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Simple Summary: In 1977, deep-sea hydrothermal vents, which are high-temperature, high-pressure
environments, were discovered by humans, and how the creatures there adapted to their habitats
is still being unveiled. We are addressing the question of whether there are specific adaptations
in the exoskeletons of crustaceans inhabiting deep-sea hydrothermal vents that enable them to
withstand high temperature and pressure conditions. We observed that two vent crustaceans, through
convergent evolution, possess thermal stability that is 2.8 times higher than that of four different
coastal species, allowing them to survive in the extremely high-temperature environments of their
habitat. This is influenced by different compounds with similar elemental composition. The insights
gained from studying crustaceans in such extreme environments can offer invaluable insights into
the ongoing advancements of biological evolution.

Abstract: Organisms occupy diverse ecological niches worldwide, each with characteristics finely
evolved for their environments. Crustaceans residing in deep-sea hydrothermal vents, recognized as
one of Earth’s extreme environments, may have adapted to withstand severe conditions, including
elevated temperatures and pressure. This study compares the exoskeletons of two vent crustaceans
(bythograeid crab Austinograea sp. and squat lobster Munidopsis lauensis) with four coastal species
(Asian paddle crabs, blue crab, hermit crab, and mantis shrimp) to identify traits influenced by vent
environments. The goal was to identify distinctive exoskeletal characteristics commonly observed
in vent crustaceans, resulting from their exposure to severe abiotic factors, including elevated
temperatures and pressures, found in vent environments. Results show that the exoskeletons of
vent crustaceans demonstrated significantly enhanced thermal stability compared to coastal species.
These vent crustaceans consistently featured exoskeletons characterized by a reduced proportion of
volatile components, such as water, and an increased proportion of CaCOj3, compared with coastal
crustaceans. Furthermore, vent crustaceans lacked carotenoid pigments that had low heat resistance.
However, no apparent differences were observed in the mechanical properties. Our findings suggest
that the similar composition of exoskeletons in vent crustaceans evolved convergently to withstand
high temperatures.
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1. Introduction

On Earth, there are extreme environments such as polar regions, deep seas, hydrother-
mal vents, deserts, and volcanoes, where it is believed to be difficult for life to survive. Each
extreme environment on Earth is exposed to its own unique abiotic factors: Antarctica expe-
riences ultralow surface temperatures reaching —98 °C [1], the deep sea faces high pressure
due to depths exceeding 10,000 m [2] and temperatures close to 0 °C [3], while deep-sea
hydrothermal vents are subjected to high pressure because of an average depth exceeding
2100 m and extreme heat with vent fluid temperatures averaging 400 °C [4]. However, some
organisms, known as extremophiles, are able to survive in these extreme environments (e.g.,
temperature, salinity, and pH) [5,6]. Research on these organisms has been very limited to
date, as their habitats do not easily allow human access, and their remarkable vitality is
expected to have high research value [7]. Research of animals from vents typically employs
specialized tools and techniques, such as remotely operated vehicles or television grab
for sampling, as well as high-pressure incubation systems, genetic and mechanic analysis
methods, to investigate their unique features to extreme environments.

Hydrothermal vents are one of the most extreme environments on Earth, and the
temperature and pressure are higher than those in other areas. Extremophiles, such as
snails and archaeon living in hydrothermal vents have incomparable survival mechanisms.
These include the strong iron-plated armor covering snails [8] and unidentified myste-
rious metabolism of the thermoacidophilic archaeon that can endure low pH and high
temperature [9]. Recent studies reported that the exoskeletons of crabs inhabiting deep-sea
hydrothermal vents have good mechanical properties (hardness and reduced modulus) [10],
and notable thermal stability [10,11] compared to coastal crabs. The structure and compo-
sition of their exoskeletons are believed to contribute to these properties. Consequently,
the evolution of crustaceans is closely linked to the characteristics of their exoskeleton [12].
However, to date, it remains unclear whether these traits are unique to specific species or
represent a convergent characteristic among crustaceans inhabiting deep-sea hydrothermal
vents. Similarly, while numerous studies focused on the unique survival mechanisms of
individual species, research on convergent evolution—where genetically unrelated species
in the same habitat develop identical survival strategies—remains scarce.

