Risk Assessment and Sources Apportionment of Toxic Metals in Two Commonly Consumed Fishes from a Subtropical Estuarine Wetland System
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Fish Species Selection and Sample Collection
2.3. Laboratory Analysis
2.4. Health Risk Assessment
2.4.1. Target Hazard Quotient
2.4.2. Hazard Index (HI)
2.4.3. Target Cancer Risk
2.4.4. Estimated Daily Intake (EDI)
2.4.5. Source Identification
3. Results and Discussion
3.1. Heavy Metals Concentration in Fish Species
3.2. Health Risk Assessment
3.2.1. Target Hazard Quotient (THQ) and Hazard Index (HI)
3.2.2. Target Lifetime Carcinogenic Risk (TR)
3.2.3. Estimated Daily Intake (EDI) of Heavy Metals
3.2.4. Principal Component Analysis (PCA) and Correlation Matrix
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dixit, R.; Malaviya, D.; Pandiyan, K.; Singh, U.B.; Sahu, A.; Shukla, R.; Singh, B.P.; Rai, J.P.; Sharma, P.K.; Lade, H.; et al. Bioremediation of heavy metals from soil and aquatic environment: An overview of principles and criteria of fundamental processes. Sustainability 2015, 7, 2189–2212. [Google Scholar] [CrossRef]
- Qin, D.; Jiang, H.; Bai, S.; Tang, S.; Mou, Z. Determination of 28 trace elements in three farmed cyprinid fish species from Northeast China. Food Control 2015, 50, 1–8. [Google Scholar] [CrossRef]
- Zhou, H.; Yang, W.-T.; Zhou, X.; Liu, L.; Gu, J.-F.; Wang, W.-L.; Zou, J.-L.; Tian, T.; Peng, P.-Q.; Liao, B.-H. Accumulation of heavy metals in vegetable species planted in contaminated soils and the health risk assessment. Int. J. Environ. Res. Public Health 2016, 13, 289. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.B.; Tanjin, F.; Rahman, M.S.; Yu, J.; Akhter, S.; Noman, M.A.; Sun, J. Metals bioaccumulation in 15 commonly consumed fishes from the lower Meghna river and adjacent areas of Bangladesh and associated human health hazards. Toxics 2022, 10, 139. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.-J.; Kwon, Y.K.; Yu, S.; Lee, P.-K.; Park, H.-S.; Song, N. Assessment of Zn pollution sources and apportionment in agricultural soils impacted by a Zn smelter in South Korea. J. Hazard. Mater. 2019, 364, 475–487. [Google Scholar] [CrossRef] [PubMed]
- Qu, L.; Huang, H.; Xia, F.; Liu, Y.; Dahlgren, R.A.; Zhang, M.; Mei, K. Risk analysis of heavy metal concentration in surface waters across the rural-urban interface of the Wen-Rui Tang River, China. Environ. Pollut. 2018, 237, 639–649. [Google Scholar] [CrossRef] [PubMed]
- Reza, R.; Singh, G. Heavy metal contamination and its indexing approach for river water. Int. J. Environ. Sci. Technol. 2010, 7, 785–792. [Google Scholar] [CrossRef]
- Chen, H.; Wang, L.; Hu, B.; Xu, J.; Liu, X. Potential driving forces and probabilistic health risks of heavy metal accumulation in the soils from an e-waste area, southeast China. Chemosphere 2022, 289, 133182. [Google Scholar] [CrossRef] [PubMed]
- Dutta, D.; Goel, S.; Kumar, S. Health risk assessment for exposure to heavy metals in soils in and around E-waste dumping site. J. Environ. Chem. Eng. 2022, 10, 107269. [Google Scholar] [CrossRef]
- Algül, F.; Beyhan, M. Concentrations and sources of heavy metals in shallow sediments in Lake Bafa, Turkey. Sci. Rep. 2020, 10, 11782. [Google Scholar] [CrossRef]
