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Simple Summary: Although the geographic distribution and production of rice are significantly
influenced by temperature fluctuations, rice plants have developed a wide range of physiological,
biochemical, and molecular responses to cope with and adapt to temperature stresses, including
cold stress resulting from low temperatures. Deciphering cold-responsive genes and the underlying
mechanisms may accelerate the development of new cold-resistant rice varieties and ensure stable
rice production in adverse temperature conditions. This review aims to provide a straightforward
summary of the previous progress in understanding the functions and molecular mechanisms of
cold-responsive genes in rice.

Abstract: Rice (Oryza sativa L.) production is highly susceptible to temperature fluctuations, which
can significantly reduce plant growth and development at different developmental stages, resulting
in a dramatic loss of grain yield. Over the past century, substantial efforts have been undertaken
to investigate the physiological, biochemical, and molecular mechanisms of cold stress tolerance in
rice. This review aims to provide a comprehensive overview of the recent developments and trends
in this field. We summarized the previous advancements and methodologies used for identifying
cold-responsive genes and the molecular mechanisms of cold tolerance in rice. Integration of new
technologies has significantly improved studies in this era, facilitating the identification of essential
genes, QTLs, and molecular modules in rice. These findings have accelerated the molecular breeding
of cold-resistant rice varieties. In addition, functional genomics, including the investigation of natural
variations in alleles and artificially developed mutants, is emerging as an exciting new approach to
investigating cold tolerance. Looking ahead, it is imperative for scientists to evaluate the collective
impacts of these novel genes to develop rice cultivars resilient to global climate change.

Keywords: rice; low temperature; cold stress and tolerance; growth and development; genes and
QTLs; molecular mechanism; genetic improvements

1. Introduction

Rice (Oryza sativa L.) is an important nutritious crop for more than half of the world’s
population. As a temperature-sensitive crop, rice production is highly susceptible to
extreme weather. However, susceptibility to environmental challenges, specifically cold
stress caused by low temperatures, poses a serious threat to rice cultivation [1]. Cold stress
(also called chilling stress) affects rice cultivation in several countries, including Japan,
North Korea, and China. In the temperate zone, cold stress may cause significant impacts
on rice production, affecting a substantial number of paddy fields. Previous research
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indicates that cold damage can lead to yield losses of between 0.810 and 2.740 tons/hectare,
resulting in a potential decrease in grain production of up to 38.6% [2]. Moreover, when
rice plants are cultivated in a greenhouse, the consecutive cold nights followed by warm
days can also considerably harm plants, resulting in an 82% decrease in grain yield [3].
It is believed that subtropical and tropical plants are susceptible to cold stress and lack
cold adaptation capacity. However, temperate plants usually show cold acclimation and
survival in cold conditions [4]. Temperate plants are resistant to temperature fluctuations
and are capable of enduring cold stress in the early spring and winter. Plants in semi-arid
regions typically show vulnerability to temperature fluctuations, such as cold nights and
hot days; this temperature volatility poses an extra threat to the plants [5]. It is revealed that
the relative growth rates of Artemesia ordosica and Artimesia sphaerosephala are reduced at
higher temperatures, specifically at 17.5/27.5 and 20/30 ◦C [6]. Due to global temperature
fluctuations, there is an increase in extreme weather, such as extremely low temperatures,
resulting in cold damage to plants, significantly reducing plant growth and yield [7].

In fact, rice plants have developed a wide range of physiological, biochemical, and
molecular responses to adapt to temperature fluctuations. The responses to low tempera-
tures may involve intricate mechanisms at different developmental stages of rice plants.
Cold stress in rice mostly affects the seedling stage, which is critical for the early devel-
opment and growth of rice seedlings. Cold stress affects several agronomic traits, such as
shoot length, root length, and tiller number, and ultimately impacts the plant’s overall cold
tolerance ability. According to previous studies, evaluation of cold-stress tolerance at the
early stages of a plant’s growth, particularly at the seedling stage, is essential to identifying
cold-tolerant cultivars and assessing their potential to tolerate cold stress [8].

Plant cells initially sense cold-stress signals via rigidification of the plasma membrane,
Ca2+ influx channels (cold sensors), and receptors linked to proteins that bind with the
plasma membrane. Calcium-binding proteins have the ability to detect alterations in
the level of Ca2+ in the cytosol. These proteins generally interact with their targeted
proteins, facilitate the transmission of calcium signals, and then regulate the activation
of transcription factors and COR genes (cold-regulated genes). Some calcium-binding
proteins also initiate the phosphorylation of the targeted proteins and coordinate the signal
transduction of cold stress [9]. Furthermore, during responses to cold stress, reactive oxygen
species can play a crucial role and be involved in regulating cold tolerance [10]. Elevated
levels of ROS induce cellular harm, while a reduction in ROS during the initial phases of
stress acts as a signal that triggers diverse stress responses. Hence, it is imperative to closely
monitor the level of ROS during cold stress conditions [4,11]. Some investigations even
suggest that poor chilling tolerance may lead to more accumulation of ROS as compared
to high chilling tolerance, indicating that homeostasis of ROS plays a very crucial role in
the regulation of cold stress tolerance in rice [12]. Moreover, it is believed that membrane
fluidity may play a pivotal role in a plant’s cold tolerance. Chito oligosaccharide (COS),
proline (Pro), and glutamate (Glu) amino acids also play a very significant role in rice cold
resistance [13–16]. These indicate that rice responses and/or tolerance to cold stress may
involve multiple and complex physiological, biochemical, and molecular mechanisms. The
objective of this review is to consolidate existing knowledge and provide a comprehensive
overview of the molecular mechanisms underlying cold-stress tolerance in rice.

