Gazing Strategies among Sentinels of a Cooperative Breeder Are Repeatable but Unrelated to Survival
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hill, J.E.; DeVault, T.L.; Belant, J.L. Cause-specific mortality of the world’s terrestrial vertebrates. Glob. Ecol. Biogeogr. 2019, 28, 680–689. [Google Scholar] [CrossRef]
- Ruxton, G.D.; Sherratt, T.N.; Speed, M.P. Avoiding Attack: The Evolutionary Ecology of Crypsis, Warning Signals and Mimicry; Oxford University Press: Oxford, UK, 2004. [Google Scholar]
- Beauchamp, G. Social Predation: How Group Living Benefits Predators and Prey; Academic Press: New York, NY, USA, 2014. [Google Scholar]
- Caro, T.M. Antipredator Defenses in Birds and Mammals; University of Chicago Press: Chicago, IL, USA, 2005. [Google Scholar]
- Beauchamp, G. Animal Vigilance: Monitoring Predators and Competitors; Academic Press: London, UK, 2015. [Google Scholar]
- Allan, A.T.L.; Hill, R.A. What have we been looking at? A call for consistency in studies of primate vigilance. Am. J. Phys. Anthropol. 2018, 165, 4–22. [Google Scholar] [CrossRef] [PubMed]
- Pulliam, H.R. On the advantages of flocking. J. Theor. Biol. 1973, 38, 419–422. [Google Scholar] [CrossRef] [PubMed]
- Bednekoff, P.A.; Lima, S.L. Randomness, chaos and confusion in the study of antipredator vigilance. Trends Ecol. Evol. 1998, 13, 284–287. [Google Scholar] [CrossRef] [PubMed]
- Novcic, I.; Mlakar, M.M.; Vidović, Z.; Hauber, M.E. Black-headed gulls synchronize vigilance with their nearest neighbor irrespective of the neighbor’s relative position. Ethology 2023, 129, 146–155. [Google Scholar] [CrossRef]
- Podgórski, T.; de Jong, S.; Bubnicki, J.W.; Kuijper, D.P.; Churski, M.; Jędrzejewska, B. Drivers of synchronized vigilance in wild boar groups. Behav. Ecol. 2016, 27, 1097–1103. [Google Scholar] [CrossRef]
- Pays, O.; Renaud, P.C.; Loisel, P.; Petit, M.; Gerard, J.F.; Jarman, P.J. Prey synchronize their vigilant behaviour with other group members. Proc. R. Soc. Lond B Biol. Sci. 2007, 274, 1287–1291. [Google Scholar] [CrossRef] [PubMed]
- Beauchamp, G. Sleeping gulls monitor the vigilance behaviour of their neighbours. Biol. Lett. 2009, 5, 9–11. [Google Scholar] [CrossRef] [PubMed]
- Brügger, R.K.; Willems, E.P.; Burkart, J.M. Looking out for each other: Coordination and turn taking in common marmoset vigilance. Anim. Behav. 2023, 196, 183–199. [Google Scholar] [CrossRef]
- Fox, R.J.; Donelson, J.M. Rabbitfish sentinels: First report of coordinated vigilance in conspecific marine fishes. Coral Reefs 2014, 33, 253. [Google Scholar] [CrossRef]
- Ge, C.; Beauchamp, G.; Li, Z. Coordination and synchronisation of anti-predation vigilance in two crane species. PLoS ONE 2011, 6, e26447. [Google Scholar] [CrossRef] [PubMed]
- Bell, M.B.V.; Radford, A.N.; Rose, R.; Wade, H.M.; Ridley, A.R. The value of constant surveillance in a risky environment. Proc. R. Soc. Lond B Biol. Sci. 2009, 276, 2997–3005. [Google Scholar] [CrossRef] [PubMed]
