A Dangerous Couple: Sequential Effect of Phosphorus Flame-Retardant and Polyurethane Decrease Locomotor Activity in Planarian Girardia tigrina
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Test Organism
2.3. Exposure to Phosphorous Flame Retardant and Polyurethane
2.4. Biomechanical Response
2.5. Sample Preparation
2.6. Oxidative Stress
2.7. Metabolic Biomarkers
2.8. Data Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gavrilescu, M.; Demnerová, K.; Aamand, J.; Agathos, S.; Fava, F. Emerging Pollutants in the Environment: Present and Future Challenges in Biomonitoring, Ecological Risks and Bioremediation. New Biotechnol. 2015, 32, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zhao, Y.; Shi, Z.; Li, Z.; Liang, X. Ecotoxicoproteomic Assessment of Microplastics and Plastic Additives in Aquatic Organisms: A Review. Comp. Biochem. Physiol. Part D Genom. Proteom. 2020, 36, 100713. [Google Scholar] [CrossRef] [PubMed]
- da Costa, J.P.; Avellan, A.; Mouneyrac, C.; Duarte, A.; Rocha-Santos, T. Plastic Additives and Microplastics as Emerging Contaminants: Mechanisms and Analytical Assessment. TrAC Trends Anal. Chem. 2023, 158, 116898. [Google Scholar] [CrossRef]
- Pantelaki, I.; Voutsa, D. Organophosphate Flame Retardants (OPFRs): A Review on Analytical Methods and Occurrence in Wastewater and Aquatic Environment. Sci. Total Environ. 2019, 649, 247–263. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhao, Y.; Li, M.; Du, M.; Li, X.; Li, Y. A Review of a Class of Emerging Contaminants: The Classification, Distribution, Intensity of Consumption, Synthesis Routes, Environmental Effects and Expectation of Pollution Abatement to Organophosphate Flame Retardants (OPFRs). Int. J. Mol. Sci. 2019, 20, 2874. [Google Scholar] [CrossRef] [PubMed]
- U.S. EPA. Flame Retardants Used in Flexible Polyurethane Foam: An Alternatives Assessment Update; United States Environmental Protection Agency: Washington, DC, USA, 2015.
- He, C.; Lin, C.-Y.; Mueller, J.F. Organophosphate Flame Retardants in the Environment: Source, Occurrence, and Human Exposure. In Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2020; Volume 88, pp. 341–365. [Google Scholar]
- Emenike, E.C.; Okorie, C.J.; Ojeyemi, T.; Egbemhenghe, A.; Iwuozor, K.O.; Saliu, O.D.; Okoro, H.K.; Adeniyi, A.G. From Oceans to Dinner Plates: The Impact of Microplastics on Human Health. Heliyon 2023, 9, e20440. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Sinha, J.K.; Ghosh, S.; Vashisth, K.; Han, S.; Bhaskar, R. Microplastics as an Emerging Threat to the Global Environment and Human Health. Sustainability 2023, 15, 10821. [Google Scholar] [CrossRef]
- Ziani, K.; Ioniță-Mîndrican, C.-B.; Mititelu, M.; Neacșu, S.M.; Negrei, C.; Moroșan, E.; Drăgănescu, D.; Preda, O.-T. Microplastics: A Real Global Threat for Environment and Food Safety: A State of the Art Review. Nutrients 2023, 15, 617. [Google Scholar] [CrossRef] [PubMed]
