Effects of an Anti-Fertility Product on Reproductive Structures of Common Vole Males and Residues of Compounds
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. VCD + TP Baiting and Sample Preparation
2.2. Evaluation of Sperm DNA Fragmentation
2.3. Simultaneous Evaluation of Sperm Membrane Integrity, Mitochondrial Membrane Potential and ROS Production
2.4. Flow Cytometry
2.5. Sperm Morphology and Motility
2.6. Triptolide Residues in Liver and Testicle Samples
2.7. 4-Vinylcyclohexene Dioxide Residues in Liver Samples
2.8. Statistical Analysis
3. Results
3.1. Testis Weight and Bait Consumption
3.2. Flow Cytometry
3.3. Morphology
3.4. Motility
3.5. VCD + TP Residues in Liver Tissue, TP Residues in Testis Tissue
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Knipling, E.F. Sterile-male method of population control: Successful with some insects, the method may also be effective when applied to other noxious animals. Science 1959, 130, 902–904. [Google Scholar] [CrossRef]
- Davis, D.E. Principles for population control by gametocides. Trans. N. Am. Wildl. Conf. 1961, 26, 160–167. [Google Scholar]
- Dunn, M.; Marzano, M.; Forster, J.; Gill, R.M.A. Public attitudes towards “pest” management: Perceptions on squirrel management strategies in the UK. Biol. Conserv. 2018, 222, 52–63. [Google Scholar] [CrossRef]
- Bruce Lauber, T.; Knuth, B.A.; Tantillo, J.A.; Curtis, P.D. The role of ethical judgments related to wildlife fertility control. Soc. Nat. Resour. 2007, 20, 119–133. [Google Scholar] [CrossRef]
- Massei, G.; Jacob, J.; Hinds, L.A. Developing fertility control for rodents: A framework for researchers and practitioners. Integr. Zool. 2024, 19, 87–107. [Google Scholar] [CrossRef]
- Jacoblinnert, K.; Jacob, J.; Zhang, Z.; Hinds, L.A. The status of fertility control for rodents-recent achievements and future directions. Integr. Zool. 2022, 17, 964–980. [Google Scholar] [CrossRef]
- Siers, S.R.; Sugihara, R.T.; Leinbach, I.L.; Pyzyna, B.R.; Witmer, G.W. Laboratory evaluation of the effectiveness of the fertility control bait ContraPest® on wild-captured black rats (Rattus rattus). In Proceedings of the 29th Vertebrate Pest Conference, Santa Barbara, CA, USA, 2–5 March 2020. [Google Scholar]
- Kappeler, C.; Hoyer, P.B. 4-vinylcyclohexene diepoxide: A model chemical for ovotoxicity. Syst. Biol. Reprod. Med. 2012, 58, 57–62. [Google Scholar] [CrossRef]
- Mayer, L.P.; Pearsall, N.A.; Christian, P.J.; Devine, P.J.; Payne, C.M.; McCuskey, M.K.; Marion, S.L.; Sipes, I.G.; Hoyer, P.B. Long-term effects of ovarian follicular depletion in rats by 4-vinylcyclohexene diepoxide. Reprod. Toxicol. 2002, 16, 775–781. [Google Scholar] [CrossRef]
- Adedara, I.A.; Abolaji, A.O.; Ladipo, E.O.; Fatunmibi, O.J.; Abajingin, A.O.; Farombi, E.O. 4-Vinylcyclohexene diepoxide disrupts sperm characteristics, endocrine balance and redox status in testes and epididymis of rats. Redox Rep. 2017, 22, 388–398. [Google Scholar] [CrossRef]
- Pyzyna, B.R.; Trulove, N.F.; Mansfield, C.H.; McMillan, R.A.; Ray, C.N.; Mayer, L.P. ContraPest®, a new tool for rodent control. Proc. Vertebr. Pest Conf. 2018, 28, 284–286. [Google Scholar] [CrossRef]
- Singla, N.; Kaur, G.; Babbar, B.K.; Sandhu, B.S. Potential of triptolide in reproductive management of the house rat. Rattus rattus. Integr. Zool. 2013, 8, 260–276. [Google Scholar] [CrossRef]
