cells [15,16]. Addi-
tionally, HFD triggers proinflammatory signaling by altering cytokine release, increasing
levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and interferon-γ, while
decreasing mRNA expression levels of anti-inflammatory cytokines such as IL-10, IL-17,
and IL-22 [17]. A HFD also diminishes beneficial microbiota, such as Lactobacillus, Bifidobac-
terium, Bacteroidetes, and Akkermansia species, while increasing the abundance of harmful
microbes like Desulfovibrio, which are associated with reduced barrier integrity [15]. The
microbial changes induced by a high-fat, high-sugar diet (HFHSD) can also elevate the risk
of gastrointestinal cancer [18].

In addition to a Western-style diet, aging significantly impacts the composition and
diversity of the gut microbiota, and these changes are increasingly recognized as potential
indicators of biological aging [19,20]. This prompted López-Otín and colleagues to revise
the previously proposed nine hallmarks of aging to twelve in 2023, incorporating dysbiosis
as one of the new hallmarks [21]. Aging leads to alterations in the gut microbiota, including
decreased microbial diversity, an increased Firmicutes to Bacteroides ratio, and a decline in
Bifidobacteria, accompanied by an increased abundance of subdominant bacteria [22]. In
young adults, the gut is colonized by a diverse array of commensal microbes. However,
with aging, both the population and diversity of commensal microbes decrease, often
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due to an increase in pro-inflammatory microbes [23]. The microbiome profile in aging
individuals is less resilient and more susceptible to alterations by external factors such as
diet, medication, and lifestyle, leading to long-lasting changes, whereas, in young adults,
the impact of these external factors on the gut microbiome is minimal and transient [24].
Besides that, chronic low-grade inflammation under aging (inflammaging) makes the el-
derly population more susceptible to the negative effect of dysbiosis [24–26]. Aging also
slows metabolic processes, affecting gut motility and nutrient absorption, which creates
an environment that fosters dysbiosis and exacerbates metabolic disturbances [27]. As a
result, the effects of gut dysbiosis in metabolic disorders are more severe and persistent
in older individuals compared to younger ones [28]. This results in diminished epithelial
cell integrity, potentially leading to leakage of microbes and endotoxins into the blood-
stream, triggering systemic inflammation and predisposing individuals to age-associated
diseases [23].

Supplementing the diet with bioactive food compounds has the potential to coun-
teract these detrimental changes in microbiome composition [29]. Compounds such as
anthocyanins, hesperidin, naringin, berberine, allicin, baicalein, catechins, ellagitannins,
betacyanins, lycopene, kaempferol, resveratrol, and other polyphenols and alkaloids have
been shown ameliorative effects on gut dysbiosis [29–31]. Curcumin, a polyphenol derived
from turmeric, has also demonstrated beneficial effects in managing gut dysbiosis. In 2021,
Li et al. reported that curcumin supplementation increased SCFA levels and the abundance
of beneficial bacteria while reducing endotoxin-producing Desulfovibrio bacteria and serum
LPS in six-week-old mice [32]. Several other studies have also highlighted curcumin’s
role in alleviating dysbiosis in various mouse models [6,33–37]. Despite these findings,
research is limited regarding whether curcumin can effectively mitigate the cumulative ef-
fects of aging and HFHSD on the gut microbiome. As our previous research demonstrated
a beneficial effect of curcumin in aging-associated metabolic disease, we were curious
whether it could help mitigate age-associated dysbiosis (one of the hallmarks of aging)
under metabolic stress [38–41]. Therefore, this research aims to evaluate the protective
effects of curcumin on gut barrier function and microbial composition in an aged mouse
model subjected to an HFHSD.