- Elizalde-Velázquez, A.; Subbiah, S.; Anderson, T.A.; Green, M.J.; Zhao, X.; Cañas-Carrell, J.E. Sorption of Three Common Nonsteroidal Anti-Inflammatory Drugs (NSAIDs) to Microplastics. Sci. Total Environ. 2020, 715, 136974. [Google Scholar] [CrossRef]
- Schell, T.; Rico, A.; Cherta, L.; Nozal, L.; Dafouz, R.; Giacchini, R.; Vighi, M. Influence of Microplastics on the Bioconcentration of Organic Contaminants in Fish: Is the “Trojan Horse” Effect a Matter of Concern? Environ. Pollut. 2022, 306, 119473. [Google Scholar] [CrossRef]
- Menéndez-Pedriza, A.; Jaumot, J. Interaction of Environmental Pollutants with Microplastics: A Critical Review of Sorption Factors, Bioaccumulation and Ecotoxicological Effects. Toxics 2020, 8, 40. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.-P.; Li, M.-H. The Use of Freshwater Planarians in Environmental Toxicology Studies: Advantages and Potential. Ecotoxicol. Environ. Saf. 2018, 161, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Knakievicz, T. Planarians as Invertebrate Bioindicators in Freshwater Environmental Quality: The Biomarkers Approach. Ecotoxicol. Environ. Contam. 2014, 9, 1–12. [Google Scholar] [CrossRef]
- Vila-Farré, M.; Rink, J.C. The Ecology of Freshwater Planarians. Methods Mol. Biol. 2018, 1774, 173–205. [Google Scholar] [CrossRef]
- Thorp, J.; Covich, A. Ecology and Classification of North American Freshwater Invertebrates; Academic Press: Cambridge, MA, USA, 2009. [Google Scholar]
- Pagán, O.R.; Montgomery, E.; Deats, S.; Bach, D.; Baker, D. Evidence of Nicotine-Induced, Curare-Insensitive, Behavior in Planarians. Neurochem. Res. 2015, 40, 2087–2090. [Google Scholar] [CrossRef] [PubMed]
- Newmark, P.A.; Sánchez Alvarado, A. Not Your Father’s Planarian: A Classic Model Enters the Era of Functional Genomics. Nat. Rev. Genet. 2002, 3, 210–219. [Google Scholar] [CrossRef] [PubMed]
- Gambino, G.; Falleni, A.; Nigro, M.; Salvetti, A.; Cecchettini, A.; Ippolito, C.; Guidi, P.; Rossi, L. Dynamics of Interaction and Effects of Microplastics on Planarian Tissue Regeneration and Cellular Homeostasis. Aquat. Toxicol. 2020, 218, 105354. [Google Scholar] [CrossRef] [PubMed]
- Gao, T.; Sun, B.; Xu, Z.; Chen, Q.; Yang, M.; Wan, Q.; Song, L.; Chen, G.; Jing, C.; Zeng, E.Y.; et al. Exposure to Polystyrene Microplastics Reduces Regeneration and Growth in Planarians. J. Hazard. Mater. 2022, 432, 128673. [Google Scholar] [CrossRef]
- Han, Y.; Zhang, X.; Liu, P.; Xu, S.; Chen, D.; Liu, J.N.; Xie, W. Microplastics Exposure Causes Oxidative Stress and Microbiota Dysbiosis in Planarian Dugesia Japonica. Environ. Sci. Pollut. Res. Int. 2022, 29, 28973–28983. [Google Scholar] [CrossRef]
- Waaijers, S.L.; Bleyenberg, T.E.; Dits, A.; Schoorl, M.; Schütt, J.; Kools, S.A.E.; de Voogt, P.; Admiraal, W.; Parsons, J.R.; Kraak, M.H.S. Daphnid Life Cycle Responses to New Generation Flame Retardants. Environ. Sci. Technol. 2013, 47, 13798–13803. [Google Scholar] [CrossRef]