- Jiménez-Oyola, S.; Chavez, E.; García-Martínez, M.-J.; Ortega, M.F.; Bolonio, D.; Guzmán-Martínez, F.; García-Garizabal, I.; Romero, P. Probabilistic multi-pathway human health risk assessment due to heavy metal(loid)s in a traditional gold mining area in Ecuador. Ecotoxicol. Environ. Saf. 2021, 224, 112629. [Google Scholar] [CrossRef] [PubMed]
- Septiono, M.A.; Roosmini, D. Heavy metal distribution in water, sediment and fish at upper Citarum river and its potential exposure pathway to human. In Proceedings of the 5th Environmental Technology and Management Conference “Green Technology towards Sustainable Environment”, Bandung, Indonesia, 23–24 November 2015; Volume 23. [Google Scholar]
- Pintaeva, E.T.; Bazarsadueva, S.V.; Radnaeva, L.D.; Petrov, E.A.; Smirnova, O.G. Content and character of metal accumulation in fish of the Kichera River (a tributary of Lake Baikal). Contemp. Probl. Ecol. 2011, 4, 64–68. [Google Scholar] [CrossRef]
- Subotić, S.; Jeftić, Ž.V.; Spasić, S.; Hegediš, A.; Krpo-Ćetković, J.; Lenhardt, M. Distribution and accumulation of elements (As, Cu, Fe, Hg, Mn, and Zn) in tissues of fish species from different trophic levels in the Danube River at the confluence with the Sava River (Serbia). Environ. Sci. Pollut. Res. 2013, 20, 5309–5317. [Google Scholar] [CrossRef]
- Yildirim, Y.; Gonulalan, Z.; Narin, I.; Soylak, M. Evaluation of trace heavy metal levels of some fish species sold at retail in Kayseri, Turkey. Environ. Monit. Assess. 2009, 149, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Bosch, A.C.; O’Neill, B.; Sigge, G.O.; Kerwath, S.E.; Hoffman, L.C. Heavy metals in marine fish meat and consumer health: A review. J. Sci. Food Agric. 2016, 96, 32–48. [Google Scholar] [CrossRef] [PubMed]
- Galimberti, C.; Corti, I.; Cressoni, M.; Moretti, V.M.; Menotta, S.; Galli, U.; Cambiaghi, D. Evaluation of mercury, cadmium and lead levels in fish and fishery products imported by air in North Italy from extra-European Union Countries. Food Control 2016, 60, 329–337. [Google Scholar] [CrossRef]
- Gu, Y.-G.; Lin, Q.; Wang, X.-H.; Du, F.-Y.; Yu, Z.-L.; Huang, H.-H. Heavy metal concentrations in wild fishes captured from the South China Sea and associated health risks. Mar. Pollut. Bull. 2015, 96, 508–512. [Google Scholar] [CrossRef] [PubMed]
- Nor Hasyimah, A.K.; James Noik, V.; Teh, Y.Y.; Lee, C.Y.; Pearline Ng, H.C. Assessment of cadmium (Cd) and lead (Pb) levels in commercial marine fish organs between wet markets and supermarkets in Klang Valley, Malaysia. Int. Food Res. J. 2011, 18, 795–802. [Google Scholar]
- Islam, M.S.; Hossain, M.B.; Matin, A.; Sarker, M.S.I. Assessment of heavy metal pollution, distribution, and source apportionment in the sediment from Feni River estuary, Bangladesh. Chemosphere 2018, 202, 25–32. [Google Scholar] [CrossRef]
- Akila, M.; Anbalagan, S.; Lakshmisri, N.M.; Janaki, V.; Ramesh, T.; Merlin, R.J.; Kamala-Kannan, S. Heavy metal accumulation in selected fish species from Pulicat Lake, India, and health risk assessment. Environ. Technol. Innov. 2022, 27, 102744. [Google Scholar] [CrossRef]
