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Simple Summary: Conventional potato breeding has produced only limited genetic gain due to
the polyploid nature of the crop. In recent years, hybrid potato breeding at the diploid level has
been developed to overcome this limited genetic gain. In diploid potato breeding, homozygous
inbred lines are developed by self-fertilization, enabling incremental improvements of the material in
each generation. This type of breeding requires self-fertility, which makes hybridization of inbred
lines labor-cumbersome and results in hybrids that produce many undesirable berries in the field.
In many crop species, cytoplasmic male sterility is used to produce maternal inbred lines that are
male sterile. In this study, we explore the antherless cytoplasmic male sterility system in potato.
We identify a recessive locus that is required for sterility and we show that this trait is expressed
in Phureja cytoplasm but not in Andigena or Tuberosum cytoplasm. We implemented this system in
hybrid seed production and show that the resulting hybrids set far fewer berries in the field than
male fertile controls.

Abstract: Recent advances in diploid F1 hybrid potato breeding rely on the production of inbred lines
using the S-locus inhibitor (Sli) gene. As a result of this method, female parent lines are self-fertile and
require emasculation before hybrid seed production. The resulting F1 hybrids are self-fertile as well
and produce many undesirable berries in the field. Utilization of cytoplasmic male sterility would
eliminate the need for emasculation, resulting in more efficient hybrid seed production and male
sterile F1 hybrids. We observed plants that completely lacked anthers in an F2 population derived
from an interspecific cross between diploid S. tuberosum and S. microdontum. We studied the antherless
trait to determine its suitability for use in hybrid potato breeding. We mapped the causal locus to the
short arm of Chromosome 6, developed KASP markers for the antherless (al) locus and introduced
it into lines with T and A cytoplasm. We found that antherless type male sterility is not expressed
in T and A cytoplasm, proving that it is a form of CMS. We hybridized male sterile al/al plants with
P cytoplasm with pollen from al/al plants with T and A cytoplasm and we show that the resulting
hybrids set significantly fewer berries in the field. Here, we show that the antherless CMS system can
be readily deployed in diploid F1 hybrid potato breeding to improve hybridization efficiency and
reduce berry set in the field.

Keywords: diploid potato breeding; cytoplasmic male sterility; QTL analysis; berry and seed production

1. Introduction

In recent years, potato (Solanum tuberosum) breeding has seen a shift towards breeding
on the diploid level [1–6]. Conventional potato breeding is usually performed at the
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tetraploid level, where two heterozygous clones are crossed and selections take place
among large numbers of F1 offspring. It requires many locations and years (10–15 years)
of testing to select a single commercial cultivar and genetic gain is relatively low [6–8].
The push towards inbred line-based diploid F1 hybrid breeding is expected to speed up
the breeding process and improve genetic gain by allowing continuous improvement of
inbred lines. In addition, bulking up a new cultivar is fast as millions of hybrid seeds can be
produced per year. Elite inbred lines can be further improved by introgression of favorable
genes, such as resistance genes, by means of a backcrossing program [9].

To allow inbreeding of self-incompatible diploid potato clones, these clones can be
crossed with a line containing the dominant allele of the Sli (S-locus inhibitor) gene, which
enables self-fertilization [10–12]. The Sli gene, which encodes an F-box PP2-B10 protein,
is expressed in pollen and interacts with the maternal components of the gametophytic
self-incompatibility (GSI) system, the S-RNases, during pollination, leading to a breakdown
of the GSI system [13,14]. From a breeding point of view, this system works well and has
resulted in the production of inbred lines in multiple programs [4–6,15–18]. However, as a
consequence of the presence of Sli, maternal inbred lines are self-fertile, which necessitates
emasculation for hybrid seed production. The manual emasculation process takes time
and may lead to reduced hybrid seed set due to the mechanical stress imposed on the
flower buds. Another, more detrimental, effect is that the resulting F1 hybrid offspring are
self-fertile as well. While F1 hybrid fertility is essential in crops where seeds are the end
product, for potato, where the tubers are the end product, this is not the case. Primarily, this
is because the seeds in the berries can remain viable in the field and produce a volunteer
crop, which may act as a reservoir for diseases and disrupt crop rotation schemes [19].
Additionally, the growth of these berries and seeds may sequester photo-assimilates that
might otherwise have been directed to tuber bulking [20]. A straightforward route to
resolve these problems would be to introduce cytoplasmic male sterility (CMS) to the
maternal lines as is commonly performed in many F1 hybrid crops [21]. CMS systems
exploit incongruities between organellar genomes and nuclear genomes, which lead to a
failure to produce fertile pollen.

