Geographical–Historical Analysis of the Herbarium Specimens Representing the Economically Important Family Amaranthaceae (Chenopodiaceae-Amaranthaceae Clade) Collected in 1821–2022 and Preserved in the Herbarium of the Jagiellonian University in Krakow
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. General Information
3.2. Taxonomic Coverage
3.3. Life Forms
3.4. Geographical Characteristics and Origin of Specimens
3.5. Temporal Coverage
3.6. Utility Importance of Species Representing the Amaranthaceae Family
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harris, K.M.; Marsico, T.D. Digitizing specimens in a small herbarium: A viable workflow for collections working with limited resources. Appl. Plant Sci. 2017, 5, 1600125. [Google Scholar] [CrossRef] [PubMed]
- Alves-Araújo, A.; dos Santos Moraes, Q.; Nichio-Amaral, R.; Miranda, V.S. Typifications in neotropical Sapotaceae. PhytoKeys 2020, 170, 45–69. [Google Scholar] [CrossRef] [PubMed]
- Boltenkov, E.V.; Güner, A. Typification of some Oncocyclus (Iris, Iridaceae) names related to the Turkish flora. Phytotaxa 2020, 468, 045–061. [Google Scholar] [CrossRef]
- Dalastra, C.H.; Heiden, G. Typifications of five names in Agarista (Ericaceae, Vaccinioideae, Lyonieae). Embrapa Clima Temperado-Artigo em periódico indexado (ALICE). Phytotaxa 2020, 474, 179–184. [Google Scholar] [CrossRef]
- Kottekkattu, T.; Pradeep, A.K. Lectotypification and a new record of the genus Eragrostiella (Tripogoninae, Cynodonteae, Chloridoideae, Poaceae) from India. Phytotaxa 2020, 464, 109–115. [Google Scholar] [CrossRef]
- Liu, B.B.; Liu, G.N.; Hong, D.Y.; Wen, J. Typification of 23 names in Eriobotrya (Maleae, Rosaceae). PhytoKeys 2020, 139, 99–118. [Google Scholar] [CrossRef] [PubMed]
- Naive, M.A.K.; Sanders, T. Typification of two species names in Dendrochilum (Orchidaceae, subgenus Platyclinis). Phytotaxa 2020, 470, 298–299. [Google Scholar] [CrossRef]
- Nobis, M.; Gudkova, P.D.; Nowak, A.; Sawicki, J.; Nobis, A. A synopsis of the genus Stipa (Poaceae) in Middle Asia, including a key to species identification, an annotated checklist, and phytogeographic analyses. Ann. Mo. Bot. Gard. 2020, 105, 1–63. [Google Scholar] [CrossRef]
- Nobis, M.; Klichowska, E.; Wolanin, M.; Nobis, A.; Nowak, A. Typification of five plant names described based on specimens collected by Józef Warszewicz in Central and South America. PhytoKeys 2022, 192, 45. [Google Scholar] [CrossRef]
- Wolski, G.J.; Faltyn-Parzymska, A.; Proćków, J. Lectotypification of the name Stereodon nemoralis Mitt. (Plagiotheciaceae), a basionym of Plagiothecium nemorale (Mitt.) A. Jaeger. PhytoKeys 2020, 155, 141–153. [Google Scholar] [CrossRef]
- Bebber, D.P.; Carine, M.A.; Wood, J.R.I.; Wortley, A.H.; Harris, D.J.; Prance, G.T.; Davidse, G.; Paige, J.; Pennington, T.D.; Robson, N.K.B.; et al. Herbaria are a major frontier for species discovery. Proc. Natl. Acad. Sci. USA 2010, 107, 22169–22171. [Google Scholar] [CrossRef] [PubMed]
- Corney, D.P.A.; Clark, J.Y.; Tang, H.L.; Wilkin, P.; Corney, D.P.A.; Clark, J.Y.; Tang, H.L.; Wilkin, P. Automatic extraction of leaf characters from herbarium specimens. Taxon 2012, 61, 231–244. [Google Scholar] [CrossRef]
- Weaver, W.N.; Smith, S.A. From leaves to labels: Building modular machine learning networks for rapid herbarium specimen analysis with LeafMachine2. Appl Plant Sci. 2023, 11, e11548. [Google Scholar] [CrossRef] [PubMed]
- Carranza-Rojas, J.; Goeau, H.; Bonnet, P.; Mata-Montero, E.; Joly, A. Going deeper in the automated identification of Herbarium specimens. BMC Evol. Biol. 2017, 17, 181. [Google Scholar] [CrossRef] [PubMed]
- Inderbitzin, P.; Lim, S.R.; Volkmann-Kohlmeyer, B.; Kohlmeyer, J.; Berbee, M.L. The phylogenetic position of Spathulospora based on DNA sequences from dried herbarium material. Mycol. Res. 2004, 108, 737–748. [Google Scholar] [CrossRef] [PubMed]
- Zuntini, A.R.; Fonseca, L.H.M.; Lohmann, L.G. Primers for phylogeny reconstruction in Bignonieae (Bignoniaceae) using herbarium samples. Appl. Plant Sci. 2013, 1, 2–5. [Google Scholar] [CrossRef]
- Besnard, G.; Christin, P.A.; Malé, P.J.G.; Lhuillier, E.; Lauzeral, C.; Coissac, E.; Vorontsova, M.S. From museums to genomics: Old herbarium specimens shed light on a C3 to C4 transition. J. Exp. Bot. 2014, 65, 6711–6721. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Rodríguez, P.; Carruthers, T.; Wood, J.R.I.; Williams, B.R.M.; Weitemier, K.; Kronmiller, B.; Goodwin, Z.; Sumadijaya, A.; Anglin, N.L.; Filer, D.; et al. A taxonomic monograph of Ipomoea integrated across phylogenetic scales. Nat. Plants 2019, 5, 1136–1144. [Google Scholar] [CrossRef] [PubMed]
