Morphological and Redox/Glycative Alterations in the PCOS Oviducts: Modulating Effects of Carnitines in PCOS Mice
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. H&E Staining and Morphometric Analysis
2.3. Mallory Trichrome Staining
2.4. Immunohistochemical and Morphometric Analysis: MG-AGE and 4-HNE
2.5. Immunohistochemical Analysis and Morphometric Analysis: TOMM20, Col1, and 17 β-HSD IV
2.6. Light Microscopy (LM) and Transmission Electron Microscopy (TEM)
3. Results
3.1. Oviductal Hyperplasia Hypertrophy and Fibrosis
3.2. Steroidogenesis (17 β-HSD IV)
3.3. Oxidative Damage (4-HNE)
3.4. Mitochondrial Damage (Tomm20)
3.5. Glycative Damage (MG-AGE)
3.6. TEM Analysis
3.6.1. Control Group
3.6.2. DHEA
3.6.3. DHEA/LC-ALC
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alageel, A.A.; Alshammary, A.F.; Khan, I.A. Molecular role of non-exonic variants in CALPAIN 10 gene in polycystic ovarian syndrome in Saudi women. Front. Endocrinol. 2023, 14, 1303747. [Google Scholar] [CrossRef]
- Skiba, M.A.; Islam, R.M.; Bell, R.J.; Davis, S.R. Understanding Variation in Prevalence Estimates of Polycystic Ovary Syndrome: A Systematic Review and Meta-Analysis. Hum. Reprod. 2018, 24, 694–709. [Google Scholar] [CrossRef] [PubMed]
- Xie, Q.; Xiong, X.; Xiao, N.; He, K.; Chen, M.; Peng, J.; Su, X.; Mei, H.; Dai, Y.; Wei, D.; et al. Mesenchymal Stem Cells Alleviate DHEA-Induced Polycystic Ovary Syndrome (PCOS) by Inhibiting Inflammation in Mice. Stem Cells Int. 2019, 9782373. [Google Scholar] [CrossRef] [PubMed]
- The Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 Consensus on Diagnostic Criteria and Long-term Health Risks Related to Polycystic Ovary Syndrome (PCOS). Hum. Reprod. 2004, 19, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Barry, J.A.; Azizia, M.M.; Hardiman, P.J. Risk of endometrial, ovarian and breast cancer in women with polycystic ovary syndrome: A systematic review and meta-analysis. Hum. Reprod. 2014, 20, 748–758. [Google Scholar] [CrossRef] [PubMed]
- Franks, S.; Gharani, N.; Waterworth, D.; Batty, S.; White, D.; Williamson, R.; McCarthy, M. The genetic basis of polycystic ovary syndrome. Hum. Reprod. 1997, 12, 2641–2648. [Google Scholar] [CrossRef]
- Di Emidio, G.; Placidi, M.; Rea, F.; Rossi, G.; Falone, S.; Cristiano, L.; Nottola, S.; D’Alessandro, A.M.; Amicarelli, F.; Palmerini, M.G.; et al. Methylglyoxal-Dependent Glycative Stress and Deregulation of SIRT1 Functional Network in the Ovary of PCOS Mice. Cells 2020, 9, 209. [Google Scholar] [CrossRef]
- Furat Rencber, S.; Kurnaz Ozbek, S.; Eraldemır, C.; Sezer, Z.; Kum, T.; Ceylan, S.; Guzel, E. Effect of resveratrol and metformin on ovarian reserve and ultrastructure in PCOS: An experimental study. J. Ovarian Res. 2018, 11, 55. [Google Scholar] [CrossRef]
- Yarmolinskaya, M.; Bulgakova, O.; Abashova, E.; Borodina, V.; Tral, T. The effectiveness of resveratrol in treatment of PCOS on the basis of experimental model in rats. Gynecol. Endocrinol. 2021, 37 (Suppl. 1), 54–57. [Google Scholar] [CrossRef]