- Ward, P.I. Why birds in flocks do not co-ordinate their vigilance periods. J. Theor. Biol. 1985, 114, 383–385. [Google Scholar] [CrossRef]
- Fernández-Juricic, E.; Kerr, B.; Bednekoff, P.A.; Stephens, D.W. When are two heads better than one? Visual perception and information transfer affect vigilance coordination in foraging groups. Behav. Ecol. 2004, 15, 898–906. [Google Scholar] [CrossRef]
- McGowan, K.J.; Woolfenden, G.E. A sentinel system in the Florida scrub jay. Anim. Behav. 1989, 37, 1000–1006. [Google Scholar] [CrossRef]
- Rasa, O.A.E. Coordinated vigilance in dwarf mongoose family groups: ‘The watchman’s song’ hypothesis and the costs of guarding. Ethology 1986, 71, 340–344. [Google Scholar] [CrossRef]
- Clutton-Brock, T.H.; O’riain, M.J.; Brotherton, P.N.; Gaynor, D.; Kansky, R.; Griffin, A.S.; Manser, M. Selfish sentinels in cooperative mammals. Science 1999, 284, 1640–1644. [Google Scholar] [CrossRef] [PubMed]
- Bednekoff, P.A. Sentinel behavior: A review and prospectus. Adv. Study Behav. 2015, 47, 115–145. [Google Scholar]
- Laskowski, K.L.; Chang, C.C.; Sheehy, K.; Aguiñaga, J. Consistent individual behavioral variation: What do we know and where are we going? Ann. Rev. Ecol. Evol. Syst. 2022, 53, 161–182. [Google Scholar] [CrossRef]
- Sih, A.; Bell, A.; Johnson, J.C. Behavioral syndromes: An ecological and evolutionary overview. Trends Ecol. Evol. 2004, 19, 372–378. [Google Scholar] [CrossRef]
- McNamara, J.M.; Houston, A.I. Evolutionarily stable levels of vigilance as a function of group size. Anim. Behav. 1992, 43, 641–658. [Google Scholar] [CrossRef]
- Couchoux, C.; Cresswell, W. Personality constraints versus flexible antipredation behaviors: How important is boldness in risk management of redshanks (Tringa totanus) foraging in a natural system? Behav. Ecol. 2012, 23, 290–301. [Google Scholar] [CrossRef]
- Quinn, J.L.; Cresswell, W. Personality, anti-predation behaviour, and behavioural plasticity in the chaffinch Fringilla coelebs. Behaviour 2005, 142, 1383–1408. [Google Scholar] [CrossRef]
- Pascual, J.; Senar, J.C. Antipredator behavioural compensation of proactive personality trait in male Eurasian siskins. Anim. Behav. 2014, 90, 297–303. [Google Scholar] [CrossRef]
- Carter, A.J.; Pays, O.; Goldizen, A.W. Individual variation in the relationship between vigilance and group size in eastern grey kangaroos. Behav. Ecol. Sociobiol. 2009, 64, 237–245. [Google Scholar] [CrossRef]
- Pangle, W.M.; Holekamp, K.E. Functions of vigilance behaviour in a social carnivore, the spotted hyaena, Crocuta crocuta. Anim. Behav. 2010, 80, 257–267. [Google Scholar] [CrossRef]
- Dannock, R.J.; Blomberg, S.P.; Goldizen, A.W. Individual variation in vigilance in female eastern grey kangaroos. Aust. J. Zool. 2013, 61, 312–319. [Google Scholar] [CrossRef]
- Edwards, A.M.; Best, E.C.; Blomberg, S.P.; Goldizen, A.W. Individual traits influence vigilance in wild female eastern grey kangaroos. Aust. J. Zool. 2013, 61, 332–341. [Google Scholar] [CrossRef]