- Vintsek, L.; Klichowska, E.; Nowak, A.; Nobis, M. Genetic differentiation, demographic history and distribution models of high alpine endemic vicariants outline the response of species to predicted climate changes in a Central Asian biodiversity hotspot. Ecol. Indic. 2022, 144, 109419. [Google Scholar] [CrossRef]
- Nobis, M.; Wróbel, S.; Klichowska, E.; Nowak, A.; Wróbel, A.; Nobis, A.; Paszko, B.; Świerszcz, S.; Chen, W.; Kauzal, P.; et al. New national and regional plant records: Contribution to the flora of the Old World countries. Acta Soc. Bot. Pol. 2023, 92, 1–21. [Google Scholar] [CrossRef]
- Wróbel, A.; Klichowska, E.; Nobis, M. Hybrids as mirrors of the past: Genomic footprints reveal spatio-temporal dynamics and extinction risk of alpine extremophytes in the mountains of Central Asia. Front. Plant Sci. 2024, 15, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Sinaga, P.; Klichowska, E.; Nowak, A.; Nobis, M. Hybridization and introgression events in co-occurring populations of closely related grasses (Poaceae: Stipa) in high mountain steppes of Central Asia. PLoS ONE 2024, 19, e0298760. [Google Scholar] [CrossRef] [PubMed]
- Staats, M.; Cuenca, A.; Richardson, J.E.; Vrielink-van Ginkel, R.; Petersen, G.; Seberg, O.; Bakker, F.T. DNA damage in plant Herbarium tissue. PLoS ONE 2011, 6, e28448. [Google Scholar] [CrossRef]
- McAssey, E.V.; Downs, C.; Yorkston, M.; Morden, C.; Heyduk, K. A comparison of freezer-stored DNA and herbarium tissue samples for chloroplast assembly and genome skimming. Appl. Plant Sci. 2023, 11, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Pyšek, P. Heracleum mantegazzianum in the Czech Republic: Dynamics of spreading from the historical perspective. Folia Geobot. Phytotax. 1991, 26, 439–454. [Google Scholar] [CrossRef]
- Pyšek, P.; Prach, K. Plant invasion and the role of riparian habitats: A comparison of four species alien to central Europe. J. Biogeogr. 1993, 20, 413–420. [Google Scholar] [CrossRef]
- Pyšek, P.; Prach, K. Invasion dynamics of Impatiens glandilufera: A century of spreading reconstructed. Biol. Conserv. 1995, 74, 41–48. [Google Scholar] [CrossRef]
- Lambrinos, J.G. The expansion history of a sexual and asexual species of Cortaderia in California, USA. J. Ecol. 2001, 89, 88–98. [Google Scholar] [CrossRef]
- Mihulka, S.; Pyšek, P. Invasion history of Oenothera congeners in Europe: A comparative study of spreading rates in the last 200 years. J. Biogeogr. 2001, 28, 597–609. [Google Scholar] [CrossRef]
- Delisle, F.; Lavoie, C.; Jean, M.; Lachance, D. Reconstructing the spread of invasive plants: Taking into account biases associated with herbarium specimens. J. Biogeogr. 2003, 30, 1033–1042. [Google Scholar] [CrossRef]
- Ni, M. Herbarium records reveal multiple phases in the relationship between minimum residence time and invasion ranges of alien plant species. Plants People Planet 2022, 5, 47–57. [Google Scholar] [CrossRef]
- Hernández, H.M.; Navarro, M. A new method to estimate areas of occupancy using herbarium data. Biodivers. Conserv. 2007, 16, 2457–2470. [Google Scholar] [CrossRef]
- Verspagen, N.; Erkens, R.H.J. A method for making Red List assessments with herbarium data and distribution models for species-rich plant taxa: Lessons from the Neotropical genus Guatteria (Annonaceae). Plants People Planet 2023, 5, 536–546. [Google Scholar] [CrossRef]
- Godefroid, S.; van de Vyver, A.; Stoffelen, P.; Robbrecht, E.; Vanderborght, T. Testing the viability of seeds from old herbarium specimens for conservation purposes. Taxon 2011, 60, 565–569. [Google Scholar] [CrossRef]
- Rocchetti, A.G.; Davis, C.; Caneva, G.; Bacchetta, G.; Fabrini, G.; Fenu, G.; Foggi, B.; Galasso, G.; Gargano, D.; Giusso del Galdo, G.; et al. A pragmatic and prudent consensus on the resurrection of extinct plant species using herbarium specimens. Taxon 2022, 71, 168–177. [Google Scholar] [CrossRef]
- Heberling, J.M.; Prather, L.A.; Tonsor, S.J. The changing uses of Herbarium data in an era of global change: An overview using automated content analysis. BioScience 2019, 69, 812–822. [Google Scholar] [CrossRef]
- Lavoie, C.; Lachance, D. A new herbarium-based method for reconstructing the phenology of plant species across large areas. Am. J. Bot. 2006, 93, 512–516. [Google Scholar] [CrossRef] [PubMed]
- Primack, D.; Imbres, C.; Primack, R.B.; Miller-Rushing, A.J.; Del Tredici, P. Herbarium specimens demonstrate earlier flowering times in response to warming in Boston. Am. J. Bot. 2004, 91, 1260–1264. [Google Scholar] [CrossRef] [PubMed]