Here, exoskeletons of two vent crustaceans were compared with those of four coastal
crustaceans to determine if the deep-sea hydrothermal vent crustaceans evolved extraor-
dinary features of exoskeletons to endure high temperature and pressures. In previous
research, the vent species Austinograea sp. was shown to have an exoskeleton highly resis-
tant to temperature and pressure [10]. It suggests that the exoskeletons of hydrothermal
vent crustaceans may have evolved similarly under the same selection pressure. Thus, we
hypothesized that the exoskeleton of crustaceans inhabiting the vent would have undergone
convergent evolution to withstand the extreme environments of high temperatures and
pressures. Accordingly, we predicted that the thermal stability and mechanical properties
of the exoskeleton would be higher in vent crustaceans than those in coastal habitats.

2. Materials and Methods
2.1. Sample Preparation

Two species of vent crustaceans [Austinograea sp. (vent crab) and Munidopsis lauensis
(vent squat lobster)] and four species of coastal crustaceans [Charybdis japonica (Asian
paddle crab), Portunus trituberculatus (blue crab), Elassochirus cavimanus (purple hermit
crab), and Oratosquilla oratoria (mantis shrimp)] were used for this study (Figure 1a and
Figure S1 and Table 1). The vent species were collected from the Onnuri vent field (OVF) of
the Indian Ocean using TV grab (Oktopus GmbH, Hohenwestedt, Germany) installed on
the ISABU research vessel.
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Figure 1. Research was conducted on species (a), sampling sites (b), and phylogenetic relationships (c).
The phylogenetic relationship was estimated using two specimens of each species based on Bl and ML
analysis using the combined data set (2101 bp) of mtCOI, mt16S rRNA, 185 rRNA, and H3 genes. The
number at each node represents the bootstrap values from ML analysis, and the posterior probabilities
from BI. The scale bar indicates phylogenetic distance of 0.03 nucleotide substitutions per site.

Table 1. Detail sample information.

. Date Depth 1 .o .
Infraorder Species Lat. Long. ( .mm.dd) (m) N Size * (mm) Habitat Ref.
o 1124 S 6625 E  2019.06.28 2014 3 Vent [13]
Anomura  Munidopsis lauensis 115y g g655  E  2019.07.01 2023 1 216024 vont  This study
Brachyura  Austinograea sp. 1124 S 6625 B 2019.0629 2014 3 3424002  Vent [10]
Anomura Elassochirus 3620 N 12941 E  2022.09.01 100 3 1845+ 156  Coastal [13]
cavimanus
Brachyura Charybdis japonica 3745 N 126.60 E  2020.04.06 <50 3 5.74 +0.03 Coastal [10]
Brachyura Portunus 3745 N 12660 E  2021.06.21 <50 3 12631 +298  Coastal This study
trituberculatus
- Oratosquilla oratoria 3461 N 127.72 E  2020.06.30 <50 3 171.5 £ 0.75 Coastal This study

! Sample size; 2

carapace width.

Although there are clear differences in the zonation of organisms at each hydrothermal
vent [14], crustaceans were located closest to the vent sources in the OVFE, which is similar
to the East Scotia Rise (Southern Ocean) hydrothermal area [15]. Through observations
utilizing a remotely operated vehicle Ropos (Canadian Scientific Submersible Facility, North
Saanich, BC, Canada) and a TV grab camera, it has been shown that certain crustaceans
exhibit a behavior of traversing across hydrothermal vents, indicating robust to high
temperatures. The research area, OVE, is a diffusion vent unlike typical chimney-dominated
hydrothermal regions [16], so crossing over the vent where the flume emerges is very
similar to crossing a general flat terrain. To ensure that these analyses were not specific to
a certain taxon, we selected species from Brachyura and Anomura that inhabit different
habitats (Table 1).