- Silva, S.A.M.; Rodrigues, A.C.M.; Rocha-Santos, T.; Silva, A.L.P.; Gravato, C. Effects of Polyurethane Small-Sized Microplastics in the Chironomid, Chironomus Riparius: Responses at Organismal and Sub-Organismal Levels. Int. J. Environ. Res. Public Health 2022, 19, 15610. [Google Scholar] [CrossRef] [PubMed]
- Habig, W.H.; Jakoby, W.B. Assays for Differentiation of Glutathione S-Transferases. Methods Enzymol. 1981, 77, 398–405. [Google Scholar] [CrossRef] [PubMed]
- Claiborne, A. Catalase Activity. In Handbook Methods for Oxygen Radical Research; Greenwald, R.A., Ed.; CRC: Boca Raton, FL, USA, 1985; Volume 1. [Google Scholar]
- Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for Lipid Peroxides in Animal Tissues by Thiobarbituric Acid Reaction. Anal. Biochem. 1979, 95, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.A.M.; Prata, J.C.; Dias-Pereira, P.; Rodrigues, A.C.M.; Soares, A.M.V.M.; Sarmento, R.A.; Rocha-Santos, T.; Gravato, C.; Patrício Silva, A.L. Microplastics Altered Cellular Responses, Physiology, Behaviour, and Regeneration of Planarians Feeding on Contaminated Prey. Sci. Total Environ. 2023, 875, 162556. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Ireland, D.; Sipes, N.S.; Behl, M.; Collins, E.-M.S. Screening for Neurotoxic Potential of 15 Flame Retardants Using Freshwater Planarians. Neurotoxicol. Teratol. 2019, 73, 54–66. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhao, L.; Shi, Q.; Guo, Y.; Hua, J.; Han, J.; Yang, L. DE-71 Affected the Cholinergic System and Locomotor Activity via Disrupting Calcium Homeostasis in Zebrafish Larvae. Aquat. Toxicol. 2022, 250, 106237. [Google Scholar] [CrossRef] [PubMed]
- Buttarelli, F.R.; Pellicano, C.; Pontieri, F.E. Neuropharmacology and Behavior in Planarians: Translations to Mammals. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2008, 147, 399–408. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Xu, T.; Yin, D.-Q. Locomotor Activity Changes on Zebrafish Larvae with Different 2,2′,4,4′-Tetrabromodiphenyl Ether (PBDE-47) Embryonic Exposure Modes. Chemosphere 2014, 94, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Alonso, Á.; Camargo, J.A. The Freshwater Planarian Polycelis Felina as a Sensitive Species to Assess the Long-Term Toxicity of Ammonia. Chemosphere 2011, 84, 533–537. [Google Scholar] [CrossRef]
- Chen, Q.; Gundlach, M.; Yang, S.; Jiang, J.; Velki, M.; Yin, D.; Hollert, H. Quantitative Investigation of the Mechanisms of Microplastics and Nanoplastics toward Zebrafish Larvae Locomotor Activity. Sci. Total Environ. 2017, 584–585, 1022–1031. [Google Scholar] [CrossRef]
- Chen, Q.; Lackmann, C.; Wang, W.; Seiler, T.-B.; Hollert, H.; Shi, H. Microplastics Lead to Hyperactive Swimming Behaviour in Adult Zebrafish. Aquat. Toxicol. 2020, 224, 105521. [Google Scholar] [CrossRef] [PubMed]
- Gambardella, C.; Morgana, S.; Ferrando, S.; Bramini, M.; Piazza, V.; Costa, E.; Garaventa, F.; Faimali, M. Effects of Polystyrene Microbeads in Marine Planktonic Crustaceans. Ecotoxicol. Environ. Saf. 2017, 145, 250–257. [Google Scholar] [CrossRef] [PubMed]