- Hoogland, J.L.; Hale, S.L.; Kirk, A.D.; Sui, Y.D. Individual variation in vigilance among white-tailed prairie dogs (Cynomys leucurus). Southwest. Nat. 2013, 58, 279–285. [Google Scholar] [CrossRef]
- Favreau, F.R.; Goldizen, A.W.; Fritz, H.; Blomberg, S.P.; Best, E.C.; Pays, O. Within-population differences in personality and plasticity in the trade-off between vigilance and foraging in kangaroos. Anim. Behav. 2014, 92, 175–184. [Google Scholar] [CrossRef]
- McWaters, S.R.; Pangle, W.M. Heads up! Variation in the vigilance of foraging chipmunks in response to experimental manipulation of perceived risk. Ethology 2021, 127, 309–320. [Google Scholar] [CrossRef]
- Couchoux, C.; Clermont, J.; Garant, D.; Réale, D. Signaler and receiver boldness influence response to alarm calls in eastern chipmunks. Behav. Ecol. 2018, 29, 212–220. [Google Scholar] [CrossRef]
- Monk, J.E.; Colditz, I.G.; Clark, S.; Lee, C. Repeatability of an attention bias test for sheep suggests variable influence of state and trait affect on behaviour. PeerJ 2023, 11, e1473. [Google Scholar] [CrossRef] [PubMed]
- Roche, E.A.; Brown, C.R. Among-individual variation in vigilance at the nest in colonial cliff swallows. Wilson J. Ornithol. 2013, 125, 685–695. [Google Scholar] [CrossRef]
- Boujja-Miljour, H.; Leighton, P.A.; Beauchamp, G. Individual vigilance profiles in flocks of House Sparrows (Passer domesticus). Can. J. Zool. 2018, 96, 1016–1023. [Google Scholar] [CrossRef]
- Rieucau, G.; Morand-Ferron, J.; Giraldeau, L.-A. Group size effect in nutmeg mannikin: Between-individuals behavioral differences but same plasticity. Behav. Ecol. 2010, 21, 684–689. [Google Scholar] [CrossRef]
- Mathot, K.J.; van den Hout, P.J.; Piersma, T.; Kempenaers, B.; Réale, D.; Dingemanse, N.J. Disentangling the roles of frequency-vs. state-dependence in generating individual differences in behavioural plasticity. Ecol. Lett. 2011, 14, 1254–1262. [Google Scholar] [CrossRef] [PubMed]
- Dingemanse, N.J.; Wright, J. Criteria for acceptable studies of animal personality and behavioural syndromes. Ethology 2020, 126, 865–869. [Google Scholar] [CrossRef]
- Fernández-Juricic, E.; Beauchamp, G. An experimental analysis of spatial position effects on foraging and vigilance in Brown-headed cowbird flocks. Ethology 2008, 114, 105–114. [Google Scholar] [CrossRef]
- van Deventer, A.; Shrader, A.M. Predation risk and herd position influence the proportional use of antipredator and social vigilance by impala. Anim. Behav. 2021, 172, 9–16. [Google Scholar] [CrossRef]
- Fernández-Juricic, E. Sensory basis of vigilance behavior in birds: Synthesis and future prospects. Behav. Proc. 2012, 89, 143–152. [Google Scholar] [CrossRef]
- Jones, K.A.; Krebs, J.R.; Whittingham, M.J. Vigilance in the third dimension: Head movement not scan duration varies in response to different predator models. Anim. Behav. 2007, 74, 1181–1187. [Google Scholar] [CrossRef]