Samples with similar size, which were measured using a caliper (CD-15PSX, Mitu-
toyo, Kanagawa, Japan), were used (Table 1). All samples were stored immediately in
75% ethanol after collection. A single 5 x 5 mm square sample from the flattest carapace
(mesogastric region) of the exoskeleton was used for mechanical, structural, and compo-
sitional analysis [11]. Thermal stability analysis was performed on the nearby regions,
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including potogastric, urogastric, and epigastric. The samples for a nanoindenter, SEM,
EDX, and Raman spectroscopy were embedded in cold resin to avoid temperature-induced
denaturation. Furthermore, they were finely polished to a 5 um using an auto polisher
(5-2600, Allied High Tech Products, Inc., Compton, CA, USA). The impurities in the TGA
samples were removed by passing them through a 500 pm mesh sieve. The fracturing
method was used for microstructure analysis of the exoskeleton [17].

2.2. Property Analysis

The overall analysis consisted of four steps: structural, component, mechanical, and
thermal analyses. Scanning electron microscopy (SEM: S-4300SE, Hitachi, Ltd., Tokyo,
Japan) was used for structural analysis, and the thickness of each layer was measured
using ImageJ 1.54g®. The elemental and compound analysis of each layer constituting
the exoskeleton was performed by energy-dispersive X-ray spectroscopy (EDX; S-4300SE,
Hitachi, Ltd., Tokyo, Japan) and Raman spectroscopy (LabRAm HR Evolution, HORIBA,
Ltd., Kyoto, Japan; laser line: 532 nm, acquisition time (s): 3, accumulation: 10-15, ND
Filter (%): 10-50), respectively. The coating machine (Q150T, Quorum technologies Ltd.,
Ashford, UK) was used for SEM and EDX analyses. Platinum was applied as the coating
material, with each coating session lasting 120 and 20 s for each SEM and EDX analysis.

For mechanical properties analysis, the hardness and reduced modulus of each ex-
oskeleton layer were measured using a nanoindenter [(G200, KLA, Milpitas, CA, USA;
force: 0.081 gf, time to load: 30 s, peak hold time: 10 s, tip: XP Berkovich diamond tip
(20 nm radius)]. The results were calculated by taking the maximum of three measurements
obtained from each of the four layers composing each individual, and then repeating
this process three times and averaging the results, but the epicuticle layer was very thin,
approximately 1% of the exoskeleton, so only one maximum value was used. The me-
chanical properties can vary depending on the dryness level of the sample, and this level
can vary depending on the species [18-20]. We ensured that all samples were adequately
dehydrated before proceeding with the comparative analysis, aligning with the approach
taken in many previous studies that also utilized dehydrated samples [18,21,22]. To control
the dehydration level of the samples stored in ethanol, they were stored for at least one
month. This duration is adequate for complete dehydration [23,24].

Thermal analysis was conducted by thermogravimetric analysis (TGA; STA 409 PC,
NETZSCH, Selb, Deutschland; heating rate: 10 °C/min, atmosphere: nitrogen gas) from
room temperature to 800 °C, where calcium carbonate was combusted. The main com-
bustion stages were composed of three ranges: Range 1 (30-200 °C) [25,26], Range 2
(250-500 °C) [25,27], and Range 3 (600-800 °C) [28,29]. In Ranges 1 through 3, the repre-
sentative compounds that typically combust are volatile substances, organic substances,
and inorganic substances, respectively [10]. The thermal stability evaluation compared
the weight loss (%) of the exoskeleton after combustion; a lower weight loss (%) indicated
higher thermal stability [30]. Range 1 was the evaluation temperature range for testing
the thermal stability because the initial temperature at which the vent fluid mixes with
the surrounding cold seawater is approximately 230 °C [31] and the main combustion
temperature of the exoskeleton before 230 °C was up to approximately 200 °C.