- Advani, K.; Batra, M.; Tajpuriya, S.; Gupta, R.; Saraswat, A.; Nagar, H.D.; Makwana, L.; Kshirsagar, S.; Kaul, P.; Ghosh, A.K.; et al. Efficacy of combination therapy of inositols, antioxidants and vitamins in obese and non-obese women with polycystic ovary syndrome: An observational study. J. Obs. Obstet. Gynaecol. 2020, 40, 96–101. [Google Scholar] [CrossRef]
- Tatone, C.; Di Emidio, G.; Placidi, M.; Rossi, G.; Ruggieri, S.; Taccaliti, C.; D’Alfonso, A.; Amicarelli, F.; Guido, M. AGEs-related dysfunctions in PCOS: Evidence from animal and clinical research. J. Endocrinol. 2021, 251, R1–R9. [Google Scholar] [CrossRef] [PubMed]
- Placidi, M.; Di Emidio, G.; Virmani, A.; D’Alfonso, A.; Artini, P.G.; D’Alessandro, A.M.; Tatone, C. Carnitines as Mitochondrial Modulators of Oocyte and Embryo Bioenergetics. Antioxidants 2022, 11, 745. [Google Scholar] [CrossRef] [PubMed]
- Longo, N.; Frigeni, M.; Pasquali, M. Carnitine transport and fatty acid oxidation. Biochim. Biophys. Acta 2016, 1863, 2422–2435. [Google Scholar] [CrossRef] [PubMed]
- Reuter, S.E.; Evans, A.M. Carnitine and acylcarnitines: Pharmacokinetic, pharmacological and clinical aspects. Clin. Pharmacokinet. 2012, 51, 553–572. [Google Scholar] [CrossRef] [PubMed]
- McCann, M.R.; George De la Rosa, M.V.; Rosania, G.R.; Stringer, K.A. L-Carnitine and Acylcarnitines: Mitochondrial Biomarkers for Precision Medicine. Metabolites 2021, 11, 51. [Google Scholar] [CrossRef]
- Di Emidio, G.; Rea, F.; Placidi, M.; Rossi, G.; Cocciolone, D.; Virmani, A.; Macchiarelli, G.; Palmerini, M.G.; D’Alessandro, A.M.; Artini, P.G.; et al. Regulatory Functions of L-Carnitine, Acetyl, and Propionyl L-Carnitine in a PCOS Mouse Model: Focus on Antioxidant/Antiglycative Molecular Pathways in the Ovarian Microenvironment. Antioxidants 2020, 9, 867. [Google Scholar] [CrossRef]
- Fenkci, S.M.; Fenkci, V.; Oztekin, O.; Rota, S.; Karagenc, N. Serum total L-carnitine levels in non-obese women with polycystic ovary syndrome. Hum. Reprod. 2008, 23, 1602–1606. [Google Scholar] [CrossRef]
- Celik, F.; Kose, M.; Yilmazer, M.; Köken, G.N.; Arioz, D.T.; Kanat Pektas, M. Plasma L-carnitine levels of obese and non-obese polycystic ovary syndrome patients. J. Obs. Obstet. Gynaecol. 2017, 37, 476–479. [Google Scholar] [CrossRef]
- Zhao, W.; Liu, K.; Zhang, Y.; Sun, P.; Zeringue, E.; Meng, L.; Ma, H. The efficacy of orally administered L-carnitine in alleviating ovarian dysfunctions has laid the foundation for targeted in vivo use: A study employing self-control and propensity score matching. Front. Endocrinol. (Lausanne) 2024, 15, 1440182. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Samimi, M.; Jamilian, M.; Ebrahimi, F.A.; Rahimi, M.; Tajbakhsh, B.; Asemi, Z. Oral carnitine supplementation reduces body weight and insulin resistance in women with polycystic ovary syndrome: A randomized, double-blind, placebo-controlled trial. Clin. Endocrinol. 2016, 84, 851–857. [Google Scholar] [CrossRef]
- Coy, P.; García-Vázquez, F.A.; Visconti, P.E.; Avilés, M. Roles of the oviduct in mammalian fertilization. Reproduction 2012, 144, 649–660. [Google Scholar] [CrossRef] [PubMed]