Sterilizing cytoplasms have been identified in many crop species, like rice, wheat,
soybean, sunflower, rapeseed and several more [21]. CMS has been successfully imple-
mented in breeding programs [22–26]. However, deployment of CMS in crops has not
always gone smoothly. For instance, CMS has been associated with deleterious effects
such as susceptibility to southern corn blight in maize and the inefficiencies of pollen
donors or insect vectors in soybean [27,28]. In crop species where the end product is seed,
implementations of CMS rely on the three-line system in which a CMS line is maintained
by an isogenic maintainer line and male fertility in the hybrid is restored by crossing the
CMS line to the restorer [29–32]. In potato, the end product is the belowground tubers, and
restorer lines are not required. In fact, a major goal of implementing CMS in hybrid potato
breeding would be to avoid fertility in the F1 hybrid to ensure minimal berry and seed
production in the field.

Among potato and its wild relatives, many cytoplasm types are present. In a study of
cultivated potato and closely related wild species, Hosaka and Sanetomo distinguished
129 chloroplast DNA (ctDNA) types and 63 mitochondrial DNA (mtDNA) types using RFLP,
CAPS, SSR and SCAR markers, resulting in 164 unique cytoplasm types [33]. Hosaka and
Sanetomo proposed to group these 164 cytoplasm types into 6 types (T, D, P, A, M and W).
Cytoplasm types T, D and W have been associated with male sterility in multiple breeding
populations, whereas P and A cytoplasm are usually associated with male fertility [34–39].
Recently, Santayana et al. observed segregation for male fertility among CIP potato breeding
populations with T and D cytoplasm and identified parental lines that potentially contain
nuclear Restorer of Fertility (Rf ) genes for D and T cytoplasm [40]. On the cytoplasmic side,
Sanetomo et al. identified a recombinant mitochondrial DNA molecule, RC-I, the presence
of which is completely associated with tetrad sterility (T-CMS) among interspecific hybrids
derived from S. stoloniferum Schltdl. & Bouché [41]. Interestingly, T-CMS must be the result



Biology 2024, 13, 447 3 of 15

of an interaction between a dominant S. tuberosum nuclear gene and the mitochondrial
RC-I molecule, since hexaploid interspecific hybrids containing the complete S. stoloniferum
genome still show T-CMS and thus should contain all dominant Rf genes present in the
S. stoloniferum genome [42]. For the present study, only three cytoplasm types are relevant:
A, P and T cytoplasm, originating from S. tuberosum ssp andigenum Hawkes, S. phureja Juz.
et Buk. and S. tuberosum, respectively.

While most genotypes with P cytoplasm are male fertile, Endelman and Jansky ob-
served segregation for anther length in an F2 derived from the cross DM × M6, whereby
DM carries the P cytoplasm. In this population, 23% of the progeny had short anthers (SA)
that did not shed any pollen. QTL analysis revealed a single recessive allele (sa) on the short
arm of Chromosome 6 to be responsible for this SA phenotype. Interestingly, the recessive
allele was inherited from the male fertile M6 genotype whose self-fertilized progeny do
not show the SA phenotype, leading the authors to suggest that the SA phenotype is
the result of an interaction between the recessive sa allele from M6 and the P cytoplasm
from DM [43]. At Solynta, we observed complete absence of anthers (which we named an-
therless) in F2 genotypes derived from an interspecific hybrid S. tuberosum × S. microdontum
subs. gigantophyllum. The antherless phenotype is similar to the short anther phenotype,
except that the level of malformation varies, ranging from complete absence of anthers to
somewhat malformed anthers. Given the importance of CMS for diploid hybrid potato
breeding, we set out to elucidate the genetics and applicability of the antherless trait. We
aimed to localize the causal locus in the nuclear genome via QTL analysis and to determine
whether it is a form of CMS by introducing the trait to lines with non-P cytoplasm types.
Here, we report on the mapping of the causal gene and the characterization of this CMS
system for fertility traits. Proof of principle was obtained by exploiting this CMS system to
produce male sterile maternal lines and hybrids.

2. Materials and Methods
2.1. Plant Materials

An overview of all plant materials used in this study is available in Table S1. All
S. tuberosum genotypes used in this study are derived from the founders of the Solynta
breeding program as described in Lindhout et al. (2016) [1]. The donor of the antherless
trait was derived from a CGN accession of S. microdontum subs. gigantophyllum, which is
available from CGN (Wageningen, The Netherlands) under accession number CGN18200.
S. microdontum subs. gigantophyllum is a potato wild relative with resistance against late
blight and wart disease [44,45]. It is diploid and has an endosperm balance number
of 2 and is therefore crossable with diploid S. tuberosum.

2.2. Crossing Conditions

To avoid any unwanted out-crossing and control plant growth as best as possible,
experiments involving crossing were conducted in a greenhouse. Greenhouse conditions
were the same as described in Eggers et al. (2021) [13].