- De Felice, B.; Sabatini, V.; Antenucci, S.; Gattoni, G.; Santo, N.; Bacchetta, R.; Ortenzi, M.A.; Parolini, M. Polystyrene Microplastics Ingestion Induced Behavioral Effects to the Cladoceran Daphnia Magna. Chemosphere 2019, 231, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Bringer, A.; Thomas, H.; Prunier, G.; Dubillot, E.; Bossut, N.; Churlaud, C.; Clérandeau, C.; Le Bihanic, F.; Cachot, J. High Density Polyethylene (HDPE) Microplastics Impair Development and Swimming Activity of Pacific Oyster D-Larvae, Crassostrea Gigas, Depending on Particle Size. Environ. Pollut. 2020, 260, 113978. [Google Scholar] [CrossRef]
- Hellou, J. Behavioural Ecotoxicology, an “Early Warning” Signal to Assess Environmental Quality. Environ. Sci. Pollut. Res. 2011, 18, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, A.C.M.; Henriques, J.F.; Domingues, I.; Golovko, O.; Žlábek, V.; Barata, C.; Soares, A.M.V.M.; Pestana, J.L.T. Behavioural Responses of Freshwater Planarians after Short-Term Exposure to the Insecticide Chlorantraniliprole. Aquat. Toxicol. 2016, 170, 371–376. [Google Scholar] [CrossRef]
- Brewer, S.K.; Little, E.E.; DeLonay, A.J.; Beauvais, S.L.; Jones, S.B.; Ellersieck, M.R. Behavioral Dysfunctions Correlate to Altered Physiology in Rainbow Trout (Oncorynchus mykiss) Exposed to Cholinesterase-Inhibiting Chemicals. Arch. Environ. Contam. Toxicol. 2001, 40, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Ighodaro, O.M.; Akinloye, O.A. First Line Defence Antioxidants-Superoxide Dismutase (SOD), Catalase (CAT) and Glutathione Peroxidase (GPX): Their Fundamental Role in the Entire Antioxidant Defence Grid. Alex. J. Med. 2018, 54, 287–293. [Google Scholar] [CrossRef]
- Dong, M.; Zhu, L.; Shao, B.; Zhu, S.; Wang, J.; Xie, H.; Wang, J.; Wang, F. The Effects of Endosulfan on Cytochrome P450 Enzymes and Glutathione S-Transferases in Zebrafish (Danio rerio) Livers. Ecotoxicol. Environ. Saf. 2013, 92, 1–9. [Google Scholar] [CrossRef]
- Usenko, C.Y.; Abel, E.L.; Kudela, M.; Janise, A.; Bruce, E.D. Comparison of PBDE Congeners as Inducers of Oxidative Stress in Zebrafish. Environ. Toxicol. Chem. 2015, 34, 1154–1160. [Google Scholar] [CrossRef]
- Rialto, T.C.R.; Marino, R.V.; Abe, F.R.; Dorta, D.J.; Oliveira, D.P. Comparative Assessment of the Toxicity of Brominated and Halogen-Free Flame Retardants to Zebrafish in Terms of Tail Coiling Activity, Biomarkers, and Locomotor Activity. Toxics 2023, 11, 732. [Google Scholar] [CrossRef] [PubMed]
- Iheanacho, S.C.; Odo, G.E. Dietary Exposure to Polyvinyl Chloride Microparticles Induced Oxidative Stress and Hepatic Damage in Clarias gariepinus (Burchell, 1822). Environ. Sci. Pollut. Res. Int. 2020, 27, 21159–21173. [Google Scholar] [CrossRef] [PubMed]
- Iheanacho, S.C.; Odo, G.E. Neurotoxicity, Oxidative Stress Biomarkers and Haematological Responses in African Catfish (Clarias gariepinus) Exposed to Polyvinyl Chloride Microparticles. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2020, 232, 108741. [Google Scholar] [CrossRef] [PubMed]