- Hikim, A.P.S.; Lue, Y.H.; Wang, C.; Reutrakul, V.; Sangsuwan, R.; Swerdloff, R.S. Posttesticular antifertility action of triptolide in the male rat: Evidence for severe impairment of cauda epididymal sperm ultrastructure. J. Androl. 2000, 21, 431–437. [Google Scholar] [CrossRef]
- Huynh, P.N.; Hikim, A.P.S.; Wang, C.; Stefonovic, K.; Lue, Y.H.; Leung, A.; Atienza, V.; Baravarian, S.; Reutrakul, V.; Swerdloff, R.S. Long-term effects of triptolide on spermatogenesis, epididymal sperm function, and fertility in male rats. J. Androl. 2000, 21, 689–699. [Google Scholar] [CrossRef]
- Dhar, P.; Singla, N. Effect of triptolide on reproduction of female lesser bandicoot rat, Bandicota bengalensis. Drug Chem. Toxicol. 2014, 37, 448–458. [Google Scholar] [CrossRef]
- Dyer, C.A.; Raymond-Whish, S.; Schmuki, S.; Fisher, T.; Pyzyna, B.; Bennett, A.; Mayer, L.P. Accelerated follicle depletion in vitro and in vivo in Sprague-Dawley rats using the combination of 4-vinylcyclohexene diepoxide and triptolide. J. Zoo Wildl. Med. 2013, 44, S9–S17. [Google Scholar] [CrossRef]
- Xi, C.; Peng, S.; Wu, Z.; Zhou, Q.; Zhou, J. Toxicity of triptolide and the molecular mechanisms involved. Biomed. Pharmacother. 2017, 90, 531–541. [Google Scholar] [CrossRef]
- Jacob, J.; Singleton, G.R.; Hinds, L.A. Fertility control of rodent pests. Wildl. Res. 2008, 35, 487–493. [Google Scholar] [CrossRef]
- Barten, R. Feldmäuse–Wirtschaftlichkeit. In Proceedings of the Arbeitskreis Wirbeltiere, Delitzsch, Germany, 11–12 November 2009. [Google Scholar]
- Meerburg, B.G.; Singleton, G.R.; Kijlstra, A. Rodent-borne diseases and their risks for public health. Crit. Rev. Microbiol. 2009, 35, 221–270. [Google Scholar] [CrossRef]
- Battersby, S.A.; Hirschorn, R.B.; Ammann, B.R.; Bennefoy, X.; Kampen, H.; Sweeney, K. Commensal Rodents. Public Health Significance of Urban Pests; WHO Regional Office of Europe: Copenhagen, Denmark, 2008; pp. 387–419. [Google Scholar]
- Colombe, S.; Jancloes, M.; Riviere, A.; Bertherat, E. A new approach to rodent control to better protect human health: First international meeting of experts under the auspices of WHO and the Pan American Health Organization. Wkly. Epidemiol. Rec. 2019, 17, 197–203. [Google Scholar]
- Witmer, G. The changing role of rodenticides and their alternatives in the management of commensal rodents. Hum. Wildl. Interact 2019, 13, 186–199. [Google Scholar]
- Jacob, J.; Buckle, A. Use of anticoagulant rodenticides in different applications around the world. In Anticoagulant Rodenticides and Wildlife; van den Brink, N.W., Elliott, J.E., Shore, R.F., Rattner, B.A., Eds.; Springer: Cham, Switzerland, 2018; pp. 11–43. [Google Scholar]
- Regnery, J.; Friesen, A.; Geduhn, A.; Göckener, B.; Kotthoff, M.; Parrhysius, P.; Petersohn, E.; Reifferscheid, G.; Schmolz, E.; Schulz, R.S. Rating the risks of anticoagulant rodenticides in the aquatic environment: A review. Environ. Chem. Lett. 2018, 17, 215–240. [Google Scholar] [CrossRef]
- Walther, B.; Geduhn, A.; Schenke, D.; Jacob, J. Exposure of passerine birds to brodifacoum during management of Norway rats on farms. Sci. Total. Environ. 2020, 762, 144160. [Google Scholar] [CrossRef]
- van den Brink, N.W.; Elliott, J.E.; Shore, R.F.; Rattner, B.A. (Eds.) Anticoagulant Rodenticides and Wildlife: Concluding Remarks In Anticoagulant Rodenticides and Wildlife. Emerging Topics in Ecotoxicology; Springer: Cham, Switzerland, 2018; Volume 5. [Google Scholar]
- Echa.Europe.Eu. Available online: https://echa.europa.eu/substance-information/-/substanceinfo/100.031.827 (accessed on 24 November 2023).