2.3. Phenotypic Analysis of Male Fertility

Anther malformation was assessed on a scale from 0 to 3, where a score of 0 means
complete absence of anthers and a score of 3 means normal anthers (Figure 1a). Flowers
with anthers (scores 1–3) were vibrated using an electronic toothbrush while collecting the
pollen in a micro-centrifuge tube. The amount of pollen shed was scored on a scale from
0–3 (where a score of 0 means no pollen shed, and a score of 3 means abundant pollen
shed). Self-pollinations were made using the collected pollen, and the micro-centrifuge
tubes with leftover pollen were placed in sealed containers with abundant silica gel beads
to dry. To assess the viability of the pollen, one drop of acetocarmine was added to the
pollen and incubated for one minute. The samples were then vortexed and 10 µL of the
mix were pipetted into a counting chamber and observed with normal light microscopy.
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Stained and unstained pollen were counted and viability was scored using the formula:
Viable pollen (%) = Stainable pollen

Total pollen × 100.

2.4. SeqSNP Genotyping, Linkage Analysis and QTL Mapping of Population BC2(P)-1

Leaf discs from 249 individuals of population BC2(P)-1 were sampled in 96-well
plates and were genotyped via SeqSNP™ (LGC Genomics GmbH, Berlin, Germany) [46].
SNPs were extracted from the SeqSNP™ reads using the method described in Adams
et al. (2023) [47], resulting in 2116 SNPs. SNPs that were homozygous alternate between
F2-1 and Solyntus were selected. SNPs with more than 10% missing data and duplicate
SNPs originating from the same SeqSNP™ probes were removed, resulting in a genotypic
dataset of 244 SNPs (Table S2). This dataset was converted to Joinmap coding and genetic
maps for all 12 chromosomes were created using Joinmap 4.1 [48] with population type
BC1 and default settings (Table S3). QTL mapping was performed using interval mapping
in MapQTL6 [49].

2.5. KASP Marker Development and Genotyping

Between 30 and 50 mg of leaf material was collected from genotype F2-1 and submitted
for DNA extraction, library preparation and Illumina PE150 sequencing with 30× coverage
by Novogene UK Company LTD (Cambridge, UK). The reads were mapped to DM4.03 with
BWA and variants were called using BCFtools. Several thousand high-quality variants in
F2-1 and Solyntus were inspected in jBrowse to determine suitability for KASP genotyping.
For KASP genotyping, leaf discs from population BC2(P)-1 were sampled in 96-well plates
and submitted to VHLgenetics (Wageningen, The Netherlands) for DNA extraction and
KASP analysis as described in Eggers et al. (2021) [13]. The quality of the resulting
KASP marker data was assessed using SNPviewer (lgcgroup.com/products/genotyping-
software/snpviewer); markers that did not segregate or showed unexpected segregation
were discarded from further analysis. For the remaining markers, segregation ratios
were tested using χ2 tests with the null hypothesis that the antherless locus segregates in
mendelian 1:2:1 ratio. p-values were calculated from the χ2 to determine the likelihood that
the null hypothesis of mendelian 1:2:1 segregation is true.

2.6. Field Experiment

The field trial was designed with plots of four ridges of 32 plants per plot with 8 plants
per ridge and with plots replicated in two randomized blocks. The plants were spaced at
25 cm on each ridge, and the distance between ridges was 75 cm. Plots were separated
by an empty row, one row of cultivar Bergerac, and then another empty row. The design
included the 13 antherless proof-of-concept hybrids and three male fertile hybrids as
controls. The seeds were sown and raised in a greenhouse and transplanted six weeks
after sowing to a field in Heelsum, The Netherlands on the 17th of May 2023. Crop
handling was performed according to standard agricultural practices, as described by
Kacheyo et al. (2023) [50]. At 108 days after transplanting, we harvested all berries from
the plants on the middle two ridges of each plot, including the berries that were already
detached from the plants but were present between the two middle ridges. All berries were
bulked per plot in a mesh bag and fresh weight was determined and used for analysis.
The significance of the difference in berry weight per plant between the antherless plants
and male fertile controls was determined using a t-test. Two datapoints with more than
two times the standard deviation from the mean among the antherless plants were removed
for the t-test.

3. Results
3.1. Identification of the Antherless Phenotype and Development of a Mapping Population

In a breeding program at Solynta, we identified plants lacking anthers in an F2
population derived from a cross between S. tuberosum × S. microdontum subs. gigantophyllum
(F2-1). We designated this phenotype “antherless”. In this small population of 50 plants,



Biology 2024, 13, 447 5 of 15

we identified three individuals that completely lacked anthers (Figure 1a, score = 0),
suggesting that the phenotype is caused by two recessive loci or one locus with severely
skewed inheritance. We set out to characterize the loci that are responsible for the antherless
phenotype, to elucidate the genetics and to determine the contribution of cytoplasm types.
To generate a dedicated mapping population, we pollinated one antherless plant, F2-1,
with pollen from the S. tuberosum genotype Solyntus [51]. In the resulting BC1 population
BC1(P), all plants had normal anthers, confirming the recessive nature of the antherless
gene(s). To study this locus in more detail, we backcrossed BC1(P)-1 to F2-1 to generate
population BC2(P)-1.