- Fernández-Juricic, E.; Beauchamp, G.; Treminio, R.; Hoover, M. Making heads turn: Association between head movements during vigilance and perceived predation risk in brown-headed cowbird flocks. Anim. Behav. 2011, 82, 573–577. [Google Scholar] [CrossRef]
- Mettke-Hofmann, C. When to return to normal? Temporal dynamics of vigilance in four situations. Birds 2023, 4, 1–14. [Google Scholar] [CrossRef]
- Mettke-Hofmann, C. Is vigilance a personality trait? Plasticity is key alongside some contextual consistency. PLoS ONE 2022, 17, e0279066. [Google Scholar] [CrossRef] [PubMed]
- Moiron, M.; Laskowski, K.L.; Niemelä, P.T. Individual differences in behaviour explain variation in survival: A meta-analysis. Ecol. Lett. 2020, 23, 399–408. [Google Scholar] [CrossRef] [PubMed]
- Blumstein, D.T.; Lea, A.J.; Olson, L.E.; Martin, J.G.A. Heritability of anti-predatory traits: Vigilance and locomotor performance in marmots. J. Evol. Biol. 2010, 23, 879–887. [Google Scholar] [CrossRef] [PubMed]
- Woolfenden, G.E.; Fitzpartrick, J.W. The Florida scrub-jay: Demography of a cooperative-breeding bird. In Monographs in Population Biology; May, R.M., Ed.; Princeton University Press: Princeton, NJ, USA, 1984; Volume 20. [Google Scholar]
- Hailman, J.P.; McGowan, K.J.; Woolfenden, G.E. Role of helpers in the sentinel behaviour of the Florida scrub jay (Aphelocoma c. coerulescens). Ethology 1994, 97, 119–140. [Google Scholar] [CrossRef]
- Beauchamp, G.; Bowman, R. Visual monitoring strategies of sentinels in a cooperative breeder. Biology 2022, 11, 1769. [Google Scholar] [CrossRef] [PubMed]
- Beauchamp, G.; Barve, S. Multiple sentinels in a cooperative breeder synchronize rather than coordinate gazing. Animals 2023, 13, 1524. [Google Scholar] [CrossRef] [PubMed]
- Radford, A.N.; Hollen, L.I.; Bell, M.B.V. The higher the better: Sentinel height influences foraging success in a social bird. Phil. Trans. R. Soc. Lond. B. Biol. Sci. 2009, 276, 2437–2442. [Google Scholar] [CrossRef] [PubMed]
- Bednekoff, P.A.; Woolfenden, G.E. Florida scrub-jays (Aphelocoma coerulescens) are sentinels more when well-fed (even with no kin nearby). Ethology 2003, 109, 895–903. [Google Scholar] [CrossRef]
- Stamps, J.; Groothuis, T.G.G. The development of animal personality: Relevance, concepts and perspectives. Biol. Rev. 2010, 85, 301–325. [Google Scholar] [CrossRef] [PubMed]
- Stoffel, M.A.; Nakagawa, S.; Schielzeth, H. rptR: Repeatability estimation and variance decomposition by generalized linear mixed-effects models. Meth. Ecol. Evol. 2017, 8, 1639–1644. [Google Scholar] [CrossRef]
- McDonald, D.B.; Fitzpatrick, J.W.; Woolfenden, G.E. Actuarial senescence and demographic heterogeneity in the Florida scrub jay. Ecology 1996, 77, 2373–2381. [Google Scholar] [CrossRef]
- Bürkner, P.-C. brms: An R Package for Bayesian Multilevel Models Using Stan. J. Stat. Softw. 2017, 80, 1–28. [Google Scholar] [CrossRef]
- Therneau, T. R Package, Version 2.2-20. coxme: Mixed Effects Cox Models. R Foundation for Statistical Computing: Vienna, Austria, 2012.