2. Physiological Responses to Cold Stress

Cold stress not only causes external harm to rice, such as retardation of growth,
slowing down the germination rate, lowering seed setting rate, growth inhibition, and even
death of the seedlings, but also leads to metabolic and physiological alterations, including
electrolyte leakage, decreases in chlorophyll content and photosynthesis rate, elevated
levels of malondialdehyde (MDA), lipid peroxides, proline, sucrose, ROS, and some other
metabolites [17]. It is considered that the concentrations of some plant hormones, such as
gibberellin (GA), jasmonic acid (JA), and abscisic acid (ABA), are important indicators for
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determining cold tolerance in rice [18]. JAs and ethylene may differentially regulate the
gene expression of the C-repeat binding factor (CBF) pathway [19].

Rice plants subjected to cold stress exhibit an increased uptake of soluble sugars,
such as sucrose and glucose. These sugars function as osmoprotectants, aiding in the
retention of turgor pressure within the cells. This response helps to mitigate the detrimental
impact of cold stress on rice growth and development. Previous research has reported
that cold-tolerant rice verities possess a greater abundance of genes associated with sugar
metabolism pathways. This highlights the importance of sugar metabolism in enhancing
cold tolerance [8,20]. Comparative transcriptome analyses have also emphasized the
influence of cold stress on the metabolic pathways of soluble sugars, underscoring their
vital role in rice responses to low temperatures [21]. The upregulation of genes associated
with sugar metabolism highlights the plant’s ability to respond to cold stress by controlling
osmotic balance and protecting its cells [22].

Cold stress in rice plants may lead to the activation of antioxidant mechanisms to fight
the oxidative injury caused by reactive oxygen species (ROS). Researchers have indicated
that rice plants have sustained and consistent regulation of antioxidant enzymes such as
superoxide dismutase (SOD) and peroxidase (POD) when exposed to low temperatures [1].
Furthermore, the application of brassinolide (BR) to cold-stressed plants may significantly
enhance the activity of antioxidant enzymes, e.g., SOD, POD, and catalase. As a conse-
quence, there is a reduction in oxidative damage and an increase in the cold tolerance of
rice seedlings [10].

The modulation of gene expression in response to cold stress in rice plants mainly
involves the genes associated with stress response, metabolism, and signal transduction
pathways, especially plant hormones metabolism and signal transduction [23]. When
exposed to cold stress, the level of ABA in plants is observed to increase significantly, which
subsequently enhances endogenous defense mechanisms. The increase in ABA levels has
been found to be associated with the enhanced ability of rice cultivars to withstand low
temperatures. Moreover, the regulation of genes related to the ABA signaling pathway,
such as OsABF1, a gene encoding bZIP transcription factor, is enhanced in response to
cold stress, indicating an important role of ABA in the rice response to cold stress [24,25].
Previous research also demonstrated that cold stress affects GA biosynthesis in rice plants
at different developmental stages. It is revealed that OsMKKK70 has a negative impact
on rice cold tolerance by regulating GA levels in anthers during the booting stage [26].
Additionally, the germination of rice seeds is delayed by cold stress due to a reduction
in GA levels by the activation of GA-catabolic genes and SLR1, a gene encoding the
DELLA protein [27]. Cold stress triggers the accumulation of JA in rice plants, which
stimulates defense mechanisms against cold-induced injury and regulates cold-responsive
gene expression [28]. Furthermore, JA plays a vibrant role in plant defense mechanisms
against cold stress by regulating the production of vegetation-altering compounds and
volatile substances through the interaction of phytohormones [19]. JA-dependent signaling
pathways are critical for improving cold tolerance and providing defense against fungal
infections. In rice plants, the activation of JA signaling in response to low-temperature
stress not only activates defensive structures but also affects the expression patterns of
genes that are significant for cold stress tolerance and the survival of plants [29].