- Dulohery, K.; Trottmann, M.; Bour, S.; Liedl, B.; Alba-Alejandre, I.; Reese, S.; Hughes, B.; Stief, C.G.; Kölle, S. How do elevated levels of testosterone affect the function of the human fallopian tube and fertility?—New insights. Mol. Reprod. Dev. 2020, 87, 30–44. [Google Scholar] [CrossRef] [PubMed]
- Jackson-Bey, T.; Colina, J.; Isenberg, B.C.; Coppeta, J.; Urbanek, M.; Kim, J.J.; Woodruff, T.K.; Burdette, J.E.; Russo, A. Reply: Exposure of human fallopian tube epithelium to elevated testosterone results in alteration of cilia gene expression and beating. Hum. Reprod. 2021, 36, 1725. [Google Scholar] [CrossRef] [PubMed]
- Stewart, C.A.; Behringer, R.R. Mouse oviduct development. Results Probl. Cell Differ. 2012, 55, 247–262. [Google Scholar] [PubMed]
- Palmerini, M.G.; Macchiarelli, G.; Cocciolone, D.; Mascitti, I.A.; Placidi, M.; Vergara, T.; Di Emidio, G.; Tatone, C. Modulating Morphological and Redox/Glycative Alterations in the PCOS Uterus: Effects of Carnitines in PCOS Mice. Biomedicines 2023, 11, 374. [Google Scholar] [CrossRef]
- Kuyucu, Y.; Çelik, L.S.; Kendirlinan, Ö.; Tap, Ö.; Mete, U.Ö. Investigation of the uterine structural changes in the experimental model with polycystic ovary syndrome and effects of vitamin D treatment: An ultrastructural and immunohistochemical study. Reprod. Biol. 2018, 18, 53–59. [Google Scholar] [CrossRef]
- Hamranová, N.; Hocinec, N.; Záhumenský, J.; Csöbönyeiová, M.; Klein, M.; Feitscherová, C.; Varga, I. Traditional and contemporary views on the functional morphology of the fallopian tubes and their importance for gynecological practice. Ceska Gynekol. 2023, 88, 33–43. [Google Scholar] [CrossRef]
- Escobar-Morreale, H.F. Polycystic ovary syndrome: Definition, aetiology, diagnosis and treatment. Nat. Rev. Endocrinol. 2018, 14, 270–284. [Google Scholar] [CrossRef]
- Breitling, R.; Krazeisen, A.; Möller, G.; Adamski, J. 17b-hydroxysteroid dehydrogenase type 7—An ancient 3-ketosteroid reductase of cholesterogenesis. Mol. Cell Endocrinol. 2001, 171, 199–204. [Google Scholar] [CrossRef]
- Castro, J.P.; Jung, T.; Grune, T.; Siems, W. 4-Hydroxynonenal (HNE) modified proteins in metabolic diseases. Free Radic. Biol. Med. 2017, 111, 309–315. [Google Scholar] [CrossRef]
- Papachristoforou, E.; Lambadiari, V.; Maratou, E.; Makrilakis, K. Association of Glycemic Indices (Hyperglycemia, Glucose Variability, and Hypoglycemia) with Oxidative Stress and Diabetic Complications. J. Diabetes Res. 2020, 2020, 7489795. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Bao, Y.; Zhou, X.; Zheng, L. Polycystic ovary syndrome and mitochondrial dysfunction. Reprod. Biol. Endocrinol. 2019, 17, 67. [Google Scholar] [CrossRef] [PubMed]
- Antonouli, S.; Palmerini, M.G.; Bianchi, S.; Rossi, G.; Cecconi, S.; Belli, M.; Bernardi, S.; Khalili, M.A.; Familiari, G.; Nottola, S.A.; et al. Repeated hyperstimulation affects the ultrastructure of mouse fallopian tube epithelium. J. Reprod. Dev. 2020, 66, 387–397. [Google Scholar] [CrossRef] [PubMed]