- Kibria, G.; Hossain, M.M.; Mallick, D.; Lau, T.C.; Wu, R. Trace/heavy metal pollution monitoring in estuary and coastal area of Bay of Bengal, Bangladesh and implicated impacts. Mar. Poll. Bull. 2016, 105, 393–402. [Google Scholar] [CrossRef] [PubMed]
- Khatun, N.; Nayeem, J.; Deb, N.; Hossain, S.; Kibria, M.M. Heavy metals contamination: Possible health risk assessment in highly consumed fish species and water of Karnafuli River Estuary, Bangladesh. Toxicol. Environ. Health Sci. 2021, 13, 375–388. [Google Scholar] [CrossRef]
- Sarker, M.J.; Polash, A.U.; Islam, M.A.; Rima, N.N.; Farhana, T. Heavy metals concentration in native edible fish at upper Meghna River and its associated tributaries in Bangladesh: A prospective human health concern. SN Appl. Sci. 2020, 2, 1667. [Google Scholar] [CrossRef]
- Ahmed, A.S.S.; Rahman, M.; Sultana, S.; Babu, S.M.O.F.; Sarker, M.S.I. Bioaccumulation and heavy metal concentration in tissues of some commercial fishes from the Meghna River Estuary in Bangladesh and human health implications. Mar. Pollut. Bull. 2019, 145, 436–447. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.M.; Ali, M.L.; Proshad, R.; Islam, S.; Rahman, Z.; Tusher, T.R.; Kormoker, T.; Al, M.A. Heavy metal concentrations in commercially valuable fishes with health hazard inference from Karnaphuli river, Bangladesh. Hum. Ecol. Risk Assess. Int. J. 2020, 26, 2646–2662. [Google Scholar] [CrossRef]
- Mohiuddin, M.; Hossain, M.B.; Ali, M.M.; Hossain, M.K.; Habib, A.; Semme, S.A.; Rakib, R.J.; Rahman, A.; Yu, J.; Al-Sadoon, M.K.; et al. Human health risk assessment for exposure to heavy metals in finfish and shellfish from a tropical estuary. J. King Saud Univ. Sci. 2022, 34, 102035. [Google Scholar] [CrossRef]
- Miah, M.Y.; Robel, F.N.; Bhowmik, S.; Bhattacharjee, S.; Paul, S.C.; Hossain, M.J.; Hossain, M.Z. Assessment of the coastal area water quality in Noakhali, Bangladesh. Int. J. Sci. Engin. Res. 2015, 6, 1116–1123. [Google Scholar]
- USEPA (United States Environmental Protection Agency). USEPA Regional Screening Level (RSL) Summary Table; USEPA: Washington, DC, USA, 2011.
- Ahmed, M.K.; Baki, M.A.; Islam, M.S.; Kundu, G.K.; Habibullah-Al-Mamun, M.; Sarkar, S.K.; Hossain, M.M. Human health risk assessment of heavy metals in tropical fish and shellfish collected from the river Buriganga, Bangladesh. Environ. Sci. Pollut. Res. 2015, 22, 15880–15890. [Google Scholar] [CrossRef] [PubMed]
- Yi, Y.; Yang, Z.; Zhang, S. Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River basin. Environ. Pollut. 2011, 159, 2575–2585. [Google Scholar] [CrossRef]
- National Standard NO. 12968; Food and Feed-Maximum Limit of Heavy Metals. ISIRI (Institute of Standards and Industrial Research of Iran): Tehran, Iran, 2010.
- El-Moselhy, K.M.; Othman, A.I.; El-Azem, H.A.; El-Metwally, M.E.A. Bioaccumulation of heavy metals in some tissues of fish in the Red Sea, Egypt. Egypt. J. Basic Appl. Sci. 2014, 1, 97–105. [Google Scholar] [CrossRef]
- Esmaili-Sari, A. Pollutants, Health and Standards in the Environment. Tehran. Naghsh-e-Mehr. 2002, 24, 767. [Google Scholar]
- USEPA. Region III Risk-Based Concentration Table: Technical Background; USEPA: Washington, DC, USA, 2006.
- USEPA. Guidance Manual for Assessing Human Health Risks from Chemically Contaminated, Fish and Shellfish; USEPA: Washington, DC, USA, 1989.