The mechanism of cold acclimation in plants encompasses a gradual exposure to low
temperatures above the freezing point, leading to cellular and molecular alterations [30].
Ornithine δ-aminotransferase (OsOAT) has been recognized as a significant factor in enhanc-
ing cold tolerance in rice during reproductive and vegetative growth development [18]. A
comparative transcriptome study revealed that both mutations of OsOAT and exposure to
cold stress may result in comparable alterations in the patterns of gene expression within
anthers [31]. Furthermore, the presence of the OsOAT allele in different rice cultivars
suggests that specific OsOAT haplotypes were chosen during the domestication and breed-
ing of cold-tolerant varieties [32]. Previous studies also demonstrated that the particular
domain, i.e., the loop containing a predicted GTPase-activating protein domain, is involved
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in physiological responses to cold stress. It also impacts GTPase promotion as well as
Ca2+ signaling and electrophysiological response, consistent with CHILLING TOLERANCE
DIVERGENCE 1 (COLD1), a biochemical function linked with G-protein signaling. It is also
revealed that COLD1 regulates G-protein signaling to enhance cold tolerance in rice, and a
single nucleotide polymorphism (SNP) in COLD1 triggers the adaptation of japonica rice in
the chilling environment [33].

Rice has developed a mechanism to detect any fluctuation in temperature, which is
known as a cold-responsive pathway in which C-repeat binding factors (CBF) play a very
important role. As transcription factors (TFs), CBF activates and regulates cold-responsive
genes that are involved in detoxification, protection against oxidative damage, and osmotic
adjustment [34]. Rice cells first detect cold signals on their cell membrane. Consequently,
an important indicator of low-temperature tolerance in plants is the electrolyte leakage
rate because the low temperature can change the chemical and physical properties of the
membrane, which can cause fine intracellular leakage of electrolytes, as shown in Figure 1.
For example, the overexpression of OVP1, encoding a vacuolar H+-translocating inorganic
pyrophosphatase (V-PPase), leads to improved cold tolerance due to decreased electrolyte
leakage in transgenic rice plants [35]. It is important to understand the physiological
responses of rice plants to cold stress to develop strategies for enhancing cold tolerance in
rice. By elucidating the metabolic variations and hormone signaling networks, researchers
can identify the potential targets for genetic improvement and create robust rice cultivars
that are capable of enduring cold stress.
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Figure 1. Physiological responses during cold stress. It shows a detailed recognition of the paradox
in plant responses to chilling stress. (A) Pathway shows the sensibility of plants during chilling stress.
It initiates membrane damage that minimizes photosynthetic movement and subsequent electrolyte
leakage, which ultimately leads to reduced growth and plant death. (B) This route illustrates the
complex physiological alterations, including photosynthetic acclimation, changes in membrane
structure, and accumulation of ROS and osmolytes in cold-tolerant plants, demonstrating their
capacity to withstand low temperatures, and the side flow diagram shows the response of various
genes during cold.

3. Activation and Mechanism of Cold-Responsive TFs and QTLs

There are 1611 transcription factors (TFs) genes in the rice genome, and these TFs
are organized into 37 families, such as the WRKY, MADS, RING finger, bZIP, MYB, NAC,
bHLH, GRF, C2H2, GRAS, and TCP families [35]. The research findings from 2005 to 2024
have significantly promoted the elucidation of molecular mechanisms underlying cold
tolerance in rice. These studies have eased the identification of several families of TFs
that are responsible for cold responses and/or tolerance in rice at different developmental
stages [36]. These TFs participate in various processes, from cold signal perception to the
regulation of the expression of genes involved in cold stress.

Several signaling pathways, including Ca2+ signaling controlled by TFs, play an
important role in regulating cold stress tolerance in rice. At the seedling stage, the protein
COLD1 acts as a chilling sensor by interacting with G-protein α-subunit 1 (RGA1) to
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enable Ca2+ influx in response to cold stress, which in turn regulates the expression of the
AP2/ERF transcription factor CBF/DREB1s [33]. It is revealed that OsMADS57, together
with OsTB1, coordinates transcription of their targets, OsWRKY94 and D14, to switch its
organogenesis to defense for cold adaptation in rice [37]. When exposed to cold stress, the
bZIP TFs OsbZIP73 and OsbZIP71 combine to form a heterodimer, and their co-expression
boosts the grain filling and seed setting rates. Moreover, the OsbZIP71/73 heterodimer
not only minimizes the ABA content in anthers but also increases the transfer of sugar
from anthers to pollens and enhances seed setting rate, pollen fertility, and rice grain
production [38]. Furthermore, it is suggested that the early selection of OsbZIP73 facilitated
the adaptation of japonica rice to cold climates [39]. In addition, the bZIP transcription factor
OsbZIP52 is strongly induced by low temperature, while overexpression of OsbZIP52 may
significantly increase sensitivity to cold stress, indicating that OsbZIP52/RISBZ5 functions
as a negative regulator of the cold stress response in rice [40]. More recently, it has been
revealed that histone deacetylase OsHDA716 represses cold tolerance by deacetylating
bZIP transcription factor OsbZIP46 to reduce its transactivation function and protein
stability [41]. OsbZIP46 regulates low-temperature-induced Ca2+ influx and cytoplasmic
Ca2+ elevation through transcriptional activation of OsDREB1A and COLD1, conferring
rice plants with cold tolerance. OsHDA716 deacetylating OsbZIP46 leads to the inhibition
of cold tolerance in rice by preventing OsbZIP46 from binding to the target promoter,
reducing protein stability and transcriptional regulation of OsDREB1A and COLD1 [41].
These investigations indicated that some TFs are at the core of the cold stress response and
play critical roles in regulating rice cold tolerance.