- Miller-Rushing, A.J.; Primack, R.B.; Primack, D.; Mukunda, S. Photographs and herbarium specimens as tools to document phenological changes in response to global warming. Am. J. Bot. 2006, 93, 1667–1674. [Google Scholar] [CrossRef]
- Hart, R.; Salick, J.; Ranjitkar, S.; Xu, J. Herbarium specimens show contrasting phenological responses to Himalayan climate. Proc. Natl. Acad. Sci. USA 2014, 111, 10615–10619. [Google Scholar] [CrossRef]
- Rawal, D.S.; Kasel, S.; Keatley, M.R.; Nitschke, C.R. Herbarium records identify sensitivity of flowering phenology of eucalypts to climate: Implications for species response to climate change. Austral Ecol. 2014, 40, 117–125. [Google Scholar] [CrossRef]
- Davis, C.C.; Willis, C.G.; Connolly, B.; Kelly, C.; Ellison, A.M. Herbarium records are reliable sources of phenological change driven by climate and provide novel insights into species’ phenological cueing mechanisms. Amer. J. Bot. 2015, 102, 1599–1609. [Google Scholar] [CrossRef]
- Plewa, A.; Köhler, P. Pinaceae in the herbarium of the Institute of botany at the Jagiellonian University, Kraków, Poland (KRA). Acta Soc. Bot. Pol. 2019, 88, 1–13. [Google Scholar] [CrossRef]
- Azab, A. Amaranthaceae plants of Israel and palestine: Medicinal activities and unique compounds. Eur. Chem. Bull. 2020, 9, 366–400. [Google Scholar] [CrossRef]
- Tykarski, P. Natural data resources of Polish scientific institutions-variety, history, importance–introduction. Kosmos 2021, 70, 139–145. [Google Scholar] [CrossRef]
- Knutelski, S.; Nobis, M.; Pyrcz, T.; Fiałkowski, W. Zasoby informacji o różnorodności biotycznej w kolekcjach przyrodniczych Uniwersytetu Jagiellońskiego. Kosmos 2021, 70, 273–289. [Google Scholar] [CrossRef]
- Christenhusz, J.M.; Byng, J.W. The number of know plants species in the world and its annual increase. Phytotaxa 2016, 261, 201–217. [Google Scholar] [CrossRef]
- Flores-Olvera, H.; Zumaya, S.; Borsch, T. Two new species of Iresine (Amaranthaceae: Gomphrenoideae) from Mexico supported by morphological and molecular characters. Willdenowia 2016, 46, 165–174. [Google Scholar] [CrossRef]
- Alonso, Á.M.; Crespo, M.B.; Freitag, H. Salicornia cuscoensis (Amaranthaceae/Chenopodiaceae), a new species from Peru (South America). Phytotaxa 2017, 319, 254–262. [Google Scholar] [CrossRef]
- Arya, S.; Kumar, V.S.A.; Vishnu, W.K.; Kumar, T.R. Amaranthus saradhiana (Amaranthaceae)–a new species from southern Western Ghats of Kerala, India. Phytotaxa 2019, 403, 230–238. [Google Scholar] [CrossRef]
- Arya, S. Alternanthera ebracteolata (Amaranthaceae), a new species from Kerala (SW-India). Phytotaxa 2021, 480, 191–196. [Google Scholar] [CrossRef]
- Arya, S.; Iamonico, D.; Sánchez-Del Pino, I.; Kumar, V.N.S.A. Alternanthera indica (Amaranthaceae), a new species from Kerala (India). Phytotaxa 2021, 482, 191–196. [Google Scholar] [CrossRef]
- Mosyakin, S.L.; Mandák, B. Chenopodium ucrainicum (Chenopodiaceae/Amaranthaceae sensu APG), a new diploid species: A morphological description and pictorial guide. Ukr. Bot. J. 2020, 77, 237–248. [Google Scholar] [CrossRef]
- Chatelain, C.; Uotila, P.; Benhouhou, S.; Mombrial, F.; Mesbah, M.; Baa, S.; Benghanem, A.N. Chenopodium hoggarense (Amaranthaceae), a new species from Algeria and Chad. Willdenowia 2022, 52, 75–81. [Google Scholar] [CrossRef]
- Simmonds, N.W. The grain chenopods of the tropical American highlands. Econ. Bot. 1965, 19, 223–235. [Google Scholar] [CrossRef]
- Galwey, N.W.; Leakey, C.L.A.; Price, K.R.; Fenwick, G.R. Chemical composition and nutritional characteristics of quinoa (Chenopodium quinoa Willd). Human Nutr. Food Sci. Nutr. 1990, 42, 245–261. [Google Scholar] [CrossRef]
- Dincă, L.; Dincă, M.; Pantea, S.D.; Timiș-Gansac, V.; Oneț, C. Amaranthus Plant–between myth and usage. Natural Resources Sustain. Dev. 2018, 8, 9–16. [Google Scholar] [CrossRef]
- Bajwa, A.A.; Zulfiqar, U.; Sadia, S.; Bhowmik, P.; Chauhan, B.S. A global perspective on the biology, impact and management of Chenopodium album and Chenopodium murale: Two troublesome agricultural and environmental weeds. Environ. Sci. Pollut. Res. 2019, 26, 5357–5371. [Google Scholar] [CrossRef]
- Karous, O.; Ben Haj Jilani, I.; Ghrabi-Gammar, Z. Ethnobotanical study on plant used by Semi-Nomad Descendants’ Community in Ouled Dabbeb–Southern Tunisia. Plants 2021, 10, 642. [Google Scholar] [CrossRef]