- FAO. Compilation of Legal Limits for Hazardous Substances in Fish and Fishery Product; FAO: Rome, Italy, 2014. [Google Scholar]
- Batista, D.; Muricy, G.; Rocha, R.C.; Miekeley, N.F. Marine sponges with contrasting life histories can be complementary biomonitors of heavy metal pollution in coastal ecosystems. Environ. Sci. Pollut. Res. 2014, 21, 5785–5794. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, M.; Nabavi, S.M.B.; Nabavi, S.N.; Pour, N.A. Heavy metals (Cd, Co, Cu, Ni, Pb, Fe, and Hg) content in four fish commonly consumed in Iran: Risk assessment for the consumers. Environ. Monit. Assess. 2015, 187, 237. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Wang, J.; Pan, B.; Li, D.; Wang, Y.; Liu, X. Assessment of heavy metal accumulation in freshwater fish of Dongting Lake, China: Effects of feeding habits, habitat preferences and body size. J. Environ. Sci. 2022, 112, 355–365. [Google Scholar] [CrossRef]
- Yi, Y.; Tang, C.; Yi, T.; Yang, Z.; Zhang, S. Health risk assessment of heavy metals in fish and accumulation patterns in food web in the upper Yangtze River, China. Ecotoxicol. Environ. Saf. 2017, 145, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Jovanović, D.A.; Marković, R.V.; Teodorović, V.B.; Šefer, D.S.; Krstić, M.P.; Radulović, S.B.; Ćirić, J.S.I.; Janjić, J.M.; Baltić, M.Ž. Determination of heavy metals in muscle tissue of six fish species with different feeding habits from the Danube River, Belgrade—Public health and environmental risk assessment. Environ. Sci. Pollut. Res. 2017, 24, 11383–11391. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Zhang, J.; Zhang, D.; Tu, T.; Luo, L. Metal concentrations in various fish organs of different fish species from Poyang Lake, China. Ecotoxicol. Environ. Saf. 2014, 104, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Nowosad, J.; Kucharczyk, D.; Łuczyńska, J. Changes in mercury concentration in muscles, ovaries and eggs of European eel during maturation under controlled conditions. Ecotoxicol. Environ. Saf. 2018, 148, 857–861. [Google Scholar] [CrossRef]
- Nowosad, J.; Kucharczyk, D.; Szmyt, M.; Łuczynska, J.; Tamás, M.; Horváth, L. Changes in cadmium concentration in muscles, ovaries, and eggs of Silver European Eel (Anguilla anguilla) during maturation under controlled conditions. Animals 2021, 11, 1027. [Google Scholar] [CrossRef]
- Łuczyńska, J.; Paszczyk, B.; Nowosad, J.; Łuczyński, M.J. Mercury, fatty acids content and lipid quality indexes in muscles of freshwater and marine fish on the polish market: Risk assessment of fish consumption. Int. J. Environ. Res. Public Health 2017, 14, 1120. [Google Scholar] [CrossRef]
- Łuczyńska, J.; Paszczyk, B.; Łuczyński, M.J.; Kowalska-Góralska, M.; Nowosad, J.; Kucharczyk, D. Using Rutilus rutilus (L.) and Perca fluviatilis (L.) as bioindicators of the environmental condition and human health: Lake Łańskie, Poland. Int. J. Environ. Res. Public Health 2020, 17, 7595. [Google Scholar] [CrossRef] [PubMed]
- Canli, M.; Ay, Ö.; Kalay, M. Levels of Heavy Metals (Cd, Pb, Cu, Cr and Ni) in Tissue of Cyprinus carpio, Barbus capito and Chondrostoma regiumfrom the Seyhan River, Turkey. Turk. J. Zool. 1998, 22, 149–158. [Google Scholar]