2. Materials and Methods
2.1. Animals and Treatment

All animal experiments were approved by the Animal Care and Use Committee
(ACUC) of the National Institute on Aging (NIA) and the Institutional Animal Care and
Use Committee (IACUC) at Oklahoma State University. Eighteen- to twenty-one-month-old
aged male C57BL/6 mice were obtained from the NIA-Aged Rodent Colony and housed
at Charles River Laboratories (Frederick, MD, USA, or Raleigh, NC, USA). The mice were
acclimatized for a week at either the NIA intramural housing facility (Baltimore, MD, USA)
or the Animal Care Facilities at Oklahoma State University (Stillwater, OK, USA), with ad
libitum access to a standard chow diet and water. Fecal samples were collected from each
mouse before and after the completion of the 15-week intervention. Mice were divided
into four groups (n = 9–10 per group): normal chow diet (NCD), curcumin-supplemented
(4 g/kg) normal chow diet (NCD+CUR), HFHSD, and curcumin-supplemented (4 g/kg)
HFHSD (HFHSD+CUR) groups, based on baseline body weight and 6-h fasting blood
glucose levels. This dose of curcumin is equivalent to a 2 g/day dose of curcumin for a
60 kg adult based on an equivalent surface area dosage conversion method and had been
used safely in mice in a previous study [39]. Details of diet composition are provided in
Supplementary Tables S1 and S2. Ad libitum access to a customized diet (purchased from
Dyets Inc., Bethlehem, PA, USA) and water was provided throughout 8-week (for pheno-
type, Insulin tolerance test (ITT), food intake, gut integrity, and hepatic qPCR study) and
15-week (for gut microbiome profile) study periods, with weekly monitoring of food intake
and body weight. The duration of treatment was decided based on previous studies [6,41].
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2.2. Insulin Tolerance Test

Insulin tolerance test (ITT) was performed on mice after an 8-week intervention,
following the methods described by Lee et al. [38]. Briefly, blood glucose levels were
measured in mice that had been fasted for 6 h, at 0, 15, 30, 60, 90, and 120 min after a
0.75 IU/kg body weight insulin injection (Novo Nordisk Inc., Plainsboro, NJ, USA). Blood
glucose level and area under the curve (AUC) were calculated to determine any differences
in insulin sensitivity between groups.

2.3. Microbial Analysis of the Feces

Genomic DNA (gDNA) was isolated from fecal samples collected before and after the
15-week dietary intervention and stored at −80 ◦C using the QIAamp Fast DNA Stool Mini
Kit (Qiagen, Hilden, Germany). The isolated gDNA was sent to DNA Link (Los Angeles,
CA, USA) for 16S rRNA sequencing. The sequencing data were deposited in the National
Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA) under the
BioProject accession number PRJNA1165253. Analysis was performed as described by
Lamichhane et al. (2024) [34]. Briefly, paired sequencing reads were analyzed in QIIME 2
(v. 2020. 11). Adaptor, barcode, and primer sequences were removed using the Cutadapt
plugin, followed by joining forward and reverse reads and performing quality control.
High-quality reads were then denoised using the Deblur algorithm (v. 2022.8.0) to generate
Amplicon Sequence Variants (ASVs). ASVs were classified using the Ribosomal Database
Project (RDP) 16S rRNA training set (v. 18) and the Bayesian classifier [42]. A bootstrap
confidence of 80% was used to classify taxa, and ASVs below this threshold were labeled as
“_unidentified” at the highest confidently assigned taxonomic level. Any ASVs appearing
in <5% of the sample were excluded from downstream analysis. Linear discriminant
analysis (LDA) effect size (LEfSe) with an all-against-all multiclass analysis (p < 0.05) and a
logarithmic threshold of 3.0 was used to determine the differential enrichment of bacterial
features between groups.

2.4. Real-Time Quantitative Polymerase Chain Reaction (qPCR)

Total RNA was extracted from the ileum, colon, and liver tissues (n = 6/group) using
TRIzol reagent (Thermo Fisher Scientific, Pleasanton, CA, USA), following the procedures
described by Lamichhane et al., 2024 [41]. RNA quality was checked using a Nanodrop
spectrophotometer and agarose gel electrophoresis. The extracted RNA was reverse-
transcribed using the iScript™ cDNA Synthesis Kit (Bio-Rad Laboratories Inc., Hercules,
CA, USA). The relative abundance of genes encoding for pro-inflammatory markers (TNF-
α, Il-1β, and Il-6), anti-inflammatory markers (Il-10) and hepatic/biliary homeostasis-
related markers (FGFR4, β-Klotho, FXRα, and BSEP) was assessed by quantitative real-time
polymerase chain reaction (qRT-PCR) using SYBR Green chemistry on a CFX Opus 384
Real-Time PCR System (Bio-Rad Laboratories). The forward and reverse primer sequences
used are listed in Supplementary Table S3. Relative mRNA abundance was calculated
using the 2−∆∆Ct method, with glyceraldehyde-3-phosphate dehydrogenase (GAPDH) or
18S as the invariant control.