- Schlick, G.; Bubenheim, D.L. Quinoa: Candidate crop for NASA’s controlled ecological life support systems. In Progress in New Crops; Janick, J., Ed.; ASHS Press: Arlington, VA, USA, 1996; pp. 632–640. [Google Scholar]
- Dini, I.; Schettino, O.; Simioli, T.; Dini, A. Studies on the constituents of Chenopodium quinoa seeds: Isolation and characterization of new triterpene saponins. J. Agric. Food Chem. 2001, 49, 741–746. [Google Scholar] [CrossRef]
- Iqbal, M. An Assessment of quinoa (Chenopodium quinoa Willd.) potential as a grain crop on marginal lands in Pakistan. Am. Eurasian J. Agric. Environ. Sci. 2015, 15, 16–23. [Google Scholar] [CrossRef]
- Aderibigbe, O.R.; Ezekiel, O.O.; Owolade, S.O.; Korese, J.K.; Sturm, B.; Hensel, O. Exploring the potentials of underutilized grain amaranth (Amaranthus spp.) along the value chain for food and nutrition security: A review. Crit. Rev. Food Sci. Nutr. 2020, 62, 656–669. [Google Scholar] [CrossRef] [PubMed]
- Kokanova-Nedialkova, Z.; Nedialkov, P.T.; Nikolov, S.D. The genus Chenopodium: Phytochemistry, ethnopharmacology and pharmacology. Pharmacogn. Rev. 2009, 3, 280–306. [Google Scholar]
- Donia El Raheim Mohammed, A.; Ibrahim Alqasoumi, S.; Mahmoud Radwan, A.; Burand, J.; Craker, L.E. Phytochemical screening and insecticidal activity of three plants from Chenopodiaceae family. J. Med. Plant Res. 2012, 6, 5863–5867. [Google Scholar] [CrossRef]
- Soumia, H.; Zahia, B.; Aminata, O.E.H.K.; Hanane, B.; Zohra, B.; Yasmina, B.; Insaf, A.K.; Sara, M.; Fatma, S.; Meriem, T. Ethnobotanical study and phytochemical screening of six medicinal plants used in traditional medicine in the Northeastern Sahara of Algeria (area of Ouargla). J. Med. Plant Res. 2015, 9, 1049–1059. [Google Scholar] [CrossRef]
- Alharbi, N. Survey of plant species of medical importance to treat digestive tract diseases in Tabuk Region, Saudi Arabia. J. King Abdulaziz Univ. Sci. 2017, 29, 51–61. [Google Scholar] [CrossRef]
- Dobrowolska, E.; Motyka, S.; Szopa, A.; Ekiert, H. Achyranthes bidenatata (grzebyk dwuzębny)–charakterystyka botaniczna, ekologiczna, fitochemiczna oraz zastosowanie w lecznictwie. Farmacja Polska 2021, 77, 717–732. [Google Scholar] [CrossRef]
- El Souda, S.S.; Matloub, A.A.; Nepveu, F.; Valentin, A.; Roques, C. Phenolic composition and prospective anti-infectious properties of Atriplex lindleyi. Asian Pac. J. Trop. Dis. 2015, 5, 786–791. [Google Scholar] [CrossRef]
- Ganjare, A.; Raut, N. Nutritional and medicinal potential of Amaranthus spinosus. RJPP 2019, 8, 3149–3156. [Google Scholar]
- Eissa, M.A. Phytoextraction mechanism of Cd by Atriplex lentiformis using some mobilizing agents. Ecol. Eng. 2017, 108, 220–226. [Google Scholar] [CrossRef]
- Vromman, D.; Flores-Bavestrello, A.; Šlejkovec, Z.; Lapaille, S.; Teixeira-Cardoso, C.; Briceño, M.; Lutts, S. Arsenic accumulation and distribution in relation to young seedling growth in Atriplex atacamensis Phil. Sci. Total Environ. 2011, 412–413, 286–295. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.; He, Z.; Bai, X.; Wang, W.; Zhao, P.; Lin, P.; Zhou, H. Atriplex canescens, a valuable plant in soil rehabilitation and forage production. A review. Sci. Total Environt. 2022, 15, 150287. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, R.; Bhatti, G.R. Folklore uses of Amaranthaceae family from Nara Desert, Pakistan. Pak. J. Bot. 2009, 41, 1565–1572. [Google Scholar]
- Bieski, I.G.C.; Leonti, M.; Arnason, J.T.; Ferrier, J.; Rapinski, M.; Violante, I.M.P.; Balogun, S.O.; Pereira, J.F.; de Figueiredo, R.C.; Lopes, C.R.; et al. Ethnobotanical study of medicinal plants by population of Valley of Juruena Region, Legal Amazon, Mato Grosso, Brazil. J. Ethnopharmacol. 2015, 173, 383–423. [Google Scholar] [CrossRef] [PubMed]
- Saranraj, P.; Lakshmi, B.; Suganthi, K. Ethnobotanical survey of medicinal plants from Vellore district, Tamil nadu, India. Int. J. Adv. Res. Biol. Sci. 2016, 3, 238–246. [Google Scholar] [CrossRef]
- Singh, G.; Kumar, J. Studies on underutilized weeds of family Amaranthaceae used as edibles by the Munda tribe of Jharkhand, India. Ann. Plant Sci. 2019, 8, 3495–3498. [Google Scholar] [CrossRef]
- Manzanero-Medina, G.I.; Vásquez-Dávila, M.A.; Lustre-Sánchez, H.; Pérez-Herrera, A. Ethnobotany of food plants (quelites) sold in two traditional markets of Oaxaca, Mexico. S. Afr. J. Bot. 2020, 130, 215–223. [Google Scholar] [CrossRef]
- Kühn, U.; Bittrich, V.; Carolin, R.; Freitag, H.; Hedge, I.C.; Uotila, P.; Wilson, P.G. Chenopodiaceae. In The Families and Genera of Vascular Plants; Kubitzki, K., Rohwer, J.G., Bittrich, V., Eds.; Springer, Berlin, Germany, 1993; Volume 2, pp: 253–281.