- Türkmen, M.; Türkmen, A.; Tepe, Y.; Töre, Y.; Ateş, A. Determination of metals in fish species from Aegean and Mediterranean seas. Food Chem. 2009, 113, 233–237. [Google Scholar] [CrossRef]
- Reddy, T.A.; Maor, I.; Panjapornpon, C. Calibrating detailed building energy simulation programs with measured data—Part II: Application to three case study office buildings (RP-1051). HVAC&R Res. 2007, 13, 243–265. [Google Scholar]
- FAO. Compilation of Legal Limits for Hazardous Substances in Fish and Fishery Product; FAO: Rome, Italy, 1983; Volume 746, p. 104. [Google Scholar]
- Rahman, M.S.; Molla, A.H.; Saha, N.; Rahman, A. Study on heavy metals levels and its risk assessment in some edible fishes from Bangshi River, Savar, Dhaka, Bangladesh. Food Chem. 2012, 134, 1847–1854. [Google Scholar] [CrossRef] [PubMed]
- Noël, L.; Chekri, R.; Millour, S.; Merlo, M.; Leblanc, J.-C.; Guérin, T. Distribution and relationships of As, Cd, Pb and Hg in freshwater fish from five French fishing areas. Chemosphere 2013, 90, 1900–1910. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Yang, N.; Li, Y.; Ren, B.; Ding, X.; Bian, H.; Yao, X. Total concentrations and sources of heavy metal pollution in global river and lake water bodies from 1972 to 2017. Glob. Ecol. Conserv. 2020, 22, e00925. [Google Scholar] [CrossRef]
- Raj, D.; Maiti, S.K. Sources, bioaccumulation, health risks and remediation of potentially toxic metal (loid) s (As, Cd, Cr, Pb and Hg): An epitomised review. Environ. Monit. Assess. 2020, 192, 108. [Google Scholar] [CrossRef]
- Keshavarzi, B.; Hassanaghaei, M.; Moore, F.; Mehr, M.R.; Soltanian, S.; Lahijanzadeh, A.R.; Sorooshian, A. Heavy metal contamination and health risk assessment in three commercial fish species in the Persian Gulf. Mar. Pollut. Bull. 2018, 129, 245–252. [Google Scholar] [CrossRef]
- Tüzen, M. Determination of heavy metals in fish samples of the middle Black Sea (Turkey) by graphite furnace atomic absorption spectrometry. Food Chem. 2003, 80, 119–123. [Google Scholar] [CrossRef]
- Hossein Khezri, P.; Takhsha, M.; Aein Jamshid, K.; Aghshenas, A. Assessment level of heavy metals (Pb, Cd, Hg) in four fish species of Persian Gulf (Bushehr-Iran). Int. J. Adv. Technol. Eng. Res. 2014, 4, 7–11. [Google Scholar]
- Raissy, M.; Ansari, M. Health risk assessment of mercury and arsenic associated with consumption of fish from the Persian Gulf. Environ. Monit. Assess. 2014, 186, 1235–1240. [Google Scholar] [CrossRef] [PubMed]
- Rajeshkumar, S.; Li, X. Bioaccumulation of heavy metals in fish species from the Meiliang Bay, Taihu Lake, China. Toxicol. Rep. 2018, 5, 288–295. [Google Scholar] [CrossRef] [PubMed]
- Batvari, B.P.D.; Kamala-Kannan, S.; Shanthi, K.; Krishnamoorthy, R.; Lee, K.J.; Jayaprakash, M. Heavy metals in two fish species (Carangoidel malabaricus and Belone stronglurus) from Pulicat Lake, North of Chennai, Southeast Coast of India. Environ. Monit. Assess. 2008, 145, 167–175. [Google Scholar] [CrossRef] [PubMed]
- ROPME, Kuwait: Regional Organization for the Protection of the Marine Environment (ROPME). 1999. Available online: https://ropme.org/ (accessed on 17 August 2023).