2.3. Statistical Analysis

One-way ANOVA for normally distributed data and a Kruskal-Wallis H test were
conducted for non-normally distributed data to compare the crustacean exoskeleton char-
acteristics depending on the habitat and infraorder Brachyura. If there were significant
differences, Scheffé’s test was used as a post hoc test. A two-tailed independent ¢ test was
conducted to identify the difference between two Anomura vent squat lobsters and purple
hermit crabs. All statistical analyses were performed using SPSS software (version 19.0;
SPSS, Inc., Chicago, IL, USA). All data were presented as the mean =+ standard error (SE).

Phylogenetic generalized least squares (PGLS) in R (version 4.3.3) were conducted
to understand correlations between exoskeletal characteristics and habitats. We used the
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ape package for phylogenetic analysis and the nlme package for linear model fitting with a
Brownian motion correlation structure (corBrownian).

2.4. DNA Extraction and Molecular Analysis

Genomic DNAs of specimens were extracted from the muscle tissue of a pereio-
pod using QlAamp Fast DNA Tissue Kit (Qiagen, Inc., Hilden, Germany), following the
manufacturer’s protocol. The partial fragments of two mitochondrial genes, cytochrome
c oxidase (mtCOI) and 16S ribosomal RNA (mt16S rRNA), and two nuclear genes, 185
ribosomal DNA (185 rRNA) and histone-3 (H3), were amplified using previously pub-
lished primers (Supplementary Method). Polymerase chain reaction (PCR) was conducted
using IP-Taq Master mix (Cosmogenetech, Seoul, Republic of Korea) and the thermo-
cycling followed same cycles with specific annealing temperature to the primer sets
(Supplementary Material). PCR products were sequenced using an ABI 3730x] Analyzer
(Applied Biosystems, Foster City, CA, USA) and modified manually using Geneious Prime
2022.2. Sequences newly generated in this study were registered in GenBank under the ac-
cession IDs: 0Q644532-00Q644535, 0Q644545, OR462783-OR462785 for mtCOI; 0Q629571—
00629584, OR467411-OR467412 for mt16S rRNA; 0Q629560, 0Q629561, OR467415 for 18S
rRNA; and 0Q629549-0Q629556, OR508504—-OR509505 for H3.

Phylogenetic analysis was conducted using concatenated sequence data (2101 bp)
of mtCOI, mt16S rRNA, 185 rRNA, and H3 genes, and mantis shrimp was utilized as an
outgroup based on the previously known systematics (Table S1). The mtCOI and 18rRNA
sequences of the vent crab, Asian paddle crab, vent squat lobster, and purple hermit crab
were obtained through previous study [13].

The partitioned data set, with applied specific substitution models for each gene was,
used for both Bayesian inference (BI) and Maximum likelihood (ML) analysis (Table S2). BI
and ML approaches were applied to infer phylogenetic relationships, for which MrBayes
3.2.7 [32,33] and IQ-Tree v. 2.2.2.7 [34,35] on the CIPRES web server [36] were performed,
respectively (Supplementary Method).

3. Results
3.1. Structural Characteristics

All six crustacean exoskeletons are comprised of four layers: epicuticle, exocuticle,
endocuticle, and membrane. However, the exoskeleton of the purple hermit crab lacked
a membrane layer. The epicuticle layer was composed of a granular structure, and the
exocuticle and endocuticle were made with a Bouligand structure. The membrane had
a multilayer structure (Figure S2). A significant difference in thickness ratio (%) was
observed in each layer among species (Kruskal-Wallis H test; epicuticle: Xz =16.131,d.f. =5,
p = 0.006, exocuticle: x2 = 15.379, d.f. =5, p = 0.009, endocuticle: x> = 15.919, d.f. =5,
p = 0.007, and membrane: x2 =10.718, d.f. =4, p = 0.03), but there was no significant
difference between the two habitats (Figure 2c).