Several NAC transcription factors have been found to play an important role in
regulating cold tolerance in rice. For example, under low-temperature stress, the OsNAC45
overexpression lines exhibited maintenance of root structure and normal growth of the
seedling root, but the RNAi lines of OsNAC45 were more sensitive to the stress [42].
Under cold-stress conditions, the NAC transcription factor OsNAC050 was significantly
up-regulated, and knocking out OsNAC050 can increase cold-stress tolerance in rice by
regulating photosynthesis and the sucrose metabolic pathway [20]. However, it is revealed
that the rice NAC transcription factor ONAC095 plays opposite roles in drought and cold
stress tolerance [43]. A recent investigation has shown that the bHLH transcription factor
OsbHLH57 can enhance chilling tolerance in rice at diverse developmental stages [44].
Overexpression of bHLH57 enhanced cold tolerance by increasing trehalose synthesis,
whereas the loss-of-function mutants of bHLH57 are more sensitive to cold stress and have
reduced trehalose in rice. Furthermore, it is revealed that bHLH57 may regulate ROS
metabolism and CBF/DREB-dependent pathways in response to cold stress [44].

Interestingly, it is shown that overexpression of the tomato AP2/ERF transcriptional
factor TERF2 enhances cold tolerance in transgenic rice without altering its growth or
agronomic traits [45]. Physiological assays revealed that TERF2 promotes the accumulation
of chlorophyll and osmotic substances while reducing the levels of MDA, ROS, and elec-
trolyte leakage in rice plants under chilling stress. On molecular levels, TERF2 activates
the expression of cold-responsive genes, including OsICE1, OsSODB, OsFER1, OsMyb,
OsCDPK7, OsTrx23, and OsLti6, in rice transgenic plants under natural conditions or cold
stress, indicating a potential utility of TERF2 in improving rice cold tolerance [45]. Recently,
a comprehensive investigation of the AP2/ERF transcription factor OsERF096 reveals the
multiple regulatory roles of OsERF096 in cold stress responses, probably by regulating
sucrose metabolism and auxin IAA accumulation and signaling pathways [46]. These
studies indicate that TFs may activate the cold-stress response and/or tolerance in rice by
regulating different target genes.

So far, most of the cold-resistant genes of great importance in rice breeding or pro-
duction have been identified as QTL (quantitative trait loci). To identify QTLs for low-
temperature resistance in rice, a group of recombinant inbred lines (RIL’s) was created by
using rice indica cultivar 93–11 and japonica cultivar Nipponbare and then used for QTL
mapping; subsequently, a total of five quantitative trait loci (QTL’s) were discovered that
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are responsible for the cold tolerance in rice at the seedling stage [33]. These great efforts
led to the discovery of the most important QTL for cold tolerance, the COLD1, a cold sensor
in rice [33,47]. It was indicated that one SNP in COLD1 determines cold tolerance during
rice domestication [48]. An integrated global analysis further revealed a vitamin E-vitamin
K1 sub-network downstream of COLD1, conferring cold tolerance divergence in rice [49].

Previously, a total of seven cold-tolerant QTLs were identified in rice by using F2 and
F3 populations through a controlled breeding process involving the cold-tolerant cultivar
IL112 and the cold-sensitive cultivar Guichao2. Subsequently, microarray-assisted fine-
mapping of the cold-tolerant QTLs leads to the identification of LTT7, as overexpression
of this gene also increases cold tolerance in rice seedlings [50]. It was probable that
LTT7 enhanced cold tolerance in rice by mediating the DREB/CBF pathway [50]. Cold
tolerance at booting stage-1 (Ctb1), a QTL associated with chilling tolerance during the booting
stage, was first discovered and mapped inside a genomic segment of 56 kilobases [51].
Subsequent investigations have further fine-mapped the QTL’s location to a smaller region
of 17 kilobases [52]. Another QTL for cold tolerance, CTB4a (cold tolerance at the booting
stage), encodes a conserved leucine-rich repeat receptor-like kinase [53]. It was shown that
different CTB4a alleles confer distinct levels of cold tolerance, and selection for variation in
the CTB4a promoter region has occurred on the basis of environmental temperature [53].
Furthermore, CTB4a can interact with AtpB (ATP synthase beta subunit) under cold-stress
conditions, and upregulation of CTB4a correlates with ATP content by enhancing the
activity of AtpB [53].