3.2. Segregation of the Antherless Phenotype in Population BC2(P)-1

In the BC2(P)-1 population, we distinguished four anther phenotypes, complete
absence of anthers (score 0), severely reduced anthers (score 1), moderately reduced anthers
(score 2) and normal anthers (score 3) (Figure 1a). Plants that lacked anthers or showed
reduced anthers (scores 0–2) never released any pollen upon vibration with an electric
toothbrush. We grew 252 individuals from this BC2 population in the greenhouse and
obtained 225 flowering plants (Table S4). We identified 84 genotypes which lacked or
had reduced anthers, whereas the remaining 141 plants all had normal anthers. Among
the 84 plants with malformed anthers, 32 showed complete absence of anthers, 35 had
severely reduced anthers, and 17 plants had moderately reduced anthers. We genotyped
the population using SeqSNP, resulting in 656 segregating markers. After removing non-
informative markers, we generated a map with 153 SNPs covering 12 chromosomes which
we used for QTL mapping of the anther phenotype. We found one highly significant QTL
on the top of Chromosome 6 (LOD = 80.92 Figure 1c). Interestingly, other flower-related
traits, such as number of floral buds, bud abortion and corolla shape, mapped to this
locus as well (Table S5). Further inspection of individual recombinants showed that the
causal locus is located in a 25.12 Mb interval between 5.59 and 30.71 Mb on the reference
genome DM6.1 [52]. All plants that are heterozygous in this interval have normal anthers
(score = 3), whereas those individuals that are homozygous for the S. microdontum haplotype
all have reduced or absent anthers (score = 0, 1 or 2), indicating that in this population,
antherless is effectively a monogenic recessive trait (Figure 1c). This locus is designated
Al. We observed significant segregation distortion at the top of Chromosome 6, where the
Al locus is located (χ2 = 14.33, p < 0.001) (Figure 1d).

To reduce the size of the interval, we screened 2011 new seedlings from a closely
related BC2 (BC2(P)-2). We screened this population for recombination in the interval
using four KASP markers, two of which were located at the proximal side and the other
two located at the distal side of the 25.12 Mb interval. We identified only 16 putative
recombinants in this region. As the number of these putative recombinants compared to
the size of the population (n = 2011) was low, these results could also be explained by some
rare errors in the marker analyses. Therefore, we genotyped these 16 putative recombinants
with 25 additional KASP markers. Indeed, the genotypic data of these additional markers
showed that 2 of the 16 putative recombinants had a recombination just outside the interval
at the centromeric side, whereas the other 14 likely resulted from genotyping errors in the
initial genotyping with the flanking markers (Table S6).
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Figure 1. Population BC2(P)-1 segregates for anther length. (a) Anther phenotypes in BC1 population
BC2(P)-1 scored from 0 (complete absence of anthers) to 3 (normal anthers). (b) Genetic map of
Chromosome 6. (c) QTL analysis for anther score reveals a significant QTL on the top of Chromo-
some 6. (d) Segregation distortion on the top of Chromosome 6 reduces the number of antherless
plants. In red, the fraction of plants heterozygous per locus is shown and in green the fraction of
plants homozygous for the antherless donor allele is shown.

3.3. Expression of the Antherless Phenotype in A and T Cytoplasm Types

The results so far show that homozygosity for the recessive al allele leads to the
antherless phenotype in material with P cytoplasm. However, to apply the antherless
system in breeding for male sterile hybrids, it is important to know whether it is a form
of CMS, and we set out to introduce the al allele in lines with different cytoplasm types.
We selected one clone from the proprietary Solynta genebank, D02, that has the A-type
cytoplasm, and D03, D12 and two dihaploids from cultivar VR808 that have the T-type
cytoplasm. These cytoplasm types were identified using pedigree analyses and were
confirmed by using the multiplex PCR markers as described by Hosaka and Sanetomo [53]
(Figure S1). We crossed these five cytoplasm type genitors as females with BC1-1 (Alal) and
used six al-specific KASP markers to identify BC2 plants that received the recessive al allele
from BC1-1. We selected eight self-fertile Alal heterozygous BC2 plants and self-fertilized
these to proceed to the BC2F2 generation. The BC2F2 populations were genotyped with
four KASP markers in the interval to determine the genotype at the Al locus. Interestingly,
we observed distorted segregation in both directions; two populations, BC2F2(A)-1 and
BC2F2(A)-2, showed significant distortion towards the Al allele, five populations showed
no significant distortion, and one population showed significant distortion in favor of the
al allele (Table 1). From all eight populations, we selected all plants that were homozygous
for the antherless haplotype (alal) and transplanted these to pots. For the populations for
which we had fewer than 25 alal plants, we added Alal and AlAl plants to fill up to at least
25 genotypes per population, allowing us to compare the effects of the genotype of the Al
locus on the anther phenotype (Table S7).
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Table 1. Segregation distortion in F2 populations with T and A cytoplasm.