- Mansour, S.A.; Gad, M.F. Risk assessment of pesticides and heavy metals contaminants in vegetables: A novel bioassay method using Daphnia magna Straus. Food Chem. Toxicol. 2010, 48, 377–389. [Google Scholar] [CrossRef] [PubMed]
- Irwandi, J.; Farida, O. Mineral and heavy metal contents of marine fin fish in Langkawi Island, Malaysia. Int. Food Res. J. 2009, 16, 105–112. [Google Scholar]
- Liu, Q.; Liao, Y.; Shou, L. Concentration and potential health risk of heavy metals in seafoods collected from Sanmen Bay and its adjacent areas, China. Mar. Pollut. Bull. 2018, 131, 356–364. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Huang, Z.Y.; Hu, Y.; Yang, H. Potential risk assessment of heavy metals by consuming shellfish collected from Xiamen, China. Environ. Sci. Pollut. Res. 2013, 20, 2937–2947. [Google Scholar] [CrossRef]
- Javed, M.; Usmani, N. Accumulation of heavy metals and human health risk assessment via the consumption of freshwater fish Mastacembelus armatus inhabiting, thermal power plant effluent loaded canal. SpringerPlus 2016, 5, 776. [Google Scholar] [CrossRef]
- USEPA. Risk-Based Concentration Table; USEPA: Washington, DC, USA, 2010. Available online: https://archive.epa.gov/region9/superfund/web/html/index-23.html (accessed on 12 November 2023).
- World Health Organization (WHO). Diabetes Mellitus: Report of a WHO Study Group; World Health Organization: Cham, Switzerland, 1985; Available online: https://iris.who.int/handle/10665/39592 (accessed on 17 August 2023).
- Shaukat, S.S.; Rao, T.A.; Khan, M.A. Impact of sample size on principal component analysis ordination of an environmental data set: Effects on eigenstructure. Ekologia 2016, 35, 173–190. [Google Scholar] [CrossRef]
- Sultana, S.; Hossain, M.B.; Choudhury, T.R.; Yu, J.; Rana, M.S.; Abu Noman, M.A.; Hosen, M.M.; Paray, B.A.; Arai, T. Ecological and human health risk assessment of heavy metals in cultured shrimp and aquaculture sludge. Toxics 2022, 10, 175. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.B.; Sultana, J.; Jolly, Y.N.; Nur, A.-A.U.; Sultana, S.; Miazee, R.; Islam, M.S.; Paray, B.A.; Arai, T.; Yu, J. Seasonal variation, contamination and ecological risk assessment of heavy metals in sediments of coastal wetlands along the Bay of Bengal. Mar. Pollut. Bull. 2023, 194, 115337. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.B.; Rahman, M.A.; Hossain, M.K.; Nur, A.-A.U.; Sultana, S.; Semme, S.; Albeshr, M.F.; Arai, T.; Yu, J. Contamination status and associated ecological risk assessment of heavy metals in different wetland sediments from an urbanized estuarine ecosystem. Mar. Pollut. Bull. 2022, 185, 114246. [Google Scholar] [CrossRef] [PubMed]
Sample | Local Name | N | Preference of Feed | Habitant | Body Weight (g) | Length (cm) | Gill Weight (g) |
---|---|---|---|---|---|---|---|