4. Signal Transduction and Membrane Stability

It has long been accepted that the transient elevation of cytoplasmic calcium acts as
a critical signal for plant cold tolerance. Previous research has demonstrated that Ca2+

signaling controls the activation and transmission of cold signals [54]. Ca2+ could serve
as the second messenger molecule produced just after the cell detects a drop in tempera-
ture from the environment. The increase in cytoplasmic Ca2+ concentrations leads to the
activation of cold-responsive genes such as OsCDPK-24, CBL interacting protein kinase
7, and multi-stress responsive gene 2, which are located farther downstream [55–57]. At
the seedling stage, the cold sensor COLD1 interacts with RGA1 to enable Ca2+ influx in
response to cold stress, which in turn regulates the expression of the AP2/ERF transcription
factor CBF/DREB1s [33]. Moreover, as described previously, OsbZIP46 regulates cold-stress-
induced Ca2+ influx and cytoplasmic Ca2+ elevation through transcriptional activation of
OsDREB1A and COLD1, conferring rice plants with cold tolerance. OsHDA716 deacety-
lates OsbZIP46, which prevents OsbZIP46 from binding to the target promoter, including
reducing the expression of OsDREB1A and COLD1 [41].

According to a recent study, the rice OsCNGC9 encoding cyclic nucleotide-gated ion
channel positively regulates cold tolerance by mediating cold-induced calcium influx and
cytoplasmic calcium elevation [58]. The overexpression of OsCNGC9 increases cold tolerance,
whereas the OsCNGC9 dysfunctional mutant is more sensitive to continuous low-temperature
environments and lacks calcium influx [58]. Furthermore, it demonstrates that, in response
to cold stress, OsSAPK8, a homolog of Arabidopsis thaliana OST1, phosphorylates and
activates OsCNGC9 to trigger Ca2+ influx; the transcription of OsCNGC9 is activated by
the transcription factor OsDREB1A [58]. In addition, it is indicated that OsCNGC14 and
OsCNGC16 are also required for cold tolerance and are modulators of calcium signals in
response to temperature stress because the deletion of OsCNGC14 and OsCNGC16 diminished
and eliminated Ca2+ signals triggered by cold stress [59]. A recent study identifies a novel
cold-sensing mechanism that simultaneously conveys cold-induced protein conformational
change and enhances kinase activity and Ca2+ signal generation to facilitate chilling tolerance
in rice [57]. Previously, it was indicated that a point mutation in CBL-interacting protein
kinase 7 (OsCIPK7) led to a conformational change in the activation loop of the kinase domain,
subsequently leading to an increase in protein kinase activity, thus conferring an increased
tolerance to cold stress [56]. In a recent investigation, it was reported that Calreticulin 3
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(OsCRT3) localized at the endoplasmic reticulum (ER) exhibits conformational changes under
cold stress, thereby enhancing its interaction with OsCIPK7 to sense cold [57]. OsCRT3
localizes at the ER and mediates increases in cytosolic calcium levels under cold stress;
however, cold stress triggers secondary structural changes in OsCRT3 and enhances its
binding affinity with OsCIPK7, which finally boosts its kinase activity [57].

The fluidity of the phospholipid membrane in the cell can alter in response to low tem-
peratures, which in turn is crucial for the plant’s response to cold stress [60]. The perception of
cold stress signals in plant cells is a complex process that involves the complicated interplay
of several factors within the plasma membrane [61,62]. Cold stress triggers a tightly regulated
mechanism that increases the level of unsaturated fatty acids in cells [61]. This adjustment
ensures the appropriate fluidity of the cell membrane, facilitating growth in low-temperature
conditions [60,61]. For example, the gene OVP1, which encodes inorganic pyrophosphatase
that translocates H+ into the vacuole (VPPase), confers chilling tolerance by lowering the
concentration of MDA and increasing the amount of proline, which concurrently improves
the integrity of the cell membrane [35,63]. As evidenced by a decrease in the number of fatty
acids and a reduction in the fluidity of the membrane in OsFAD8 knockout mutants, the gene
OsFAD8 is essential for the adaptation of rice to cold stress [64].

Alterations in membrane stiffness, the osmotic pressure, and the physical state of
proteins present on the membrane are the three factors that allow plant cells to sense the
effect of cold stress [65]. Low temperatures cause a change in membrane rigidity, resulting
in increased electrolyte leakage, as an indicator of the activation of cold-tolerant genes such
as OsNAC5, TERF2, and OVP1 [45,66]. When membrane stiffness and ion conductance
increase, a signal cascade of cold-activated MAPK will be triggered within the cells [15].
In addition, calcium channels can be activated due to low-temperature stress-induced
membrane rigidification, which promotes the entry of Ca2+ into the cytoplasm as a starting
event in chilling stress [67]. These cold-sensing signals are capable of being amplified and
interpreted by a cascade of calcium signals, ultimately activating the DREB CRT/DRE
pathway, which is essential for perceiving and responding to cold stress in rice [61].