Population Antherless Genotype χ2 p-Value

AlAl Alal alal

BC2F2(A)-1 33 38 6 18.95 0.00008
BC2F2(A)-2 23 34 7 8.25 0.01616
BC2F2(T)-6 16 21 8 3.04 0.21823
BC2F2(T)-1 12 23 10 0.2 0.90484
BC2F2(T)-2 10 19 9 0.05 0.97404
BC2F2(T)-3 11 22 11 0 1
BC2F2(T)-4 8 31 20 5.03 0.08071
BC2F2(T)-5 1 45 39 34.27 0.00001

Generally, we observed poor fertility in the F2 populations, with 80 of the 200 BC2F2
plants not producing any open flowers. Among the flowering F2 plants, anther morphology
segregated, ranging from severely reduced anthers to normal anthers, which we scored
using the same 0–3 scale. Pollen release segregated as well, with many plants not releas-
ing any pollen at all. Interestingly, the level of anther malformation and pollen release
was independent of the genotype of the Al locus, suggesting that factors other than the
antherless locus cause reduced fertility in these populations. Most importantly, from the
120 flowering F2 plants, 8 produced seed after self-pollination, of which three plants were
homozygous alal while the other four were heterozygous Alal (Figure 2, Table 2). Two of
the alal homozygous self-fertile F2 plants have the A-type cytoplasm, and the third has the
T-type cytoplasm. These results are in line with the hypothesis that the homozygous alal
genotype results in male sterility in the P cytoplasm type but not in T and A cytoplasm.
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Figure 2. Flowers of alal homozygous genotypes with A and T cytoplasm have anthers that produce
pollen and set self-seed.

To provide further evidence for the male fertility of alal plants with A and T cytoplasm,
we planted five tubers each from four alal F2 plants with A cytoplasm and two alal F2
plants with the T cytoplasm. In addition, we sowed F3 seed from seven self-fertile F2
plants (two with A cytoplasm and fixed for the al allele and five with T cytoplasm of
which four are fixed for the al allele, and two of which segregate for Al and al (Table 2)).
We genotyped the tuber-grown BC2F2 plants, as well the TPS-grown F3 seedlings with
the same KASP markers that we used in the TPS-raised BC2F2 populations. All tuber-
grown F2 plants and F3 populations derived from alal F2 plants were confirmed to be alal,
whereas the F3 populations derived from Alal heterozygous F2 plants segregated for the
Al locus. Interestingly, the BC2F2 plants raised from tubers from genotypes BC2F2(A)-
1-29, BC2F2(A)-2-44 and BC2F2(T)-3-16 showed improved self-fertility compared to the
same genotypes raised from TPS, suggesting improved vigor of the tuber-raised plants
compared to seedling-raised plants (Table 3). The F3 populations suffered from inbreeding
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depression showing overall poor fertility. Nevertheless, seven alal homozygous F3 plants
with A cytoplasm and six alal homozygous F3 plants with T cytoplasm produced berries
and seed upon self-pollination, ranging from 15 to 297 seeds per plant (Table 4).

Table 2. Fertility characteristics of eight self-fertile F2 genotypes and their genotype at the Al locus.

Genotype Cytoplasm
Type

# Observed
Flowers

Anther
Phenotype

(0–3)

Pollen
Shed (0–3) # Self-Berries # Spontaneous

Berries # Seeds Antherless
Genotype F3 Population

BC2F2(A)-1-29 A 20 3 3 5 2 23 alal BC2F3(A)-1
BC2F2(A)-2-44 A 11 2 2 3 0 305 alal BC2F3(A)-2
BC2F2(T)-2-07 T 23 3 1 2 1 106 Alal BC2F3(T)-1
BC2F2(T)-2-20 T 25 3 3 5 2 220 Alal BC2F3(T)-2
BC2F2(T)-3-06 T 6 3 1 3 0 97 Alal BC2F3(T)-3
BC2F2(T)-4-16 T 30 3 3 10 16 140 alal BC2F3(T)-4
BC2F2(T)-4-17 T 14 2 3 2 0 6 Alal
BC2F2(T)-6-02 T 27 2 1 2 1 9 Alal BC2F3(T)-5

Table 3. Flowering, berry and seed set of tuber-grown BC2F2 genotypes.