- Xia, W.; Zhang, D.; Ouyang, J.; Liang, Y.; Zhang, H.; Huang, Z.; Liang, G.; Zhu, Q.; Guan, X.; Zhang, J. Effects of pelvic endometriosis and adenomyosis on ciliary beat frequency and muscular contractions in the human fallopian tube. Reprod. Biol. Endocrinol. 2018, 16, 48. [Google Scholar] [CrossRef] [PubMed]
- Orlando, A.L.; Orlando, C.R. Dilated Intercellular Spaces as a Marker of GERD. Curr. Gastroenterol. Rep. 2009, 11, 190–194. [Google Scholar] [CrossRef]
- Tauqir, S.; Israr, M.; Rauf, B.; Malik, M.O.; Habib, S.H.; Shah, F.A.; Usman, M.; Raza, M.A.; Shah, I.; Badshah, H.; et al. Acetyl-L-Carnitine Ameliorates Metabolic and Endocrine Alterations in Women with PCOS: A Double-Blind Randomized Clinical Trial. Adv. Ther. 2021, 38, 3842–3856. [Google Scholar] [CrossRef]
- Albores-Saavedra, J.; Gersell, D.; Gilks, C.B.; Henson, D.E. Terminology of endocrine tumors of the uterine cervix. Arch. Pathol. Lab. Med. 1997, 121, 34. [Google Scholar]
Control | DHEA | DHEA/LC-ALC | |
---|---|---|---|
EPITHELIUM | 19.132 ± 5.982 a | 36.971 ± 5.565 b | 22.585 ± 7.814 a,b |
MUCOSA | 28.943 ± 5.323 a | 42.323 ± 1.535 b | 34.399 ± 6.628 a,b |
AMPULLARY WALL | 63.771 ± 8.608 a | 86.393 ± 11.209 b | 73.117 ± 8.949 a,b |
Control | DHEA | DHEA/LC-ALC | |
---|---|---|---|
Col-1 | 114.198 ± 14.431 a | 151.102 ± 6.069 b | 134.757 ± 12.856 a,b |
17 β-HSD IV | 112.175 ± 18.9 a | 159.320 ± 10.313 b | 140.502 ± 16.471 b |
4-HNE | 87.178 ± 6.318 a | 151.149 ± 1.590 b | 148.670 ± 5.831 a,b |
TOMM 20 | 163.698 ± 2.331 a | 128.366 ± 3.474 b | 155.314 ± 9.732 a |
MG-AGE | 126.053 ± 12.862 a | 140.427 ± 5.868 b | 133.279 ± 15.217 a,b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Rubeis, M.; Mascitti, I.A.; Cocciolone, D.; Placidi, M.; Vergara, T.; Di Emidio, G.; Macchiarelli, G.; Tatone, C.; Nottola, S.A.; Palmerini, M.G. Morphological and Redox/Glycative Alterations in the PCOS Oviducts: Modulating Effects of Carnitines in PCOS Mice. Biology 2024, 13, 964. https://doi.org/10.3390/biology13120964
De Rubeis M, Mascitti IA, Cocciolone D, Placidi M, Vergara T, Di Emidio G, Macchiarelli G, Tatone C, Nottola SA, Palmerini MG. Morphological and Redox/Glycative Alterations in the PCOS Oviducts: Modulating Effects of Carnitines in PCOS Mice. Biology. 2024; 13(12):964. https://doi.org/10.3390/biology13120964
Chicago/Turabian StyleDe Rubeis, Mariacarla, Ilaria Antenisca Mascitti, Domenica Cocciolone, Martina Placidi, Teresa Vergara, Giovanna Di Emidio, Guido Macchiarelli, Carla Tatone, Stefania Annarita Nottola, and Maria Grazia Palmerini. 2024. "Morphological and Redox/Glycative Alterations in the PCOS Oviducts: Modulating Effects of Carnitines in PCOS Mice" Biology 13, no. 12: 964. https://doi.org/10.3390/biology13120964
APA StyleDe Rubeis, M., Mascitti, I. A., Cocciolone, D., Placidi, M., Vergara, T., Di Emidio, G., Macchiarelli, G., Tatone, C., Nottola, S. A., & Palmerini, M. G. (2024). Morphological and Redox/Glycative Alterations in the PCOS Oviducts: Modulating Effects of Carnitines in PCOS Mice. Biology, 13(12), 964. https://doi.org/10.3390/biology13120964