Although significant progress has been made in the elucidation of the mechanism of
cold-stress signal transduction in rice, there are still many unclear aspects about the gene
regulatory networks, and it will be challenging to determine the mechanisms involved in
the chilling stress tolerance of rice. Figure 2 represents the detailed molecular mechanisms
of signal transduction and membrane stability in rice responses to cold stress.
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OsPIN9 Seedling stage Regulation of auxin, ROS homeostasis and cold tolerance ↑ [69,70] 
NOG1 Seedling stage Grain number and yield during cold ↑ [71] 

OsDREB1B Seedling stage Regulate chilling tolerance ↑ [72] 
OsCML16, OsPILS7a Seedling Stage Regulate primary root elongation and cold tolerance↑ [73] 

OsMTACP2 Seedling stage Mediated wax ester biosynthesis and cold tolerance ↑ [74] 
OsERF096 Different stages Regulation of cold stress ↑ [47] 

OsSPL7 Maturity stage Rice growth and stress responses ↑ [75] 

Figure 2. Flow chart diagram of signal transduction and membrane stability. Presents the coordinated
molecular response of rice plants during cold stress. (A) Cascade is started by an immediate signal
perception. (B) Signal transduction pathways quickly come into action, opening the door for (C) the
participation of several transcriptional regulatory elements, and (D) the plant’s defense mechanism
against cold stress is the result of the subsequent gene expression.
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5. Genes Identified in Rice during Cold Stress at Various Developmental Stages

In the past few decades, the significant progress made in molecular biology has sig-
nificantly enhanced our understanding of how plants respond to cold stress at various
levels [61,67]. As a model plant and an important food crop, numerous genes associated
with cold responses have been identified by various molecular technologies (Table S1).
These genes are involved in various aspects of rice growth, development, and environmen-
tal adaptation to cold stress. Researchers have gained important insights into the molecular
pathways that enable rice plants to adapt and survive in cold climates by examining their
mechanisms. As indicated in Table 1, some of these genes have been successfully cloned
and have provided novel possibilities for both theoretical and practical investigation.

Table 1. Some rice genes are identified at different developmental stages for cold tolerance (Errows:
↑ Increase).

Gene Developmental Stages Functions of Genes Reference

bHLH57 Flowering, Booting,
Germination

Cold tolerance and grain yield
improvement ↑ [44]

OsPIN9 Seedling stage Regulation of auxin, ROS homeostasis
and cold tolerance ↑ [68,69]

NOG1 Seedling stage Grain number and yield during cold ↑ [70]
OsDREB1B Seedling stage Regulate chilling tolerance ↑ [71]

OsCML16, OsPILS7a Seedling Stage Regulate primary root elongation and
cold tolerance ↑ [72]

OsMTACP2 Seedling stage Mediated wax ester biosynthesis and
cold tolerance ↑ [73]

OsERF096 Different stages Regulation of cold stress ↑ [46]
OsSPL7 Maturity stage Rice growth and stress responses ↑ [74]

OsCUGT1 Germination, reproductive Rice height and spikelet fertility ↑ [75]
OsCRT3 Seedling stage Regulator of chilling tolerance ↑ [57]
COLD11 Germination stage Chilling tolerance ↑ [76]
OsLPXC Reproductive stage Regulate cold tolerance ↑ [77]
OsLUX Seedling stage Cold stress and circadian rhythm ↑ [78]
OsSPXs Different stages Rice adaptation to cold stress ↑ [79]
OsNAC5 Germination and seedling Cold tolerance ↑ [80]

qCTB7 Booting stage Regulates the appearance and
morphology of the anthers and pollen ↑ [81]

COG1 Germination stage Cold tolerance ↑ [82]
OsOAT Germination stages Male fertility, cold tolerance ↑ [32]
OsHPL1 Seedling, germination Modulates rice metabolism ↑ [83]
OsSEH1 Seedling stage Cold tolerance ↑ [84]
OsHis1 Germination and seedling Tolerance to temperature stress ↑ [85]

OsMAPK3 OsLEA9 Reproductive stage Cold tolerance ↑ [86]
OsSAPK6 Seedling stage Activate cold resistance [87]

OsLsi1 Seedling stage Enhances microbe-plant interactions and
cold tolerance ↑ [88]

OsWRKY115 Seedling stage Cold tolerance ↑ [89]
OsGATA16 Seedling stage Cold tolerance ↑ [90]

OsCTB2 Booting stage Cold adaptation ↑ [91]
OsCNGC9 Seedling stage Enhanced cold tolerance ↑ [58]

OsPIN5b, GS3, and OsMYB30 Reproductive stage Increased panicle length, enlarged grain
size, enhanced cold tolerance ↑ [92]

OsETR4 Seedling stage Seedling survival rate ↑ [93]

OsLsi1 Germination stages Enhanced the antioxidant system and
non-structural carbohydrates ↑ [94]

OsTMF Different stages Regulate chilling tolerance by affecting
cell wall properties [95]



Biology 2024, 13, 442 9 of 16

Table 1. Cont.