Genotype Cytoplasm
Type

Antherless
Genotype # Flowers Anther

Phenotype
Pollen

Shed (0–3) # Selfings # Berries # Seeds Pollen Viability

BC2F2(A)-1-29-C1 A alal 11 3 1-2 6 4 1296 0.9
BC2F2(A)-1-29-C2 A alal 7 3 1 4 2 135 0.9
BC2F2(A)-1-29-C3 A alal 17 3 1 4 1 22 0.9
BC2F2(A)-1-29-C4 A alal 9 3 1-2 3 3 4 0.9
BC2F2(A)-1-29-C5 A alal 11 3 1-2 1 1 49 0.9
BC2F2(A)-2-09-C1 A alal 17 2-3 1 6 26 12 0.8
BC2F2(A)-2-09-C2 A alal 0 N.D N.D 0 N.D N.D N.D
BC2F2(A)-2-09-C3 A alal 3 3 1 1 13 1 0.8
BC2F2(A)-2-09-C4 A alal 7 2-3 1-2 2 25 0 0.8
BC2F2(A)-2-09-C5 A alal 11 2-3 1 1 12 3 0.8
BC2F2(A)-2-39-C1 A alal 4 2 0 0 N.D N.D N.D.
BC2F2(A)-2-39-C2 A alal 3 2 0 0 N.D N.D N.D.
BC2F2(A)-2-39-C3 A alal 0 N.D N.D 0 N.D N.D N.D.
BC2F2(A)-2-39-C4 A alal 1 2 0 0 N.D N.D N.D.
BC2F2(A)-2-39-C5 A alal 0 N.D N.D 0 N.D N.D N.D.
BC2F2(A)-2-44-C1 A alal 32 2-3 3 17 19 740 0.9
BC2F2(A)-2-44-C2 A alal 32 2-3 3 24 28 2457 0.9
BC2F2(A)-2-44-C3 A alal 11 2-3 3 10 23 2320 0.9
BC2F2(A)-2-44-C4 A alal 15 2-3 3 12 19 719 0.9
BC2F2(A)-2-44-C5 A alal 24 2-3 3 13 34 1246 0.9
BC2F2(T)-3-07-C1 T alal 17 3 1 4 2 18 N.D.
BC2F2(T)-3-07-C2 T alal 20 3 1 6 3 40 N.D.
BC2F2(T)-3-07-C3 T alal 24 3 0-1 3 2 3 N.D.
BC2F2(T)-3-07-C4 T alal 33 3 0-1 8 4 82 N.D.
BC2F2(T)-3-07-C5 T alal 38 3 0-1 8 7 75 N.D.
BC2F2(T)-4-16-C1 T alal 52 3 3 16 21 550 0.9
BC2F2(T)-4-16-C2 T alal 47 3 3 17 21 906 0.9
BC2F2(T)-4-16-C3 T alal 40 3 3 10 7 177 0.9
BC2F2(T)-4-16-C4 T alal 44 3 3 14 10 199 0.9
BC2F2(T)-4-16-C5 T alal 43 3 3 20 37 843 0.9

Table 4. Flowering, berry and seed set of TPS-grown BC2F3 genotypes.

Genotype Parent Cytoplasm
Type

Antherless
Genotype # Flowers

Anther
Phenotype

(0–3)

Pollen
Shed (0–3) # Selfings # Berries # Seeds Pollen

Viability

BC2F3(A)-1-11 BC2F2(A)-1-29 A alal 21 3 1 5 5 15 N.D.
BC2F3(A)-1-12 BC2F2(A)-1-29 A alal 12 3 3 9 3 48 N.D.
BC2F3(A)-2-04 BC2F2(A)-2-44 A alal 9 2 2 7 14 98 N.D.
BC2F3(A)-2-05 BC2F2(A)-2-44 A alal 2 2 3 2 1 125 N.D.
BC2F3(A)-2-14 BC2F2(A)-2-44 A alal 5 2 3 5 3 242 85%
BC2F3(A)-2-17 BC2F2(A)-2-44 A alal 7 2 3 7 10 278 90%
BC2F3(T)-2-06 BC2F2(T)-2-20 T AlAl 5 3 3 5 4 83 60%
BC2F3(T)-2-09 BC2F2(T)-2-20 T Alal 9 3 2-3 8 5 30 70%
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Table 4. Cont.

Genotype Parent Cytoplasm
Type

Antherless
Genotype # Flowers

Anther
Phenotype

(0–3)

Pollen
Shed (0–3) # Selfings # Berries # Seeds Pollen

Viability

BC2F3(T)-2-24 BC2F2(T)-2-20 T Alal 13 3 2-3 18 11 336 70%
BC2F3(T)-3-27 BC2F2(T)-3-06 T Alal 22 2 3 18 12 1514 90%
BC2F3(T)-3-29 BC2F2(T)-3-06 T Alal 45 3 1-2 22 21 707 90%
BC2F3(T)-4-01 BC2F2(T)-4-16 T alal 35 2-3 2-3 24 10 55 85%
BC2F3(T)-4-07 BC2F2(T)-4-16 T alal 32 3 2-3 19 1 10 60%
BC2F3(T)-4-13 BC2F2(T)-4-16 T alal 15 3 3 24 21 122 70%
BC2F3(T)-4-25 BC2F2(T)-4-16 T alal 17 3 1-2 7 10 59 60%
BC2F3(T)-4-31 BC2F2(T)-4-16 T alal 49 3 2 23 11 69 N.D.
BC2F3(T)-5-02 BC2F2(T)-4-16 T alal 22 3 3 19 13 297 90%

Taken together, the apparent male fertility of the tuber-raised alal homozygous F2 plants
and the seedling-raised alal homozygous F3 plants provide clear evidence that homozygosity
for the al allele does not result in male sterility in T and A cytoplasm, providing convincing
evidence that the antherless trait is a form of cytoplasmic male sterility.