2.5. Immunoblotting Analysis

Proteins were extracted from the ileum tissue homogenates (n = 3/group) using
radioimmunoprecipitation assay (RIPA) buffer containing 0.5% protease and phosphatase
inhibitors. Protein concentrations were determined using the bicinchoninic acid (BCA)
assay, and 20 µg of protein was loaded for sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (SDS-PAGE). Gels were transferred onto polyvinylidene fluoride (PVDF)
membranes, and transfer accuracy was confirmed by Ponceau staining. Membranes were
blocked with 5% non-fat milk and incubated overnight with primary antibodies (occludin,
claudin-1, β-actin; Thermo Fisher, Waltham, MA, USA). The blots were then washed with
phosphate-buffered saline (PBS), incubated with a horseradish peroxidase (HRP)-linked
secondary antibody (Cell Signaling Technology, Danvers, MA, USA), and washed again.
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Blots were visualized using Pierce enhanced chemiluminescence (ECL) Western Blotting
Substrate (Thermo Fisher). Images were captured with a FluorChem R Imaging System
(ProteinSimple, San Jose, CA, USA), and band intensity was quantified using ImageJ
software, v 1.8.0 (National Institute of Health, Rockville, MD, USA) and normalized to
β-actin.

2.6. Histological Analysis

Formalin-fixed jejunum and colon tissues were dehydrated in an ethanol gradient
(70% ethanol, 80% ethanol, 95% ethanol and 100% ethanol) and toluene using an automated
tissue processor (Shandon Citadel 2000, Waltham, MA, USA). The tissues were embedded in
paraffin blocks, and 5-µm sections were cut using a microtome (Leica Biosystems, Wetzlar,
Germany) and transferred to charged slides. The slides were stained with hematoxylin
and eosin (H&E), and structural changes in the villi and intestinal crypts were accessed
using a microscope at 10× magnification. Photomicrographs were acquired using BZ-X800
software (Keyence, Osaka, Japan).

2.7. Statistical Analysis

All data were analyzed using GraphPad Prism (V 9.5.1: GraphPad Inc., San Diego,
CA, USA). A two-way repeated-measured analysis of variance (ANOVA) was used for
body weight, food intake, and ITT. An unpaired t-test was used to analyze the area under
the curve (AUC) of ITT, qPCR, and immunoblotting results. All data are presented as
mean ± standard error of the mean (SEM), and statistical significance was determined at
p ≤ 0.05. An outlier test was performed with α = 0.05 to remove any outliers

3. Results
3.1. Curcumin Supplementation Reduces Body Weight and Improves Insulin Sensitivity in
Aged Mice

We observed a reduction in body weight gain in aged mice fed an HFHSD+CUR from
the onset of the intervention, which persisted throughout the 8-week study (Figure 1A).
The difference in mean body weight gain on weeks 7 and 8 was 3.1 g and 2.5 g, respec-
tively. The greatest difference in mean body weight gain occurred in week 5, with a mean
difference of 4.2 g. We decided to terminate the study in the 8th week as the mice began
showing saturation in body weight under HFHSD feeding. We did not observe a significant
difference in food intake or food efficiency ratio within dietary groups, but a negative food
efficiency ratio was evident in the NCD+CUR group (Figure 1B). A slight reduction in body
weight gain was also noted in the NCD+CUR group compared to the NCD group, with a
mean difference of 1.5 g by week 8. Additionally, curcumin supplementation improved
insulin sensitivity in both the NCD and HFHSD groups (Figure 1C).