- Kadereit, G.; Borsch, T.; Weising, K.; Freitag, H. Phylogeny of Amaranthaceae and Chenopodiaceae and the evolution of C4 photosynthesis. J. Plant. Sci. 2003, 164, 959–986. [Google Scholar] [CrossRef]
- Angiosperm Phylogeny Group. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Bot. J. Linn. Soc. 2003, 141, 399–436. [Google Scholar] [CrossRef]
- Angiosperm Phylogeny Group. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot. J. Linn. Soc. 2009, 161, 105–121. [Google Scholar] [CrossRef]
- Angiosperm Phylogeny Group. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 2016, 181, 1–20. [Google Scholar] [CrossRef]
- Brockington, S.F.; Alexandre, R.; Ramdial, J.; Moore, M.J.; Crawley, S.; Dhingra, A.; Hilu, K.; Soltis, D.E.; Soltis, P.S. Phylogeny of the Caryophyllales sensu lato: Revisiting hypotheses on pollination biology and perianth differentiation in the core Caryophyllales. Int. J. Plant Sci. 2009, 170, 627–643. [Google Scholar] [CrossRef]
- Sukhorukov, A.P. The Carpology of the Chenopodiaceae with Reference to the Phylogeny, Systematics and Diagnostics of Its Representatives; Grif & Co.: Tula, Russia, 2014. [Google Scholar]
- Hernández-Ledesma, P.; Berendsohn, W.G.; Borsch, T.; von Mering, S.; Akhani, H.; Arias, S.; Castañeda-Noa, I.; Eggli, U.; Eriksson, R.; Flores-Olvera, H.; et al. A taxonomic backbone for the global synthesis of species diversity in the angiosperm order Caryophyllales. Willdenowia 2015, 45, 281–383. [Google Scholar] [CrossRef]
- Sukhorukov, A.P.; Nilova, M.V.; Krinitsina, A.A.; Zaika, M.A.; Erst, A.S.; Shepherd, K.A. Molecular phylogenetic data and seed coat anatomy resolve the generic position of some critical Chenopodioideae (Chenopodiaceae-Amaranthaceae) with reduced perianth segments. PhytoKeys 2018, 109, 103–128. [Google Scholar] [CrossRef] [PubMed]
- Sukhorukov, A.P.; Liu, P.L.; Kushunina, M. Taxonomic revision of Chenopodiaceae in Himalaya and Tibet. PhytoKeys 2019, 116, 1–141. [Google Scholar] [CrossRef] [PubMed]
- Cuénoud, P.; Savolainen, V.; Chatrou, L.W.; Powell, M.; Grayer, R.J.; Chase, M.W. Molecular phylogenetics of Caryophyllales based on nuclear 18S rDNA and plastid rbcL, atpB, and matK DNA sequences. Amer. J. Bot. 2002, 89, 132–144. [Google Scholar] [CrossRef]
- Müller, K.; Borsch, T. Phylogenetics of Amaranthaceae based on matK/trnK sequence data–Evidence from parsimony, likelihood, and bayesian analyses. Ann. Missouri Bot. Gard. 2005, 92, 66–102. [Google Scholar] [CrossRef]
- Schäferhoff, B.; Müller, K.F.; Borsch, T. Caryophyllales phylogenetics: Disentangling Phytolaccaceae and Molluginaceae and description of Microteaceae as a new isolated family. Willdenowia 2009, 39, 209–228. [Google Scholar] [CrossRef]
- WFO. The Word Flora Online. Available online: https://www.worldfloraonline.org/ (accessed on 10 October 2022).
- POWO. Plants of the World Online, Facilitated by the Royal Botanic Gardens, Kew. Available online: https://powo.science.kew.org/ (accessed on 10 October 2022).
- Zając, A. Założenia metodyczne “Atlasu rozmieszczenia roślin naczyniowych w Polsce”. Wiadomości Botaniczne 1978, 22, 145–155. [Google Scholar]
- Novelly, P.; Watson, I. Successful grassland regeneration in a severely degraded catchment: A whole of government approach in north west Australia. In Climate and Land Degradation. Environmental Science and Engineering Series; Chapter, 26; Sivakumar, M.V.K., Ndiang’ui, N., Eds.; Springer: Berlin, Germany, 2007; pp. 469–484. [Google Scholar]
- Megharbi, A.; Kechairi, R. Ethnobotanical characterization of halophytes with medicinal virtues, Case of the Macta wetland flora: North-West Algeria. Genet. Biodivers. J. 2021, 5, 135–145. [Google Scholar] [CrossRef]
- Malthesh, S.R.Y.; Achar, R.R.; Cathrine, A.A.; Vadiraj, K.T. Extraction of alcohols from non-edible agricultural weed, lignocellulouic feedstock–Alternanthera caracasana. World J. Environ. Bioscien. 2023, 12, 27–32. [Google Scholar] [CrossRef]
- Oklejewicz, K.; Łuczaj, Ł. Plants blessed in churches on assumption day in the southern suburbs of Rzeszow with special reference to Dysphania schraderiana (Schult.) Mosyakin & Clemants (in polish). Etnobiologia Polska 2015, 5, 15–26. [Google Scholar]
- Łuczaj, Ł.; Wolanin, M.; Drobnik, J.; Kujawska, M.; Dumanowski, J.; Walker, K.; Tomczyk, M. Dysphania schraderiana (Schult.) Mosyakin & Clemants-An overlooked medicinal and ritual plant used in Poland. J. Ethnopharmacol. 2022, 284, 114755. [Google Scholar] [CrossRef] [PubMed]
- Lavoie, C. Biological collections in an ever changing world: Herbaria as tools for biogeographical and environmental studies. Perspect. Pl. Ecol. Evol. Syst. 2013, 15, 68–76. [Google Scholar] [CrossRef]
- Kovtonyuk, N.; Han, I.; Gatilova, E. Digital Herbarium Collections of the Central Siberian Botanical Garden SB RAS, Novosibirsk, Russia; Springer Proceedings in Earth and Environmental Sciences, Springer: Cham, Switzerland, 2019; pp. 22–27. [Google Scholar] [CrossRef]
- GIBF. Global Biodiversity Information Facility. Available online: https://www.gbif.org/ (accessed on 10 October 2022).
- Thiv, M.; Thulin, M.; Kilian, N.; Linder, H.P. Eritreo–Arabian Affinities of the Socotran flora as revealed from the moolecular phylogeny of Aerva (Amaranthaceae). Syst. Bot. 2006, 31, 560–570. Available online: https://www.jstor.org/stable/25064185 (accessed on 10 October 2022). [CrossRef]
- Miller, A. Aerva microphylla. The IUCN Red List of Threatened Species 2004: e.T44753A10946247. Available online: https://www.iucnredlist.org/species/44753/10946247 (accessed on 10 October 2023).