3.4. Application and Deployment of the Antherless Gene

With the antherless CMS system, an improved inbred line-based hybrid breeding
system becomes feasible, whereby male sterile inbred lines and hybrids are generated.
After an initial cross between an elite inbred line with P cytoplasm and an al donor line,
markers can be used to select heterozygous Alal progeny after the initial cross and after
each round of self-fertilization or backcrossing. When a sufficient level of homozygosity
has been achieved, a final round of self-fertilization can be performed and homozygous
alal progeny can be selected using the same markers, resulting in a male sterile maternal
inbred line. Similarly, after an initial cross between an elite line with T or A cytoplasm
and an al donor, the markers can be used to select for heterozygosity during backcrossing
or homozygosity during inbreeding, resulting in male fertile alal inbred lines. With this
system, emasculation of the maternal lines is no longer necessary and hybridization will
result in male sterile F1 hybrids. To determine the feasibility of this system, we fertilized
five male sterile alal homozygous lines in P cytoplasm with pollen from four male fertile
alal homozygous lines with A or T cytoplasm and obtained seeds from 13 crosses (Table S8).
Next, we planted these 13 male sterile hybrids together with male fertile control hybrids
in a field trial and harvested all berries at the end of the growing season. While the male
sterile antherless hybrids did set some berries, the total be yield was significantly lower
than those of male fertile control hybrids (Figure 3).
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The boxes represent the 1st and 3rd quartiles, the horizontal lines in the box represent the medians,
and the × represent the means.

4. Discussion

Diploid hybrid potato breeding is based on the generation of homozygous inbred
parent lines by continuous self-fertilization and hybrid cultivars by crossing these parent
lines. For inbreeding, self-fertilized berry set is crucial, while this is an undesired character
for the cultivation of potato in the field. In this study, we investigated the antherless CMS
system which can be used to generate potato hybrids that set few berries in the field. We
identified a recessive allele (al) on the short arm of Chromosome 6 of S. microdontum subsp.
gigantophyllum which results in complete male sterility due to malformed or absent anthers
in the presence of the P cytoplasm (Figure 1a).

Previously, Endelman and Jansky identified the Sa locus, involved in male sterility,
which was mapped to the short arm of Chromosome 6 in an F2 population from the cross
between DM and M6. The recessive allele sa originates from the M6 parent, and the
short anther phenotype is likely a result of an interaction between the Sa locus and the P
cytoplasm from DM [43]. Given the similarity between the antherless and short anther
traits of the Al and the Sa locus, it is possible that these loci are identical. However, as both
loci originate from distant Solanum species, these loci might also be different. Therefore,
here we use the designation “Al locus” to refer to the antherless locus from S. microdontum
subsp. gigantophyllum

In this study, we have found that the antherless trait is expressed in P, but not in T and A
cytoplasm, proving that antherless is a form of CMS and that it is the result of an interaction
between the nuclear genome and the cytoplasm. It is likely that the dominant allele of the
Al locus encodes a fertility restorer that is required for fertility in genotypes carrying the
P cytoplasm. Unfortunately, our efforts to fine-map the Al locus were hindered by a lack of
recombination in the region of the Al locus. Among 2011 BC2 individuals, we did not find
any true recombinants in the 25.12 Mb interval on the short arm of Chromosome 6 (Table S3).
The suppression of recombination in this interval on Chromosome 6 is observed in many
potato genetic maps, suggesting that this region is pericentromeric and that fine-mapping
approaches will not reduce the size of the interval [16,43,54–57]. Thus, identification of the
causal gene requires an alternative strategy. One strategy would be to perform untargeted
mutagenesis on seed from a population derived from a cross between an alal and an AlAl
individual wherein the maternal parent has the P cytoplasm. All progeny from such a cross
are heterozygous Alal and should have normal male fertile anthers. However, when the
dominant Al allele of such a genotype is knocked out, it results in an alal genotype, which is
antherless and can easily be identified among the fertile plants of this backcross population.
The causal mutation can then be identified by comparing sequence data from the mutant
with the parental genomes. Such a strategy has been successful in the cloning of several
genes from genomic regions with suppressed recombination and could be used to identify
the al allele [58–60]. Alternatively, a targeted mutagenesis approach could reveal the causal
gene for the antherless phenotype. This approach would rely on knowledge about nuclear
Restorer of Fertility (Rf) genes involved in CMS in other crops and targeted knock-out
of candidate genes using CRISPR-Cas. Multiple Rf genes have been identified, and the
majority of those encode pentatricopeptide repeat (PPR) proteins [61,62]. PPR encoding
genes have been implicated in restoration of fertility in crop species such as pepper [63],
rice [64], radish [65,66], sorghum [67], soybean [68], cotton [69,70], and others. These Rf-PPR
exert their function in mitochondria, where they bind CMS inducing mitochondrial mRNAs,
leading to reduced levels of sterilizing protein via mRNA destabilization, modification
or translation inhibition [64,71–73]. In potato, Anisimova et al. identified 38 sequence
fragments with homology to petunia Rf-PPR592 and Capsicum annuum CaPPR6. These
fragments map to five genomic loci of the potato reference genome DM [74]. Interestingly
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two of the identified Rf-PPR genes are located within the interval of the Al locus and are
good candidates as causal genes underlying the antherless and short anther traits.