3.2. Curcumin Supplementation Alters Beta Diversity of the Microbiome in Aged Mice

A marked reduction in the observed ASVs was noticed in both HFHSD and HFHSD+CUR-
fed mice at the end of the 15-week dietary intervention compared to ASV levels before treatment,
indicating a detrimental effect of HFHSD on microbial diversity (Figure 2A). Curcumin supple-
mentation did not rescue this decline in ASVs, possibly due to intrasubject variation. Neither
Pielou’s evenness index nor the Shannon index showed a significant change in alpha diversity
after the 15-week treatment period, possibly due to variability in individual baseline microbiome,
which diluted the treatment effect by masking a subtle change in alpha diversity (Figure 2B,C).
However, curcumin supplementation caused significant alterations in beta diversity, reflecting
a notable shift in microbial composition. Pairwise comparisons of weighted and unweighted
UniFrac distances using fecal samples collected before and after treatment revealed significant
differences in beta diversity across all dietary groups (Figure 2D,E).
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3.3. Curcumin Supplementation Modifies Microbiota Composition in Aged Mice

At the phylum level, curcumin supplementation led to an increase in Proteobacteria and
Verrucomicrobiota in both NCD and HFHSD groups while reducing the abundance of Desul-
fobacteria (Figure 3A,B). Furthermore, slight enrichment in the abundance of Bacteroidota
was observed under HFHSD consumption, but curcumin supplementation mitigated this
increase. Curcumin consumption had no notable effect on the enrichment of Firmicutes and
Bacteroidetes.
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At the genus level, the relative abundance of Parabacteroides, Mucispirillum, Muribacu-
lum, Occillospiraceae, Christensenellaceae, and Lachnospiraceae was higher in the HFHSD+CUR
group compared to HFHSD mice, while the abundance of Alistipes, Muribaculaceae, and
Bacteriodes was lower (Figure 3C). In the NCD+CUR group, the relative abundance of
Parabacteroides, Dancaniella, Lactobacillus, and Christensenellaceae was higher compared to
the NCD group. Conversely, the abundance of Alistipes, Muribaculaceae, Bacteriodes, and
Chlostridium was lower in the NCD-fed mice. Analysis based on ASVs revealed that
curcumin-supplemented mice had a higher abundance of Parabacteroides, Mucispirillum,
Christensenellaceae, and Akkermansia in both dietary conditions (Figure 3D).

LEfSe analysis revealed a higher abundance of beneficial microbiota, such as Parabac-
teriodes, Flintibacter, Oscillibacter, Oscillospiraceae, and Lachnospiraceae in the HFHSD+CUR
group compared to HFHSD. In contrast, the abundance of Muribaculaceae, Bilophila, Odorib-
acter, and Duncanjella was higher in the HFHSD group (Figure 4B). In the NCD+CUR group,
the abundance of Parabacteriodes, Lachnispiraceae, Flintibacter, and Muribaculaceae was higher
compared to NCD, whereas the abundance of Alistipes, Christensenellaceae, Clostridium, and
Clostridales was greater in the NCD group (Figure 4A).
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3.4. Curcumin Supplementation Preserves Gut Architecture, Reduces Inflammation, and Enhances
Tight Junction Protein Expression

Histological analysis of jejunum revealed villus atrophy under HFHSD feeding, which
was ameliorated by curcumin supplementation (Figure 5A). The result was further sup-
ported by qPCR results, where curcumin supplementation significantly decreased IL-1β
and showed a decreasing trend in TNF-α mRNA level (Figure 5B) while increasing the
trend in anti-inflammatory IL10 expression level. Furthermore, curcumin significantly
increased the expression of the tight junction protein occludin (OCLN) in the ileum of
HFHSD+CUR-fed mice (Figure 5C).
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However, the effect of curcumin on the colon was not as distinct as in the small
intestine, indicated by no visible changes in the colon across groups (Figure 6A). Also, qPCR
analysis of inflammatory markers showed no significant difference in pro-inflammatory or
anti-inflammatory gene expression in the colon of HFHSD-fed mice supplemented with
curcumin (Figure 6B). However, significant downregulation of proinflammatory TNF-α
was observed in curcumin-supplemented NCD-fed mice (Figure 6B).