- Weakley, A.; Bucher, M.; Murdock, N. Recovery Plan for Seabeach Amaranth (Amaranthus pumilus); U.S. Fish and Wildlife Service, Southeast Region: Atlanta, GA, USA, 1996; pp. 1–59. [Google Scholar]
- Marcone, M.F. First report of the characterization of the threatened plant species Amaranthus pumilus (seabeach amaranth). J. Agric. Food Chem. 2000, 48, 378–382. [Google Scholar] [CrossRef] [PubMed]
- NSE. Nature Serve Explorer. Available online: https://explorer.natureserve.org/Taxon/ELEMENT_GLOBAL.2.141860/Amaranthus_pumilus (accessed on 10 March 2024).
- IUNC. The IUCN Red List of Threatened Species 2004. Available online: https://www.iucnredlist.org/species/199895/2617800 (accessed on 7 March 2024).
- Hadjiev, V. Anabasis eugeniae. The IUCN Red List of Threatened Species 2014. Available online: https://www.iucnredlist.org/species/199895/2617800 (accessed on 7 March 2024).
- Ntore, S.; Beentje, H.J.; Fischer, E.; Kabuye, C.; Kalema, J.; Kayombo, C.; Luke, W.R.Q.; Nshutiyayesu, S. Celosia elegantissima. The IUCN Red List of Threatened Species 2019. Available online: https://www.iucnredlist.org/species/103581524/103648247 (accessed on 7 March 2024).
- Foziljonov, S. Theoretical analysis of the degree of scarity of representatives of the family of Chenopodiaceae in the Feragana Valley. Cent. Asian J. Med. Sci. 2021, 2, 295–299. [Google Scholar]
- Martínez Salas, E.; Fuentes, A.C.D.; Samain, M.-S. Celosia monosperma. The IUCN Red List of Threatened Species 2020. Available online: https://www.iucnredlist.org/species/136621713/137375989 (accessed on 7 March 2024).
- Raimondo, D.; von Staden, L.; Foden, W.; Victor, J.E.; Helme, N.A.; Turner, R.C.; Kamundi, D.A.; Manyama, P.A. Red List of South African Plants; Strelitzia 25; South African National Biodiversity Institute: Pretoria, South Africa, 2009. [Google Scholar]
- Buira, A.; Fraga i Arquimbau, P. Salsola papillosa. The IUCN Red List of Threatened Species 2017. Available online: https://www.iucnredlist.org/species/103535407/103535411 (accessed on 10 October 2022).
- Shafique, S.; Javaid, A.; Bajwa, R.; Shafiqe, S. Biological control of Achyranthes aspera and Xanthium strumarium in Pakistan. Pak. J. Bot. 2007, 39, 2607–2610. [Google Scholar]
- Sumeet, D.; Raghvendra, D.; Kushagra, M. Achyranthes aspera Linn. (Chirchira): A magic herb in folk medicine. Ethnobot. Leafl. 2008, 12, 670–676. [Google Scholar] [CrossRef]
- Varuna, K.M.; Khan, M.U.; Sharma, P.K. Review on Achyranthes aspera. J. Pharm. Pract. Res. 2010, 3, 714–717. [Google Scholar]
- Ozturk, M.; Mermut, A.R.; Celik, A. Urbanisation, land use, land degradation and environment. Ambio 2011, 51, 1446–1458. [Google Scholar] [CrossRef] [PubMed]
- Mukherjeea, H.; Ojhaa, D.; Baga, P.; Chandelb, H.S.; Bhattacharyyad, S.; Chatterjeed, T.K.; Mukherjeed, P.K.; Chakrabortia, S.; Chattopadhyaya, D. Anti–herpes virus activities of Achyranthes aspera: An Indian ethnomedicine, and its triterpene acid. Microbiol. Res. 2013, 168, 238–244. [Google Scholar] [CrossRef] [PubMed]
- Hasan, S. Pharmacological and medicinal uses of Achyranthes aspera. Int. J. Sci. Environ. 2014, 3, 123–129. [Google Scholar]
- Singh, N.; Mrinal, P.S.; Gupta, V.K. A review on pharmacological aspects of Achyranthes aspera. Int. J. Pharmacogn. Chin. Med. 2019, 3, 000188. [Google Scholar] [CrossRef]
- Movaliya, V.; Zaveri, M. A review on the pashanbheda plant “Aerva javanica”. Int. J. Pharm. Sci. Rev. Res. 2014, 25, 268–275. [Google Scholar]
- Suleiman, M.H.A. Ethnobotanical, phytochemical and biological study of Tamarix aphylla and Aerva javanica medicinal plants growing in the Asir Region, Saudi Arabia. Trop. Conserv. Sci. 2019, 12, 1940082919869480. [Google Scholar] [CrossRef]
- Soliman, M.A. Cytogenetical studies on Aerva javanica (Amaranthaceae). Fl. Medit. 2006, 16, 333–339. [Google Scholar]
- Rahman, A.H.M.M.; Gulshana, M.I.A. Taxonomy and medicinal uses on Amaranthaceae family of Rajshahi, Bangladesh. Appl. Ecol. Environ. Res. 2014, 2, 54–59. [Google Scholar] [CrossRef]
- Qureshi, R.; Raza Bhatti, G. Ethnobotany of plants used by the Thari people of Nara Desert, Pakistan. Fitoterapia 2008, 79, 468–473. [Google Scholar] [CrossRef]
- Zhao, P.; Li, X.; Sun, H.; Zhao, X.; Wang, X.; Ran, R.; Zhao, J.; Wei, Y.; Liu, X.; Chen, G. Healthy values and de novo domestication of sand rice (Agriophyllum squarrosum), a comparative view against Chenopodium quinoa. Crit. Rev. Food. Sci. Nutr. 2023, 63, 4188–4209. [Google Scholar] [CrossRef]
- Qian, C.; Yin, H.; Shi, Y.; Zhao, J.; Yin, C.; Luo, W.; Dong, Z.; Xia Yan, G.C.; Wang, X.-R.; Ma, X.-F. Population dynamics of Agriophyllum squarrosum, a pioneer annual plant endemic to mobile sand dunes, in response to global climate change. Sci. Rep. 2016, 6, 26613. [Google Scholar] [CrossRef] [PubMed]