- Witmer, G.; Eisemann, J.D.; Howald, G. The use of rodenticides for conservation efforts. In Proceedings of the 12th Wildlife Damage Management Conference, Corpus Christi, TX, USA, 9 April 2007; pp. 160–167. [Google Scholar]
- Davis, S.A.; Pech, R.P.; Singleton, G.R. Simulation of fertility control in an eruptive house mouse (Mus domesticus) population in south-eastern Australia. ACIAR Monogr. Ser. 2003, 96, 320–324. [Google Scholar]
- Evenson, D.P. Sperm chromatin structure assay (SCSA®). In Spermatogenesis: Methods and Protocols; Springer: Berlin/Heidelberg, Germany, 2013; pp. 147–164. [Google Scholar]
- Xue, M.; Zhao, Y.; Li, X.J.; Jiang, Z.Z.; Zhang, L.; Liu, S.H.; Li, X.M. Comparison of toxicokinetics and tissue distribution of triptolide-loaded solid lipid nanoparticles vs. free triptolide in rats. Eur. J. Pharm. Sci. 2012, 47, 713–717. [Google Scholar] [CrossRef]
- Wei, Y.; Wang, D.; Chen, M.; Ouyang, Z.; Wang, S.; Gu, J. Extrahepatic cytochrome P450s play an insignificant role in triptolide-induced toxicity. Chin. Med. 2018, 13, 23. [Google Scholar] [CrossRef]
- Keller, D.; Carpenter, S.C.; Cagen, S.Z.; Reitman, F.A. In Vitro Metabolism of 4-Vinylcyclohexene in Rat and Mouse Liver, Lung and Ovary. Toxicol. Appl. Pharmacol. 1997, 144, 36–44. [Google Scholar] [CrossRef]
- Fontaine, S.M.; Hoyer, P.B.; Sipes, I.G. Evaluation of hepatic cytochrome P4502E1 in the species-dependent bioactivation of 4-vinylcyclohexene. Life Sci. 2001, 69, 923–934. [Google Scholar] [CrossRef]
- Chiappe, C.; De Rubertis, A.; Piegari, G.; Amato, G.; Gervasi, P.G. Stereochemical Aspects in the 4-Vinylcyclohexene Biotransformation with Rat Liver Microsomes and Purified Cytochrome P450s: Diepoxide Formation and Hydrolysis. Chem. Re Toxicol. 2003, 16, 56–65. [Google Scholar] [CrossRef]
- Wilson, D.E.; Reeder, D.M. Mammal Species of the World—A Taxonomic and Geographic Reference; Wilson, D.E., Reeder, D.M., Eds.; Johns Hopkins University Press: Baltimore, MA, USA, 2005; Volume 1. [Google Scholar]
- Ni, B.; Jiang, Z.; Huang, X.; Xu, F.; Zhang, R.; Zhang, Z.; Tian, Y.; Wang, T.; Zhu, T.; Liu, J.; et al. Male reproductive toxicity and toxicokinetics of triptolide in rats. Arzneimittelforschung 2008, 58, 673–680. [Google Scholar] [CrossRef]
- Singla, N.; Challana, S. Reproductive toxicity of triptolide in male house rat, Rattus rattus. Sci. World J. 2014. [Google Scholar] [CrossRef]
- Lv, L.; Chang, Y.; Li, Y.; Chen, H.; Yao, J.; Xie, Y.; Liang, X.; Yang, X.; Zhang, M.; Liu, G. Triptolide induces leydig cell apoptosis by disrupting mitochondrial dynamics in rats. Front. Pharmacol. 2021, 12, 616803. [Google Scholar] [CrossRef]
- Dickerson, R.L.; Hooper, M.J.; Gard, N.W.; Cobb, G.P.; Kendall, R.J. Toxicological foundations of ecological risk assessment: Biomarker development and interpretation based on laboratory and wildlife species. Environ. Health Perspec. 1994, 102, 65–69. [Google Scholar] [CrossRef]
- Witmer, G.W.; Raymond-Wish, S.; Moulton, R.S.; Pyzyna, B.R.; Calloway, E.M.; Dyer, C.A.; Mayer, L.P.; Hoyer, P.B. Compromised fertility in free feeding of wild-caught Norway rats (Rattus norvegicus) with a liquid bait containing 4-vinylcyclohexene diepoxide and triptolide. J. Zoo Wildl. Med. 2017, 48, 80–90. [Google Scholar] [CrossRef]
- Chambers, L.K.; Lawson, M.A.; Hinds, L.A. Biological control of rodents—The case for fertility control using immunocontraception. Ecol-Based Rodent Manag. ACIAR Monogr. 1999, 59, 215–242. [Google Scholar]
- Metcalfe, J. The Surprisingly Gentle Science Behind New York’s Plan to Sterilize Its Rats; Bloomberg. Available online: https://www.bloomberg.com/news/articles/2013-04-01/the-surprisingly-gentle-science-behind-new-york-s-plan-to-sterilize-its-rats (accessed on 27 November 2023).