3.5. Curcumin Supplementation Ameliorates Bile Acid Homeostasis-Related Markers in the Liver

There was a notable increase in the expression of farnesoid X receptor α (FXRα)
and bile salt export pump (BSEP) in the NCD+CUR group compared to the NCD group
(Figure 7A). Curcumin supplementation also significantly increased the expression of β-
Klotho and FXRα gene in the livers of HFHSD-fed mice (Figure 7B). Additionally, curcumin
led to an upregulating trend in the expression of fibroblast growth factor receptor 4 (FGFR4)
and BSEP genes in the livers of HFHSD+CUR-fed mice.
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4. Discussion

The Western diet (WD), rich in fat and sucrose, is associated with gut dysbiosis—a
disruption in the balance of gut microbiota [43]. This dysbiosis contributes to increased
intestinal permeability (“leaky gut”) and systemic inflammation, which can negatively
affect various tissues, including the liver [44]. Since the liver directly receives blood from
the digestive tract through the portal vein, it is particularly susceptible to the consequences
of a leaky gut, such as liver inflammation and metabolic dysfunction-associated steatotic
liver disease (MASLD) [45]. This issue is exacerbated in older individuals, as aging has
been shown to worsen gut dysbiosis, promoting a cycle of inflammation and declining
health, as previously reported by our groups [46,47]. In this study, we aim to investigate
how curcumin supplementation mitigates liver damage in aged mice fed an HFHSD by
modulating the gut-liver axis.

Our results demonstrate that curcumin supplementation effectively mitigated gut
dysbiosis, attenuated weight gain, reduced gut inflammation, and enhanced gut integrity
in aged obese mice. These improvements in gut health were accompanied by enhanced
liver metabolic function, particularly with regard to the regulation of bile acid homeostasis.
Notably, the reduction in body weight was biologically significant, as evidenced by a
marked improvement in insulin sensitivity in the HFHSD+CUR group compared to the
HFHSD group, as observed during the insulin tolerance test (ITT). The alterations in
microbial populations further underscore the profound impact of diet and diet-induced
metabolic changes, including body weight, on the gut microbiota. Curcumin increased
the abundance of Bacteroidetes in obese aged mice, a microbial shift associated with the
production of short-chain fatty acids (SCFAs) such as acetate, propionate, and butyrate.
Propionate, in particular, plays a key role in reducing fat accumulation by inhibiting hepatic
lipogenesis and promoting satiety [48]. These findings support earlier studies showing that
curcumin can improve body weight and composition in obesity, likely through its effects
on gut microbiota [49,50].

Both aging and WD consumption contribute to gut dysbiosis, but their combined ef-
fects have not been thoroughly characterized. In our study, HFHSD further aggravated gut
dysbiosis in aged mice, marked by a lower relative abundance of beneficial bacterium such
as Parabacteroides, Occillospiraceae, Mucispirillum, Muribaculum, Flintibacter, Lachnospiraceae,
and Akkermansia, and a higher abundance of Desulfobacteria. The latter is associated with
inflammatory conditions, including inflammatory bowel disease (IBD) [51]. The beneficial
bacteria that declined are known for producing SCFAs, such as butyrate, which support
colon health, provide energy for colonocytes, and exert anti-inflammatory effects [14].
The loss of these bacteria may increase intestinal permeability, allowing toxins and bac-
teria to enter the bloodstream [52]. Curcumin selectively modulates certain microbial
populations, influencing the composition of microbial communities without significantly
affecting overall species richness or evenness. Notably, the curcumin-supplemented group
showed a lower abundance of Desulfobacteria and a higher abundance of beneficial bacteria
like Parabacteroides, Mucispirillum, and Flintibacter, suggesting a positive shift in the gut
microbiota toward a healthier composition.