O. pama | Poa | 18 | Small invertebrates and herbivore (on algae) | Pelagic | 87 ± 11 | 22.5 ± 4 | 2.98 ± 0.8 |
L. bata | Bata | 18 | Filter Feeders (benthic invertebrates) | Benthopelagic | 61 ± 8 | 18.8 ± 3.5 | 2.32 ± 06 |
Species | Elements | Organ | Mean Value + SD | Minimum | Maximum |
---|---|---|---|---|---|
O. pama | Pb | Muscle | 0.772 ± 0.083 | 0.689 | 0.857 |
Gill | 0.658 ± 0.102 | 0.557 | 0.762 | ||
Hg | Muscle | 1.945 ± 0.036 | 1.906 | 1.978 | |
Gill | 2.522 ± 0.172 | 2.412 | 2.720 | ||
Zn | Muscle | 110. 85 ± 1.236 | 109.411 | 111.586 | |
Gill | 110.158 ± 1.236 | 128.461 | 155.296 | ||
Cu | Muscle | 59.821 ± 5.839 | 53.783 | 65.438 | |
Gill | 59.821 ± 5.839 | 45.645 | 59.212 | ||
Cr | Muscle | <DL a | <DL a | <DL a | |
Gill | 3.678 ± 1.859 | 2.595 | 5.825 | ||
L. bata | Pb | Muscle | 0.974 ± 0.139 | 0.846 | 1.123 |
Gill | 0.884 ± 0.092 | 0.784 | 0.967 | ||
Hg | Muscle | 1.326 ± 0.066 | 1.258 | 1.390 | |
Gill | 1.360 ± 0.097 | 1.282 | 1.469 | ||
Zn | Muscle | 119.382 ± 0.736 | 118.544 | 119.928 | |
Gill | 122.359 ± 9.969 | 110.853 | 128.409 | ||
Cu | Muscle | 50.088 ± 4.085 | 45.526 | 53.407 | |
Gill | 50.088 ± 4.085 | 47.864 | 57.914 | ||
Cr | Muscle | 3.862 ± 0.786 | 3.134 | 4.696 | |
Gill | <DL a | <DL a | <DL a |
Area | Pb | Hg | Zn | Cu | Cr | Reference |
---|---|---|---|---|---|---|
Muscle | ||||||
Feni River Estuary (Bangladesh) | 0.68–1.12 | 1.25–1.39 | 109.41–119.93 | 45.52–65.43 | 0.31–5.82 | Present study |
Musa estuary (Persian Gulf) | 0.07–0.77 | 0.56–14.00 | NA | 1.37–3.14 | NA | [56] |
Red Sea (Egypt, Jordan) | 0.21–0.88 | NA a | 1.9–35 | 0.22–0.63 | 1.0–10.3 | [33] |
Mediterranean Sea (Turkey) | 2.98–5.57 | NA | 3.51–53.5 | 2.19–4.41 | 0.07–1.48 | [48,49] |
Black Sea (Turkey) | 0.68 | NA a | NA a | 1.55 | NA a | [57] |
Yangtze River (China) | 0.117 | 0.043 | NA | 1.020 | NA a | [31] |
Bushehr (Persian Gulf) | 0.68 | 0.86 | NA a | NA a | NA a | [58] |
Gulf of Cambaya (India) | 1.09 | NA a | 38.24 | 2.37 | 0.77 | [50] |
Hendijan (Persian Gulf) | NA | 0.13 | NA a | NA a | NA a | [59] |
Standard value d | 0.5 | 0.5 | 1000 | 70 | NA a | [51] |
Gill | ||||||
Feni River Estuary (Bangladesh) | 0.55–0.96 | 1.28–2.72 | 110.85–155.29 | 45.64–59.21 | <DL c | Present study |
Taihu Lake fish samples | 0.49 | NA a | NA a | 0.24 | 0.16 | [60] |
Pulicat Lake, India | 1.1 | NA a | ND b | 1.3 | 0.2 | [61] |
ROPME | 0.01–1.28 | 1 | NA | 0.05–19.5 | 2.3 | [62] |
Tigris River in Baghdad | 1.50 | ND b | 1.05 | 1.10 | 2.20 | [63] |
Bangshi River | 7.36 | 0.39 | 183.64 | 41.19 | 4.36 | [52] |
Langkawi Island | 1.00 | 1.47 | 49.39 | 11.55 | NA a | [64] |
Species | Station | Pb | Hg | Zn | Cu | Cr | HI |
---|---|---|---|---|---|---|---|
O. pama | Station-1 | 0.015 | 0.632 | 0.034 | 0.112 | 0.099 | 0.892 |
Station-2 | 0.014 | 0.672 | 0.037 | 0.130 | 0.074 | 0.927 | |
Station-3 | 0.016 | 0.624 | 0.033 | 0.120 | 0.168 | 0.961 | |