- Tennekes, H.A.; Sánchez-Bayo, F. The Molecular Basis of Simple Relationships between Exposure Concentration and Toxic Effects with Time. Toxicology 2013, 309, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Yu, K.; Huang, C.; Yu, L.; Zhu, B.; Lam, P.K.S.; Lam, J.C.W.; Zhou, B. Prenatal Transfer of Polybrominated Diphenyl Ethers (PBDEs) Results in Developmental Neurotoxicity in Zebrafish Larvae. Environ. Sci. Technol. 2012, 46, 9727–9734. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Lu, G.; Qi, P. Effects of BDE-209 and Its Mixtures with BDE-47 and BDE-99 on Multiple Biomarkers in Carassius Auratus. Environ. Toxicol. Pharmacol. 2014, 38, 554–561. [Google Scholar] [CrossRef] [PubMed]
- Simão, F.C.P.; Rodrigues, A.C.M.; Gravato, C.; Soares, A.M.V.M.; Pestana, J.L.T. Oxidative Status of Planarians Is Differently Affected by PAHs: 3–5 Benzene Ring Compounds. Environ. Adv. 2022, 8, 100201. [Google Scholar] [CrossRef]
- Saraiva, A.S.; Sarmento, R.A.; Gravato, C.; Rodrigues, A.C.M.; Campos, D.; Simão, F.C.P.; Soares, A.M.V.M. Strategies of Cellular Energy Allocation to Cope with Paraquat-Induced Oxidative Stress: Chironomids vs Planarians and the Importance of Using Different Species. Sci. Total Environ. 2020, 741, 140443. [Google Scholar] [CrossRef] [PubMed]
- Wen, B.; Zhang, N.; Jin, S.-R.; Chen, Z.-Z.; Gao, J.-Z.; Liu, Y.; Liu, H.-P.; Xu, Z. Microplastics Have a More Profound Impact than Elevated Temperatures on the Predatory Performance, Digestion and Energy Metabolism of an Amazonian Cichlid. Aquat. Toxicol. 2018, 195, 67–76. [Google Scholar] [CrossRef]
- Nunes, B.S.; Travasso, R.; Gonçalves, F.; Castro, B.B. Biochemical and Physiological Modifications in Tissues of Sardina Pilchardus: Spatial and Temporal Patterns as a Baseline for Biomonitoring Studies. Front. Environ. Sci. 2015, 3, 126151. [Google Scholar] [CrossRef]
- Nematdoost Haghi, B.; Banaee, M. Effects of Micro-Plastic Particles on Paraquat Toxicity to Common Carp (Cyprinus carpio): Biochemical Changes. Int. J. Environ. Sci. Technol. 2017, 14, 521–530. [Google Scholar] [CrossRef]
- Benedetti, M.; Giuliani, M.E.; Regoli, F. Oxidative Metabolism of Chemical Pollutants in Marine Organisms: Molecular and Biochemical Biomarkers in Environmental Toxicology. Ann. N. Y. Acad. Sci. 2015, 1340, 8–19. [Google Scholar] [CrossRef] [PubMed]
Parameter | Concentration (mg L−1) |
---|---|
Silicon dioxide, SiO2 | 16 ± 10 |
Hydrocarbonate ions, HCO3− | 11.7 ± 0.60 |
Chloride ions, Cl− | 2.9 ± 0.20 |
Sodium ions, Na+ | 5.2 ± 0.20 |
Calcium ions, Ca2+ | 1.3 ± 0.10 |
Control | ALPI | PU | ALPI + PU | ||
---|---|---|---|---|---|
n | 10 | 10 | 10 | 10 | |
Locomotor velocity | Min | 4.00 | 3.00 | 6.00 | 3.00 |
(crossed gridlines min−1) | Max | 15.00 | 15.00 | 15.00 | 10.00 |
Range | 11.00 | 12.00 | 9.00 | 7.00 | |
Body mass (g) | Min | 0.008 | 0.008 | 0.008 | 0.006 |
Max | 0.018 | 0.015 | 0.019 | 0.018 | |