3.2. Characteristics of Components

The exoskeletons of vent squat lobsters, vent crabs, and Asian paddle crabs consisted
of twelve elements (C, N, O, Na, Mg, Al, Si, P, Zr, S, Cl, and Ca). The exoskeletons of blue
crabs, purple hermit crabs, and mantis shrimps had iron (Fe) in addition to the twelve
elements (Table S3). There were no differences between the elements in each layer of the
exoskeleton across the two habitats for the six species (Table S4). Considering the kind
of exoskeleton compounds, those in hydrothermal crustaceans include calcite, calcium
phosphate, protein, C-O-C stretch, x-chitin, and H,O. In contrast, coastal crustaceans
contained carotenoid-based compounds in addition to the components of the hydrothermal
crustacean compounds (Figure 3 and Figure S3 and Table S5).
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Figure 2. Mechanical properties and thickness ratio of each layer of the exoskeleton. (a) hardness,
(b) reduced modulus, and (c) thickness ratio; mean + SE; the significant difference is indicated by an
asterisk (*).
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Figure 3. Crustacean exoskeleton (endocuticle layer) compound analysis graph through Raman analysis.

3.3. Thermal Stability

In the three temperature ranges (Range 1, Range 2, and Range 3), there was a sig-
nificant difference in thermal stability among the six species (one-way ANOVA; Range 1:
Fs518 = 290.141, p < 0.001, Range 2: F513 = 33.398, p < 0.001, Kruskal-Wallis H test; and
Range 3: x> = 17.358, d.f. = 5, p = 0.004; Figure 4a and Table S6). In Range 1, the thermal
stability of the two hydrothermal species was higher than that of the coastal species, but
in Range 3, it was the opposite (Scheffé’s post hoc test, p < 0.05; Figure 4b). There were
significant differences between thermal stability of exoskeletons and habitats when using
the regression coefficient of the phylogenetic relationship (PGLS; Range 1: slope: 6.877,
T value: 3.315, p = 0.03; Range 3: slope: —9.924, T value: —3.136, p = 0.035).
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3.4. Mechanical Properties

Significant differences in mechanical properties were observed at the epicuticle and
exocuticle (Kruskal-Wallis H test; epicuticle hardness: x> =13.913,d.f. =5, p = 0.016, one-
way ANOVA; epicuticle reduced modulus: F5 13 = 51.003, p < 0.001, exocuticle hardness:
Fs518 = 15.613, p < 0.001, and exocuticle reduced modulus: Fs5 13 = 30.927, p < 0.001), but
there was no significant difference between the two habitats (Figure 2a,b).

When comparing mechanical properties within infraorders, Brachyura showed su-
perior hardness in the exocuticle than coastal species (one-way ANOVA: F,g = 15.174,
p = 0.004), while Anomura exhibited superior hardness and reduced modulus in both
epicuticle and exocuticle compared to coastal species (t test; epicuticle hardness: t = 11.240,
N1 =4, Ny =3, p=0.013, epicuticle reduced modulus: t = 6.927, N; =4, N, =3, p < 0.001,
exocuticle hardness: t = 3.609, Ny =4, N =3, p = 0.01, and exocuticle reduced modulus:
t=1.679,N1 =4,N, =3,p <0.01).

3.5. Phylogenetic Tree

The phylogenetic reconstructions based on the Bayesian inference and maximum-
likelihood approaches exhibited a well-supported divergence between Brachyura and
Anomura (Figure 1b). Within brachyuran crabs, the vent crab diverged earlier from the
ancestral lineage.

4. Discussion

Comparative analysis provided evidence for the convergent evolution of exoskeletons
in crustaceans inhabiting deep-sea hydrothermal vents. The vent squat lobster and vent
crab evolved independently, but the thermal stability of the two crustaceans was higher
than that of the four species in the coastal habitats. On the other hand, the mechanical
properties of the exoskeleton did not differ significantly between the two habitats. Our
study provides evidence that crustaceans living in hydrothermal vents commonly exhibit
resistance to high temperature.