Gene Developmental Stages Functions of Genes Reference

OsLTT1 Booting stage Cold tolerance Maintaining tapetum
degradation and pollen development ↑ [96]

OsLTG5 Seedling stage Cold tolerance ↑ [97]

OsUGT90A1 Seedling stage Protect the plasma membrane and
promote leaf growth ↑ [98]

OsHAN1 Different stages Chilling tolerance ↑ [99]
Ghd8 Different stages Flowering time, heading date ↑ [100]

OsDREB1G Seedling and germination Cold stress response ↑ [101]

OsRAN2 Different stages Regulate export of intranuclear tubulin
and cell division ↑ [102]

OsWRKY71 Seedling stage Functions as a transcriptional repressor ↑ [103]
COLD1 Seedling stage Chilling tolerance ↑ [33]

Osa-miR319b Different stages wider leaf blades and delayed
development ↑ [104]

It is not only exciting from a scientific point of view to understand the molecular
mechanisms underlying plants' response to cold stress, but it also has enormous potential
to improve agriculture. Scientists can contribute to the development of improved crop
cultivars that are more tolerant to low temperatures by locating and analyzing these
genes. Thus, even in regions susceptible to cold weather, this can ensure a consistent
global agricultural yield. Studying these genes has the potential to significantly improve
plant breeding efforts, providing a notable advantage. Through the use of these genes
in breeding processes, scientists can develop new crop varieties that are more resilient to
adverse climate conditions.

6. Application of Omics Technologies in the Identification of Cold-Stress Response
Genes or Pathways

The integration of several omics’ datasets, such as ionomics, metabolomics, transcrip-
tomics, and proteomics, is an effective tool for comprehensively exploring the essential
metabolites, genes, proteins, and networks associated with cold-stress responses and tol-
erance [83,84]. Among these omics technologies, transcriptomic methodologies are most
widely used to investigate cold-stress responses and tolerance in rice plants [8,21,105].
A transcriptomic dynamic study revealed that two rice indica cultivars, namely SQSL
and xzx45, exhibit different levels of tolerance to low temperatures due to differential
expression of cold-responsive genes [8]. Another group has performed a comparative
transcriptomic study in rice, which discovered the differentially expressed genes (DEGs)
linked to the metabolism of lipids, carbohydrates, and proteins during cold stress [21].
Transcriptomics profiling was also performed on cultivated rice and weedy rice in response
to cold stress [105]. Many common and special DEGs were identified in cold-tolerant
and cold-sensitive genotypes of cultivated rice and weedy rice, respectively [105]. Several
cold stress-responsive genes, including the leucine-rich repeat domain (LRR) gene and
the basic helix loop helix (BHLH) gene, were found in cold-tolerant varieties as compared
to cold-sensitive verities. The gene ontology (GO) enrichment analysis further enhanced
our understanding of biological processes, molecular functions, and cellular components
associated with cold-responsive pathways [105].

In addition, to identify key proteins and elucidate their underlying mechanisms that
control cold tolerance in rice, some investigations also performed comparative proteomic
studies on rice varieties with different cold tolerances. It was reported that the combination
of 2D electrophoresis and mass spectrometry (MS) techniques was used to investigate the
difference in cold tolerance between two distinct rice cultivars [106]. Through their analysis,
a total of 59 proteins were associated with the observed differences in cold tolerance [106].

Recent studies have effectively used quantitative proteomic methodologies such as
isobaric tags for comparative and absolute quantification (iTRAQ) and tandem mass tags
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(TMT) to analyze the changes in the proteome in response to cold stress in rice [107]. These
proteomic technologies exhibit notable efficacy and consistency as well as high throughput,
making them valuable tools for studying cold-stress responses in rice. Currently, due to
cost reduction and technological accessibility, integrated multi-omics analyses have been a
mainstream tool to investigate the molecular mechanisms underlying cold-stress tolerance
in rice [84].

7. Rice Breeding for Cold Tolerance

The main objective of breeding efforts over the ages has been to increase grain output,
which has remained the ultimate goal since the beginning of modern rice breeding in the
early 19th century [108]. Based on the discovery of numerous cold-tolerance-associated
genes, or QTLs, such as COLD1, genomic breeding has become more important for the
development of cold-tolerant cultivars in rice [48]. For example, it has been found that
the native CTB4a alleles provide varying levels of resistance to low temperatures at the
booting stage, while the natural variation taking place in the promoter area of CTB4a during
domestication conferred cold tolerance. So, artificial selection is an effective strategy for
maintaining a haplotype with improved resistance to cold stress [53].