Range | 0.010 | 0.006 | 0.011 | 0.012 | |
Body length (mm) | Min | 10.00 | 11.00 | 10.00 | 11.00 |
Max | 15.00 | 15.00 | 13.00 | 14.00 | |
Range | 5.00 | 4.00 | 3.00 | 3.00 |
Control | ALPI | PU | ALPI + PU | ||
---|---|---|---|---|---|
n | 10 | 10 | 10 | 10 | |
GST (nmol min−1 planarian−1) | Min | 6.87 | 0.96 | 3.92 | 5.49 |
Max | 31.24 | 34.54 | 36.48 | 25.69 | |
Range | 24.37 | 33.58 | 32.56 | 20.20 | |
CAT (µmol min−1 planarian−1) | Min | 17.88 | 15.87 | 17.04 | 22.95 |
Max | 49.60 | 46.15 | 58.25 | 61.50 | |
Range | 31.72 | 30.28 | 41.21 | 38.55 | |
TG (nmol planarian−1) | Min | 58.31 | 57.67 | 48.07 | 50.43 |
Max | 77.33 | 89.97 | 77.17 | 82.87 | |
Range | 19.02 | 32.30 | 29.10 | 32.44 | |
LPO (nmol planarian−1) | Min | 0.79 | 0.70 | 0.52 | 1.11 |
Max | 10.62 | 8.89 | 7.43 | 10.22 | |
Range | 9.82 | 8.19 | 6.91 | 9.11 |
Control | ALPI | PU | ALPI + PU | ||
---|---|---|---|---|---|
n | 10 | 10 | 10 | 10 | |
ChE (nmol min−1 planarian−1) | Min | 32.89 | 31.21 | 15.38 | 27.39 |
Max | 65.62 | 123.20 | 94.79 | 87.74 | |
Range | 32.73 | 92.01 | 79.41 | 60.35 | |
ETS (mJ h−1 planarian−1) | Min | 242.20 | 269.60 | 239.20 | 499.70 |
Max | 1473.00 | 1227.00 | 1068.00 | 1564.00 | |
Range | 1231.00 | 957.30 | 829.20 | 1064.00 | |
LDH (nmol min−1 planarian−1) | Min | 7.33 | 8.98 | 6.76 | 8.26 |
Max | 42.39 | 45.90 | 48.39 | 33.47 | |
Range | 35.06 | 36.92 | 41.64 | 25.21 | |
Protein (mg planarian−1) | Min | 0.51 | 0.51 | 0.44 | 0.58 |
Max | 1.37 | 1.43 | 2.13 | 1.50 | |
Range | 0.86 | 0.92 | 1.69 | 0.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bjedov, D.; Barbosa, R.S.; Oliveira, D.P.d.; Dorta, D.J.; Sarmento, M.I.; Sarmento, R.A.; Silva, A.L.P.; Gravato, C. A Dangerous Couple: Sequential Effect of Phosphorus Flame-Retardant and Polyurethane Decrease Locomotor Activity in Planarian Girardia tigrina. Biology 2024, 13, 337. https://doi.org/10.3390/biology13050337
Bjedov D, Barbosa RS, Oliveira DPd, Dorta DJ, Sarmento MI, Sarmento RA, Silva ALP, Gravato C. A Dangerous Couple: Sequential Effect of Phosphorus Flame-Retardant and Polyurethane Decrease Locomotor Activity in Planarian Girardia tigrina. Biology. 2024; 13(5):337. https://doi.org/10.3390/biology13050337
Chicago/Turabian StyleBjedov, Dora, Rone S. Barbosa, Danielle Palma de Oliveira, Daniel Junqueira Dorta, Maíra Ignacio Sarmento, Renato Almeida Sarmento, Ana L. Patrício Silva, and Carlos Gravato. 2024. "A Dangerous Couple: Sequential Effect of Phosphorus Flame-Retardant and Polyurethane Decrease Locomotor Activity in Planarian Girardia tigrina" Biology 13, no. 5: 337. https://doi.org/10.3390/biology13050337
APA StyleBjedov, D., Barbosa, R. S., Oliveira, D. P. d., Dorta, D. J., Sarmento, M. I., Sarmento, R. A., Silva, A. L. P., & Gravato, C. (2024). A Dangerous Couple: Sequential Effect of Phosphorus Flame-Retardant and Polyurethane Decrease Locomotor Activity in Planarian Girardia tigrina. Biology, 13(5), 337. https://doi.org/10.3390/biology13050337