Among the three combustion ranges in the thermal stability analysis, significant
differences were found between the two habitats in Ranges 1 and 3. In Range 1 of thermal
stability analysis, water or volatile substances constituting chitin [25-27,30] and astaxanthin
(ATX) [37] were combusted. The weight loss (%) of the vent species was only 36% of that
of the coastal ones. The water content of the chitin isolated from the exoskeleton was
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approximately 5-6% [38,39]. Thus, the vent species combusted only substances from
chitin, but the coastal species contained compounds with a water content, such as ATX.
We evaluated the thermal stability of the exoskeleton within a specific temperature range:
Range 1. The likelihood of combustion of water within the exoskeleton was significantly
higher in deep-sea conditions, where there is an abundance of water compared to air. This
is due to water’s higher thermal conductivity, resulting from its greater molecular density.
For reference, water’s thermal conductivity is approximately 0.6 W/m-K [(provided by the
NIST, www.nist.gov (accessed on 10 June 2020)] [40], whereas air’s thermal conductivity
is much lower, at less than 0.03 W/m-K [41,42]. Consequently, the thermal effect on the
crustacean exoskeleton is expected to be more significant in water than in air. Additionally,
under conditions similar to the deep-sea hydrothermal vent environments, where the depth
over 2000 m (<200 bar), the thermal conductivity of water (W/m °C) increases as the
temperature rises until approximately 200 °C [40]. As a result, vent species may experience
more heat stress due to high pressure compared to coastal species. The weight loss (%) in
Range 2 was attributed to chitin decomposition, the main organic compound, and other
organic compounds constituting the exoskeleton [25,27,28]. The organic compound of
the vent exoskeleton was only chitin, as confirmed by Raman spectroscopy. On the other
hand, coastal species also had carotenoid-based compounds (ATX; degradation range:
250450 °C) [43] known as red pigment, and unsaturated fatty acids (degradation range:
220-365 °C) [44]. The carotenoid-based compounds are obtained from the crustacean’s
diet [45]. Their absence in vent species might be due to environmental and ecological
factors. The absence of light in the habitat is one of the major factors. The main uses
of pigments in animals is for reproduction [46], camouflage from predators [47], and
communication [48]. Vent species frequently have a white color known as albification [49]
because they do not need these in dark environments. Furthermore, the crustaceans in the
two habitats differ in their ecological niches. The vent species do not need camouflage as
they are the top predators in their habitat [50], whereas coastal species are mainly secondary
consumers whose camouflage is essential to escape predators [51]. The pigment may be
related with the high proportion of calcium carbonate in the vent species. The weight loss
(%) in Range 3 was attributed to the decomposition of CaCOj3, which is the main inorganic
compound [28-30]. The weight loss in Range 3 of the vent species was 1.5 times higher
than that of the coastal species. One notable characteristic of CaCOj is its excellent thermal
stability, making it valuable in various fields, such as in biomarker [52] and bioinspired
materials [53]. Unlike coastal species, vent species do not have a proportion of related
pigment components in the exoskeleton, so the proportion of other components may have
increased. Second, the calcium concentration of the sediments near the vents is higher than
that at the coast and may have affected the CaCO3 content in the exoskeleton. Calcium in
marine sediments is supplied mainly from hydrothermal fluids, CaCOs precipitation, and
dissolution [54,55]. For example, the calcium concentration in the sediment of the OVF is
about 50-84% [56], but the coastal habitats, such as the Yellow and East China Seas, are less
than 30% [57].

Previously, heat resistance, within a temperature variation of less than 50 °C, of
organisms was predominantly understood as phenotypic plasticity [58,59]. However, our
study expands upon this perspective by examining the extreme conditions of deep-sea
hydrothermal vents, characterized by a wide temperature variation ranging from 0 to
200 °C. The vent crustaceans under investigation may have pursued a distinct adaptive
pathway, evolving exoskeletons to directly counter the thermal stress prevalent in their
habitat. This suggests a departure from reliance on phenotypic plasticity within a specific
taxon, indicating a more specialized evolutionary strategy crafted to address the unique
challenges posed by the deep-sea hydrothermal vent environment.