The Al locus is located on the short arm of Chromosome 6 in a pericentromeric region
where other floral traits like bud abortion and corolla shape mapped to as well. It is unclear
whether the same causal genes are involved in anther malformation, bud abortion and
corolla shape. It is not possible to remove any linked deleterious alleles from the interval
due to the lack of recombination. However, in this study we did not observe obvious
deleterious linkage drag associated with the antherless locus, but it is possible that linkage
drag may reveal itself in more advanced materials and more detailed agronomical studies.
We observed variation in the severity of anther malformation among the alal homozygous
plants from population BC2(P)-1, but the genetic background of this variation remains
unknown. The severity of anther malformation is relatively stable within individual
plants and their clonal offspring, but genetic analysis within the alal homozygous group
did not reveal any significant QTL (Table S5). It is possible that the combined effect of
multiple segregating small-effect loci are responsible for the observed variation in anther
malformation, although epigenetic control of such loci cannot be excluded. Further studies
with large populations which are fixed for the al allele could resolve this question.

The implementation of CMS in hybrid potato breeding will provide two major advan-
tages: (1) seed production becomes more efficient by eliminating the need to emasculate
maternal flowers and (2) ware crop production will benefit from significantly reduced berry
set on the field. In contrast to crops like maize and rice, where the seed are the commercial
end product, implementation of CMS in potato does not require fertility to be restored in
the hybrid, and hence a three-line system is redundant. Here, we show that the antherless
CMS system can be used to develop alal male sterile maternal lines with P cytoplasm and
male fertile alal lines with T or A cytoplasm and that the hybrids derived from crosses
between these parental lines hardly set any berries in the field. Male sterile maternal alal
lines can be generated by introduction of the al allele in the breeding germplasm and
subsequent marker-assisted selection for Alal heterozygosity upon inbreeding. When such
an inbred line has met the criteria for becoming a female parent, breeders can easily select
alal homozygotes based on the clear anther phenotype and proceed with test crosses or com-
mercial seed production. We observed a reduction in fertility upon inbreeding in the BC2F2
and BC2F3 populations; it is not clear to what extent this is caused by the cytoplasm type.
While it is possible that T and A cytoplasm affect fertility upon inbreeding, the BC2F2 and
BC2F3 populations were derived from crosses with non-inbred cytoplasm donors which
likely contained significant recessive genetic load. This genetic load may have resulted
in inbreeding depression and the associated reduction in fertility, which are commonly
observed during inbreeding of potato, especially in early inbred generations [75–78]. So,
we successfully inbred alal lines with T and A cytoplasm up to the BC2F4 generation, used
the alal BC2F2 as male parents in hybrid crosses with male sterile alal lines and showed that
the resulting hybrids produce far fewer berries than male fertile controls. However, the
antherless hybrids did still set some berries, likely caused by insect or wind-driven cross-
pollination. Many male fertile diploid potato genotypes were present in and around our
field experiment, providing ample fertile pollen which could have fertilized the antherless
hybrids. In future commercial application of the antherless CMS system, the produced CMS
hybrids will likely be grown in fields without male fertile diploid pollen donors where the
CMS hybrids would likely set fewer or no berries at all. We consider this an effective proof
of principle of the antherless CMS system. Further research is needed to determine how
inbreeding depression in T and A cytoplasm affects fertility and plant vigor and whether
linkage drag is an issue for the Al locus. Future research may also focus on identification of
the causal gene and several good leads are available.

5. Conclusions

In conclusion, in this study we identified the recessive al locus on chr06 that causes
male sterility in diploid potato with P cytoplasm but not in A and T cytoplasm. Efforts
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to more precisely localize the locus were not successful due to a lack of recombination in
this region of chr06. We implemented the antherless CMS system in a hybrid breeding
scheme and show that the resulting F1 hybrid set significantly fewer berries under field
conditions. Further exploration of this trait could focus on the identification of the causal
nuclear gene via a candidate gene approach and CRISPR-Cas-induced knock-out, as well
as the identification of the corresponding mitochondrial or chloroplast gene.
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in population BC2(P)-1; Table S6: Genotypic data from putative recombinants from population
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