- Genievskaya, Y.; Abugalieva, S.; Zhubanysheva, A.; Turuspekov, Y. Morphological description and DNA barcoding study of sand rice (Agriophyllum squarrosum, Chenopodiaceae) collected in Kazakhstan. BMC Plant Biol. 2017, 17, 177. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Yan, X.; Qian, C.; Zhou, S.; Fang, T.; Fan, X.; Gao, Y.; Chang, Y.; Yang, J.; Ma, X.F. Comparative transcriptome analysis to identify genes involved in terpenoid biosynthesis in Agriophyllum squarrosum, a folk medicinal herb native to Asian temperature deserts. Plant Biotechnol. Rep. 2021, 15, 369–387. [Google Scholar] [CrossRef]
- Dhanya, V.; Ragavendran, U.; Aathira, M.; Saipriya, V.; Priya, M.S.; Palanisamy, S.; Siddhraju, P. Biochemical composition and antioxidant potential of raw and hydrothermal treated of two underutilized leafy vegetables Amaranthus dubius and Allmania nodiflora. Int. J. Food Sci. Nut. 2017, 2, 95–107. [Google Scholar]
- Banerjee, S.; Joglekar, A.; Mishra, M. A critical review on importance of green leafy vegetables. Int. J. Appl. Sci. 2015, 2, 124–132. [Google Scholar]
- Canales-Martínez, M.; Hernández-Delgado, T.; Flores-Ortiz, C.; Durán-Díaz, A.; García-Bores, A.M.; Avila-Acevedo, G. Antimicrobial activity of Alternanthera caracasana. Pharm. Biol. 2005, 43, 305–307. [Google Scholar] [CrossRef] [PubMed]
- Hwong, C.S.; Leong, K.H.; Abdul Aziz, A.; Mat Junit, S.; Mohd Noor, S.; Kong, K.W. Alternanthera sessilis: Uncovering the nutritional and medicinal values of an edible weed. J. Ethnopharmacol. 2022, 298, 115608. [Google Scholar] [CrossRef] [PubMed]
- George, S.; Bhalerao, S.V.; Lidstone, E.A.; Ahmad, I.S.; Abbasi, A.; Cunningham, B.T.; Watkin, K.L. Cytotoxicity screening of Bangladeshi medicinal plant extracts on pancreatic cancer cells. BMC Complement Altern Med. 2010, 17, 10–52. [Google Scholar] [CrossRef]
- Hossain, A.I.; Faisal, M.; Rahman, S.; Jahan, R.; Rahmatullah, M. A preliminary evaluation of antihyperglycemic and analgesic activity of Alternanthera sessilis aerial parts. BMC Complement Altern Med. 2014, 24, 14–169. [Google Scholar] [CrossRef]
- Thomas, W.; Merish, S.; Tamizhamuthu, M. Review of Alternanthera sessilis with reference to traditional siddha medicine. Int. J. Pharmacogn. Pharm. Res. 2014, 6, 249–254. [Google Scholar]
- Tene, V.; Malagón, O.; Finzi, P.V.; Vidari, G.; Armijos, C.; Zaragoza, T. An ethnobotanical survey of medicinal plants used in Loja and Zamora–Chinchipe, Ecuador. J. Ethnopharmacol. 2007, 111, 63–81. [Google Scholar] [CrossRef] [PubMed]
- Mosyakin, S.; Robertson, K.; Amaranthus, L. Flora of North of Mexico (Magnoliophyta: Caryophyllidae, Part 1); Flora of North America Editorial Committee, Ed.; Oxford Universuty Press: Oxford, UK, 2003; pp. 410–435. [Google Scholar]
- Sarker, U.; Oba, S. Nutrients, minerals, pigments, phytochemicals, and radical scavenging activity in Amaranthus blitum leafy vegetables. Sci. Rep. 2020, 10, 3868. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, A.; Khan, M.; Shah, M.H.; Shah, M.; Pervez, A.; Ahmad, M. Ethnobotanical appraisal and cultural values of medicinally important wild edible vegetables of Lesser Himalayas–Pakistan. J. Ethnobiol. Ethnomed. 2013, 9, 66. [Google Scholar] [CrossRef] [PubMed]
- Nedelcheva, A. An ethnobotanical study on wild edible plants in Bulgaria. Eurasian J. Biosci. 2013, 7, 77–94. [Google Scholar] [CrossRef]
- Abdiniyazova, G.J.; Khojimatov, O.K. Medicinal plants of Karakalpakstan. Int. J. Sci. Res. 2017, 6, 2113–2116. [Google Scholar] [CrossRef]
- Shakeri, A.; Hazeri, N.; Vlizadeh, J.; Ghasemi, A.; Tavallaei, F.Z. Phytochemical screening, antimicrobial and antioxidant activities of Anabasis aphylla extracts. Kragujevac J. Sci. 2012, 34, 71–78. [Google Scholar]
- Lakhdari, W.; Dehliz, A.; Acheuk, F.; M’lik, R.; Hammi, H.; Doumandji-Mitiche, B.; Gheriani, S.; Berrekbia, M.; Guermit, K.; Chergui, S. Ethnobotanical study of some plants used in traditional medicine in the region of Oued Righ (Algerian Sahara). J. Med. Plants Stud. 2016, 4, 204–211. [Google Scholar]
- Pei, Y.; Yang, Z.D.; Sheng, J. Chemical constituents of Anabasis salsa. Chem. Nat. Compd. 2014, 50, 957–958. [Google Scholar] [CrossRef]
- DanHong, C.; Cheng, Y.; Yan, W. Seed germination characteristics of the desert subshrub Atriplex cana and its ecological significance. Acta Petrol. Sin. 2015, 24, 131–138. [Google Scholar]
- Soliman, G.A.; Abd El Raheim, M. Antihyperglycemic, antihyperlipidemic and antioxidant effect of Atriplex farinosa and Atriplex nummularia in streptozotocin–induced diabetes in rats. Bull. Env. Pharmacol. Life Sci. 2015, 4, 10–18. [Google Scholar]