In this study, HFHSD-fed aged mice exhibited increased levels of pro-inflammatory
cytokines (such as TNF-α and IL-1β) in the ileum, which were reduced following curcumin
supplementation. Previous studies have also demonstrated a correlation between Desul-
fobacteria and elevated secretion of inflammatory factors [53,54]. These bacteria release
metabolites and LPS that activate immune cells, leading to the release of pro-inflammatory
cytokines. Our results support the idea that curcumin-induced shifts in the gut microbiota
play a significant role in reducing chronic low-grade gut inflammation. We observed a
more pronounced effect in the ileum compared to the colon, likely due to the higher density
of immune cells, including Peyer’s patches, in the ileum, making it more responsive to
treatment [55]. Additionally, curcumin has low systemic absorption, and its concentration
may be higher in the ileum than the colon due to differences in transit time and degradation,
leading to a stronger anti-inflammatory effect in the ileum [33].
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Additionally, curcumin supplementation increased the expression of the tight junction
protein occludin in Ileum, which had been reduced in HFHSD-fed aged mice. This finding
is consistent with previous studies by Tian et al. [56]. They demonstrated curcumin’s
protective role in intestinal ischemia-reperfusion injury through modulation of zonula
occludens-1 (ZO-1) protein expression and downregulation of the TNF-α pathway. In
our study, curcumin increased gut integrity in the ileum. Overall, these results suggest
that curcumin supports gut integrity in aged obese mice by preserving tight junctions and
reducing gut inflammation.

A compromised gut barrier allows inflammatory mediators to enter the bloodstream,
where they can travel to the liver and trigger an inflammatory response [57]. In our study,
curcumin restored the expression of key liver markers, such as FXRα and β-Klotho, which
had been downregulated in the obese aged mice. These markers are linked to bile acid
homeostasis and overall liver function. The increased levels of FXRα and β-Klotho in
curcumin-supplemented groups may be attributed to the improved gut microbiota, as
Parabacteroides—which increased following curcumin supplementation—has been shown
to alleviate obesity-related dysfunctions and activate intestinal gluconeogenesis and FXR
signaling by generating succinate and secondary bile acids. The FXR signaling pathway
is crucial for bile acid homeostasis, and curcumin’s ability to modulate this pathway may
explain its protective effects on liver health. Yang et al. [58] previously proposed that cur-
cumin exerts its effects against cholestasis by restoring bile acid homeostasis and reducing
inflammation through an FXR-dependent mechanism. Our findings support this hypothe-
sis, demonstrating that curcumin improves liver function and reduces inflammation in aged
obese mice by modulating gut dysbiosis, reducing chronic low-grade gut inflammation,
enhancing gut barrier integrity, and preserving bile acid homeostasis via FXR signaling.

One limitation of this study was the relatively short duration of treatment, which
may explain the lack of significant changes in insulin sensitivity despite observable trends.
Also, the use of the same cohort for gut microbiome analysis and gut integrity study could
provide a more reliable correlation between microbiome change and improved gut health.
Analysis of circulating inflammatory markers could provide strong evidence on whether
curcumin-mediated reduced low-grade inflammation in the gut was strong enough to
manifest in the systemic circulation. Future studies should explore the long-term effects of
curcumin supplementation in aged obese mice.

5. Conclusions

In conclusion, we demonstrated that curcumin supplementation effectively mitigates
the negative effects of an HFHSD on gut health in aged obese mice. Curcumin reduced
weight gain, improved gut microbiota composition by increasing beneficial bacteria and
reducing harmful bacteria, and enhanced gut integrity by promoting the expression of
tight junction proteins. These effects were accompanied by a significant reduction in ileum
inflammation, as evidenced by decreased expression levels of pro-inflammatory cytokines.
Furthermore, curcumin modulated genes regulating bile acid homeostasis in the liver, likely
through the FXR signaling pathway, which may play a key role in improving liver metabolic
function. Overall, curcumin supplementation holds promise as a dietary intervention to
protect against gut dysbiosis, inflammation, and disrupted bile acid homeostasis associated
with diet-induced obesity in aging.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/biology13120955/s1, Table S1: Diet composition for NCD and NCD+CUR;
Table S2: Diet composition for HFHSD; Table S3: Sequence of primer used for real-time RT-PCR: and
HFHSD+CUR; Figure S1: Original membrane for western blot.
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