The main features affecting the mechanical properties of a material are its structure [60],
thickness [11,61], and components [10,11,62]. The structure of each exoskeleton layer was
the same in all four species, and there were no significant regional differences in thickness
and component. A previous study reporting comparative analyses showed that vent crabs
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had superior mechanical properties and thermal stability to Asian paddle crabs [10]. On the
other hand, in this study, there was no difference in mechanical properties between habitats
when investigating species within each habitat. However, there are notable differences
between the infraorder in different habitats. The vent species exhibited a similar direction of
adaptation, which involved strengthening their exoskeleton which protects themselves from
high pressure compared to coastal species. Nonetheless, the degree of this strengthening
was relatively weaker, providing less conclusive evidence for convergent evolution.

The composition is essential for determining the characteristics of the exoskele-
ton [8,10,11,63], which are strongly influenced by the sediment [63], seawater [63], and
diet [45] near the habitat. In detail, the vent sediments are unique because of the high
concentrations of Fe, Si, Ba, Cu, and Zn, originating from the hydrothermal fluid, and
S and Mg from seawater [56]. The fluid from the hydrothermal vent interacts with the
surrounding rock layers, dissolving the minerals. Those compounds are discharged into
seawater, altering their composition [64]. Additionally, because of the absence of sunlight
at extreme depths, the prey organisms available to vent crustaceans lack carotenoid-based
compounds. Nevertheless, the ratio and diversity of the exoskeleton elements of vent
crustaceans were similar with those of coastal crustaceans. In other words, the composition
of the elements that made up exoskeleton is similar, but their compound is rather different.

According to PGLS analysis, vent crustaceans, in contrast to coastal crustaceans,
possess exoskeletons with enhanced thermal stability. Phylogenetic inferences indicate that
the vent squat lobsters and vent crabs have undergone independent evolutionary processes
after divergence. The infraorder Anomura, including vent squat lobster, diverged 259 Mya
from the crustaceans of Decapoda according to previous phylogenetic estimation [65].
Subsequently, the vent crab (bythograeid crabs in the hydrothermal vent) diverged from
their sister taxa about 150-170 Mya, as estimated from the mitogenome sequences [66].
Given the phylogenetical relationship among the taxa, this study strongly supports that
even phylogenetically distant species can evolve convergently to have the same thermal
and compound properties to adapt to the extreme environment.

Due to the increased pressure at depths over 2000 m in vent environments and the
elevated temperatures caused by high-temperature vent fluids (~400 °C), organisms in
such environments might experience greater pressure [67]. Therefore, vent organisms likely
require mechanisms to withstand these high pressures. It is supposed that crustaceans
have a relevant mechanism related to the mechanical properties of their exoskeleton.

Convergent evolution driven by environmental factors is well known across nature
and has been studied through various methods, including morphological and genomic
analyses. For example, the fossil of an ancient mosasaur, aquatic tetrapod, reveals conver-
gent evolution through preserved morphological traits, such as soft tissues and anatomical
details. From a genomic perspective, the photosymbiotic bivalve Fragum sueziense showed
evidence of parallel or convergent evolution in dark conditions, exhibiting molecular mech-
anisms similar to those seen in animal-algal photosymbiosis in distantly related lineages
such as cnidarians [68]. Similarly, pandas from different family exhibit convergent traits,
such as bamboo diet and adaptive pseudothumb, which have been investigated through
genomescale analyses [69]. Phenomic data derived from natural history collections and
comparative genomics have been suggested as valuable approaches for interpreting con-
vergent evolution [70]. This study employed both morphological traits and genomic data
to evaluate convergent evolution; however, additional specific genomic analyses could
provide deeper insights.

5. Conclusions

The key implication of this study is to reveal differences in the characteristics of
the crustacean exoskeleton depending on the unique abiotic factors in habitats and to
interpret its evolutionary aspect. Crustaceans in hydrothermal vents may have under-
gone convergent evolution that improves the thermal stability of their exoskeletons to
survive at high temperatures. This suggests that the exclusively shared characteristics
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among vent crustaceans are adaptations of those animals to extreme environments such as
high temperatures.
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