- Marsh, R.E. Bait additives as a means of improving acceptance by rodents1. EPPO Bull. 1988, 18, 195–202. [Google Scholar] [CrossRef]
- Johnston, J.J.; Nolte, D.L.; Kimball, B.A.; Perry, K.R.; Hurley, J.C. Increasing acceptance and efficacy of zinc phosphide rodenticide baits via modification of the carbohydrate profile. Crop Prot. 2005, 24, 381–385. [Google Scholar] [CrossRef]
- De León-Ramírez, Y.M.; Sánchez, E.P.; Pérez, A.C.; Sánchez-Solís, C.N.; Rodríguez-Antolín, J.; Nicolás-Toledo, L. Dietary intervention in adult rats exposed to a high-sugar diet early in life permanently impairs sperm quality. Ann. D’Endocrinol. 2023, 84, 779–789. [Google Scholar] [CrossRef]
- Shao, F.; Wang, G.; Xie, H.; Zhu, X.; Sun, J. Pharmacokinetic study of triptolide, a constituent of immunosuppressive chinese herb medicine, in rats. Biol. Pharm. Bull. 2007, 30, 702–707. [Google Scholar] [CrossRef]
- Peng, Z.H.; Wang, J.J.; Du, P.; Chen, Y. Identification of in vivo and in vitro metabolites of triptolide by liquid chromatography–tandem mass spectrometry. J. Pharm. Biomed. Anal. 2012, 70, 624–630. [Google Scholar] [CrossRef]
- Salyers, K.L. Disposition and Metabolism of 4-Vinyl-1-Cyclohexene Diepoxide in Female Fischer 344 Rats and B6C3F1 Mice. Ph.D. Thesis, University of Arizona, Tuscon, AZ, USA, 1995. [Google Scholar]
- Flaws, J.A.; Salyers, K.L.; Sipes, I.G.; Hoyer, P.B. Reduced ability of rat preantral ovarian follicles to metabolize 4-vinyl-1-cyclohexene diepoxide in vitro. Toxicol. Appl. Pharmacol. 1994, 126, 286–294. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jacoblinnert, K.; Reilly, M.; Da Costa, R.; Schenke, D.; Jacob, J. Effects of an Anti-Fertility Product on Reproductive Structures of Common Vole Males and Residues of Compounds. Biology 2024, 13, 450. https://doi.org/10.3390/biology13060450
Jacoblinnert K, Reilly M, Da Costa R, Schenke D, Jacob J. Effects of an Anti-Fertility Product on Reproductive Structures of Common Vole Males and Residues of Compounds. Biology. 2024; 13(6):450. https://doi.org/10.3390/biology13060450
Chicago/Turabian StyleJacoblinnert, Kyra, Marion Reilly, Raul Da Costa, Detlef Schenke, and Jens Jacob. 2024. "Effects of an Anti-Fertility Product on Reproductive Structures of Common Vole Males and Residues of Compounds" Biology 13, no. 6: 450. https://doi.org/10.3390/biology13060450
APA StyleJacoblinnert, K., Reilly, M., Da Costa, R., Schenke, D., & Jacob, J. (2024). Effects of an Anti-Fertility Product on Reproductive Structures of Common Vole Males and Residues of Compounds. Biology, 13(6), 450. https://doi.org/10.3390/biology13060450