Average of THQ | 0.015 | 0.642 | 0.035 | 0.121 | 0.114 | 0.930 | |
L. bata | Station-1 | 0.022 | 0.378 | 0.035 | 0.107 | 0.095 | 0.637 |
Station-2 | 0.018 | 0.365 | 0.032 | 0.101 | 0.135 | 0.651 | |
Station-3 | 0.019 | 0.411 | 0.034 | 0.120 | 0.090 | 0.674 | |
Average of THQ | 0.019 | 0.384 | 0.033 | 0.109 | 0.107 | 0.646 |
Species | Station | Pb | Cr | Zn |
---|---|---|---|---|
O. pama | Station-1 | 2.603 × 10−6 | 7.443 × 10−4 | 1.766 × 10−4 |
Station-2 | 2.474 × 10−6 | 5.605 × 10−4 | 2.007 × 10−3 | |
Station-3 | 2.821 × 10−6 | 1.258 × 10−3 | 2.031 × 10−3 | |
Average of TR | 2.632 × 10−6 | 8.542 × 10−4 | 1.438 × 10−3 | |
L. bata | Station-1 | 3.848 × 10−6 | 7.124 × 10−4 | 1.226 × 10−3 |
Station-2 | 3.218 × 10−6 | 1.014 × 10−4 | 1.296 × 10−3 | |
Station-3 | 3.200 × 10−6 | 6.769 × 10−4 | 1.575 × 10−3 | |
Average of TR | 3.422 × 10−6 | 4.969 × 10−4 | 1.365 × 10−3 |
Location | Fish Species | Pb | Hg | Zn | Cu | Cr |
---|---|---|---|---|---|---|
Station 1 | O. pama | 0.306 | 0.951 | 0.104 | 22.60 | 1.493 |
L. bata | 0.452 | 0.570 | 0.722 | 21.56 | 1.431 | |
Station 2 | O. pama | 0.291 | 1.011 | 1.181 | 25.897 | 1.124 |
L. bata | 0.378 | 0.550 | 0.763 | 20.234 | 2.034 | |
Station 3 | O. pama | 0.331 | 0.940 | 1.196 | 24.067 | 2.535 |
L. bata | 0.376 | 0.619 | 0.927 | 24.119 | 1.358 | |
0.40 | 0.5–1.0 | 0.90 | 3–30 | 0.5–2.0 |
Pb | Cr | Cu | Hg | Zn | |
---|---|---|---|---|---|
Pb | 1 | ||||
Cr | −0.39 | 1 | |||
Cu | 0.50 | −0.72 | 1 | ||
Hg | −0.75 | −0.22 | 0.79 ** | 1 | |
Zn | 0.26 | −0.940 | 0.82 ** | −0.69 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, M.M.; Nur, A.-A.U.; Sultana, S.; Jolly, Y.N.; Paray, B.A.; Arai, T.; Yu, J.; Hossain, M.B. Risk Assessment and Sources Apportionment of Toxic Metals in Two Commonly Consumed Fishes from a Subtropical Estuarine Wetland System. Biology 2024, 13, 260. https://doi.org/10.3390/biology13040260
Ahmed MM, Nur A-AU, Sultana S, Jolly YN, Paray BA, Arai T, Yu J, Hossain MB. Risk Assessment and Sources Apportionment of Toxic Metals in Two Commonly Consumed Fishes from a Subtropical Estuarine Wetland System. Biology. 2024; 13(4):260. https://doi.org/10.3390/biology13040260
Chicago/Turabian StyleAhmed, Md. Moudud, As-Ad Ujjaman Nur, Salma Sultana, Yeasmin N. Jolly, Bilal Ahamad Paray, Takaomi Arai, Jimmy Yu, and Mohammad Belal Hossain. 2024. "Risk Assessment and Sources Apportionment of Toxic Metals in Two Commonly Consumed Fishes from a Subtropical Estuarine Wetland System" Biology 13, no. 4: 260. https://doi.org/10.3390/biology13040260
APA StyleAhmed, M. M., Nur, A. -A. U., Sultana, S., Jolly, Y. N., Paray, B. A., Arai, T., Yu, J., & Hossain, M. B. (2024). Risk Assessment and Sources Apportionment of Toxic Metals in Two Commonly Consumed Fishes from a Subtropical Estuarine Wetland System. Biology, 13(4), 260. https://doi.org/10.3390/biology13040260