- Jeong, H.; Kim, H.; Ju, E.; Kong, C.-S.; Seo, Y. Antioxidant effect of the halophyte Atriplex gmelinii. KSBB J. 2016, 31, 200–207. [Google Scholar] [CrossRef]
- Lefèvre, I.; Marchal, G.; Meerts, P.; Corréal, E.; Lutts, S. Chloride salinity reduces cadmium accumulation by the Mediterraneanhalophyte species Atriplex halimus L. Environ. Exp. Bot. 2009, 65, 142–152. [Google Scholar] [CrossRef]
- Manousaki, E.; Kalogerakis, N. Phytoextraction of Pb and Cd by the Mediterranean saltbush (Atriplex halimus L.): Metal uptake in relation to salinity. Environ. Sci. Pollut. Res. Int. 2009, 16, 844–854. [Google Scholar] [CrossRef] [PubMed]
- Mardi, P.; Fallah Huseini, H.; Ahvazi, M.; Tavakoli-Far, B. Effects of Atriplex hortensis hydroalcoholic extract on phenyl-hydrazine induced hemolytic anemia in rat. J. Med. Plants By-Prod. 2022, 11, 37–41. [Google Scholar] [CrossRef]
- Ghasemi, P.; Momeni, M.; Bahmani, M. Ethnobotanical study of medicinal plants used by Kurd tribe in Dehloran and Abdanan districts, Ilam province, Iran. Afr. J. Tradit. Complement Altern. Med. 2013, 10, 368–385. [Google Scholar] [CrossRef] [PubMed]
- Matloub, A.A.; Hamed, M.A.; El Souda, S.S. Chemo–protective effect on hepato–renal toxcicity and cytotoxic activity of lipoidal matter of Atriplex lindleyi Moq. Int. J. Pharm. Pharm. Sci. 2014, 6, 187–196. [Google Scholar]
- Hanganu, D.; Olah, N.; Dubei, N.; Mărculescu, A. Phytochemical studies on Chenopodium bonus–henricus L. Proc. Rom. Acad. Series B 2008, 3, 287–292. [Google Scholar]
- Mabberley, D.J. The Plant Book; Cambridge University Press: Cambridge, UK, 1993; p. 119. [Google Scholar]
- Koziok, M.J. Chemical composition and nutritional evaluation of quinoa (Chenopodium quinoa Willd.). Food Comp. Anal. 1992, 5, 35–68. [Google Scholar]
- Yuan, C.-G.; Huo, C.; Gui, B.; Liu, P.; Zhang, C. Green synthesis of silver nanoparticles using Chenopodium aristatum L. stem extract and their catalytic/antibacterial activities. J. Cluster Sci. 2016, 28, 1319–1333. [Google Scholar] [CrossRef]
- Roriz, C.L.; Barros, L.; Carvalho, A.M.; Santos-Buelga, C.; Ferreira, I.C. Pterospartum tridentatum, Gomphrena globosa and Cymbopogon citratus. A phytochemical study focused on antioxidant compounds. Food Res. Int. 2014, 62, 684–693. [Google Scholar] [CrossRef]
- Anaswara, M.R.; Suresha, B.S.; Balasubramanian, T.; Sushma, Y.C.; Jaseela, N.M. Medical importance of Gomphrena globosa—A systematic review. Asian J. Pharm. Hea. Sci. 2022, 12, 2718–2721. [Google Scholar] [CrossRef]
- Yaseen, T.; Slathia, D.; Farooq, I. Improving floral characteristics and yield of globe amaranth (Gomphrena globosa L.) through pinching and application of bio fertilizers and its impact on soil fertility. J. Pharm. Innov. 2022, 11, 425–430. [Google Scholar] [CrossRef]
- Gannoun, S.; Mahfoudhi, A.; Flamini, G.; Helal, A.; Mighri, Z. Chemical composition and antimicrobial activities of Tunisian Salsola vermiculata L. J. Chem. Pharm. Res. 2016, 8, 1087–1092. [Google Scholar]
- Ribera, A.; Bai, Y.; Wolters, A.M.A.; van Treuren, R.; Kik, C. A review on the genetic resources, domestication and breeding history of spinach (Spinacia oleracea L.). Euphytica 2020, 216, 48. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stadnicka-Futoma, A.; Nobis, M. Geographical–Historical Analysis of the Herbarium Specimens Representing the Economically Important Family Amaranthaceae (Chenopodiaceae-Amaranthaceae Clade) Collected in 1821–2022 and Preserved in the Herbarium of the Jagiellonian University in Krakow. Biology 2024, 13, 435. https://doi.org/10.3390/biology13060435
Stadnicka-Futoma A, Nobis M. Geographical–Historical Analysis of the Herbarium Specimens Representing the Economically Important Family Amaranthaceae (Chenopodiaceae-Amaranthaceae Clade) Collected in 1821–2022 and Preserved in the Herbarium of the Jagiellonian University in Krakow. Biology. 2024; 13(6):435. https://doi.org/10.3390/biology13060435
Chicago/Turabian StyleStadnicka-Futoma, Agata, and Marcin Nobis. 2024. "Geographical–Historical Analysis of the Herbarium Specimens Representing the Economically Important Family Amaranthaceae (Chenopodiaceae-Amaranthaceae Clade) Collected in 1821–2022 and Preserved in the Herbarium of the Jagiellonian University in Krakow" Biology 13, no. 6: 435. https://doi.org/10.3390/biology13060435
APA StyleStadnicka-Futoma, A., & Nobis, M. (2024). Geographical–Historical Analysis of the Herbarium Specimens Representing the Economically Important Family Amaranthaceae (Chenopodiaceae-Amaranthaceae Clade) Collected in 1821–2022 and Preserved in the Herbarium of the Jagiellonian University in Krakow. Biology, 13(6), 435. https://doi.org/10.3390/biology13060435