The application of genomic breeding to enhance cold tolerance or other critical agro-
nomic properties has grown significantly. For example, the excellent rice japonica cultivar
Kongyu 131 is commonly grown in northern China and has the advantages of early matu-
rity, cold tolerance, superior quality, broad adaptability, high yield, etc. However, it is still
important to increase the yield of Kongyu131 by introducing a high-yielding allele, such as
the introduction of the Gn1a (GRAIN NUMBER1a) gene [109]. In this respect, the genome
of Kongyu 131 has been modified by the transfer of a tiny chromosomal segment (~800 kb)
from the rice indica variety to enhance its ecological adaptability and allow its cultivation in
regions of low latitude [110]. An effective breeding program focused on the development of
rice varieties with cold tolerance has involved the assessment of multiple rice accessions for
their ability to tolerate cold at various developmental stages [111]. By employing genotypic
assays targeting specific markers such as COLD1 and NAC6, researchers were able to
identify accessions with strong cold tolerance and find new markers that accurately predict
cold tolerance. The development of new varieties has made a substantial contribution to
improving rice cold-stress tolerance, resulting in increased yields in cold climates [112].

In rice breeding, marker-assisted selection (MAS) is a tool primarily used for three
main purposes: (1) gathering desirable alleles by following their inheritance patterns
through generations as dominant or recessive genes; (2) locating desirable individuals
in a separated breeding population; and (3) integrating important alleles. In this respect,
marker-assisted backcrossing (MABC) has been the most efficient and popular way to
integrate desirable alleles [113,114]. MABC, involving transferring a specific region from
one parent to another, can lead to significant enhancement of characters when a gene exerts
important impacts on a significant number of observable traits or when the appearance of
a desired trait is controlled by a single gene. Rice breeders prefer this method due to its
cost-effectiveness as compared to other methods [115]. Therefore, the development of cold
resistance in rice is mainly possible through (a) marker-assisted backcross, (b) pedigree
selection based on marker, and (c) using conventional breeding practices.

8. Novel Rice Management Strategies to Induce Cold Tolerance

Improving the ability of rice to withstand low temperatures is crucial for maintaining
high levels of rice production in the face of climate change and ensuring an adequate food
supply for a growing population. Novel techniques such as genetic methodologies, micro-
biological manipulations, and seed treatment with external stimulants provide exciting
opportunities to enhance the ability of rice to withstand cold stress. Genetic techniques and
microbial manipulations have been proven to be effective strategies for improving cold
tolerance in rice. Key genes, such as LTT1 [96] and OsbZIP54 [116], could serve as possible
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targets for molecular breeding. By utilizing genetic transformation, scientists can accelerate
the production of rice cultivars resistant to cold stress.

Utilizing microbial interventions is a viable method to improve the ability of rice to
withstand cold temperatures. Specific rhizospheric bacteria, including Staphylococcus sp.
CSR1T2 and Kosakonia sp. CIR2, have demonstrated the capability to enhance the ability
of rice plants to withstand cold stress through different mechanisms. These beneficial
microorganisms can interact with the plant’s root system, regulating physiological processes
and improving stress tolerance mechanisms, ultimately strengthening the plant’s capacity
to endure cold stress [117]. Moreover, the application of external stimulants during seed
priming provides an effective way to improve the ability of rice seedlings to withstand cold
stress. Seedlings can be prepared to activate their defense mechanisms against cold stress
during germination by treating seeds with certain compounds or substances before sowing.
The more important thing is that this strategy enhances both the survival ability of seedlings
in cold conditions and the overall growth and development of the plant throughout its
lifespan [118].

9. Conclusions and Outlooks

Despite extensive research in the past two decades, the molecular mechanisms respon-
sible for perceiving and transmitting cold signals in plants still remain unknown. Rice
production is negatively affected by low temperatures, particularly in cold areas where rice
is cultivated. The development of new cold-resistant rice cultivars is crucial. Integrating
genetic engineering and traditional breeding can lead to successful breeding programs for
developing new rice varieties.

In this review, we discussed both historical and contemporary research on rice re-
sponses to cold stress. We shed light on the role of various cold-stress-associated genes,
like COLD1, OsCUGT1, OsLTT1, OsbZIP54, OsCDP, and OsMYB30, in response to cold
stress. These cold-responsive genes can be introduced into freezing-sensitive rice cultivars
through different breeding techniques to improve cold tolerance. This will facilitate the
development of novel approaches to improve rice cold tolerance and ensure global food
security in the face of the challenges resulting from climate change.

Based on the observations and findings of this review, we suggest that modifying
some key genes like COLD1, OsCUGT1, OsLPXC, OsCTB2, OsLTT1, OsPIN5B, OsGS3,
and OsMYB30 will help researchers and breeders develop cold-tolerant rice varieties.
This will eventually enhance productivity. Integrating genetic discoveries with practical
field applications remains a critical challenge in establishing successful cold-tolerant rice
varieties. As a result, additional investigations that are broader and more comprehensive
are urgently required in this emerging field of inquiry.
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