- Bell, A.M.; Hankison, S.J.; Laskowski, K.L. The repeatability of behaviour: A meta-analysis. Anim. Behav. 2009, 77, 771–783. [Google Scholar] [CrossRef] [PubMed]
- Périquet, S.; Todd-Jones, L.; Valeix, M.; Stapelkamp, B.; Elliot, N.; Wijers, M.; Pays, O.; Fortin, D.; Madzikanda, H.; Fritz, H.; et al. Influence of immediate predation risk by lions on the vigilance of prey of different body size. Behav. Ecol. 2012, 23, 970–976. [Google Scholar] [CrossRef]
- Fairbanks, B.; Dobson, F.S. Mechanisms of the group-size effect on vigilance in Columbian ground squirrels: Dilution versus detection. Anim. Behav. 2007, 73, 115–123. [Google Scholar] [CrossRef]
- Hollén, L.I.; Radford, A.N. The development of alarm call behaviour in mammals and birds. Anim. Behav. 2009, 78, 791–800. [Google Scholar] [CrossRef]
- Petelle, M.B.; McCoy, D.E.; Alejandro, V.; Martin, J.G.; Blumstein, D.T. Development of boldness and docility in yellow-bellied marmots. Anim. Behav. 2013, 86, 1147–1154. [Google Scholar] [CrossRef]
- Favati, A.; Zidar, J.; Thorpe, H.; Jensen, P.; Løvlie, H. The ontogeny of personality traits in the red junglefowl, Gallus gallus. Behav. Ecol. 2016, 27, 484–493. [Google Scholar] [CrossRef]
- Rauber, R.; Manser, M.B. Effect of group size and experience on the ontogeny of sentinel calling behaviour in meerkats. Anim. Behav. 2021, 171, 129–138. [Google Scholar] [CrossRef]
- FitzGibbon, C.D. A cost to individual with reduced vigilance in groups of Thomson’s gazelles hunted by cheetahs. Anim. Behav. 1989, 37, 508–510. [Google Scholar] [CrossRef]
- Krause, J.; Godin, J.-G.J. Predator preferences for attacking particular prey group sizes: Consequences for predator hunting success and prey predation risk. Anim. Behav. 1995, 50, 465–473. [Google Scholar] [CrossRef]
- Watson, M.; Aebischer, N.J.; Cresswell, W. Vigilance and fitness in grey partridges Perdix perdix: The effects of group size and foraging-vigilance trade-offs on predation mortality. J. Anim. Ecol. 2007, 76, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Hadfield, J.D.; Wilson, A.J.; Garant, D.; Sheldon, B.C.; Kruuk, L.E. The misuse of BLUP in ecology and evolution. Am. Nat. 2010, 175, 116–125. [Google Scholar] [CrossRef] [PubMed]
- Hammer, T.L.; Bize, P.; Saraux, C.; Gineste, B.; Robin, J.P.; Groscolas, R.; Viblanc, V.A. Repeatability of alert and flight initiation distances in king penguins: Effects of colony, approach speed, and weather. Ethology 2022, 128, 303–316. [Google Scholar] [CrossRef]
- Møller, A.P. Life history, predation and flight initiation distance in a migratory bird. J. Evol. Biol. 2014, 27, 1105–1113. [Google Scholar] [CrossRef] [PubMed]
- Jablonszky, M.; Szász, E.; Krenhardt, K.; Markó, G.; Hegyi, G.; Herényi, M.; Laczi, M.; Nagy, G.; Rosivall, B.; Szöllősi, E.; et al. Unravelling the relationships between life history, behaviour and condition under the pace-of-life syndromes hypothesis using long-term data from a wild bird. Behav. Ecol. Sociobiol. 2018, 72, 52. [Google Scholar] [CrossRef]
- Blumstein, D.T.; Sanchez, M.; Philson, C.S.; Bliard, L. Is flight initiation distance associated with longer-term survival in yellow-bellied marmots, Marmota flaviventer? Anim. Behav. 2023, 202, 21–28. [Google Scholar] [CrossRef]
Bi-Variate Component | Variable | Mean Estimate | 95% CI |
---|---|---|---|
Annual survival | Intercept | 0.60 | −2.79, 4.03 |
Sex (male vs. female) | 0.47 | −0.47, 1.47 | |
Age | 0.01 | −2.71, 2.71 | |
Group size | 0.46 | −0.08, 1.10 | |
Head-turning frequency | Intercept | 42.31 | 40.55, 44.06 |
Sex (male vs. female) | 0.14 | −1.76, 1.95 | |
Age | −0.35 | −1.67, 1.02 | |
Group size | −1.87 | −2.92, −0.81 | |
Height | −2.03 | −3.03, −1.01 | |
Other sentinels (present vs. absent) | −3.05 | −4.99, −1.07 | |
Among-individual correlation | r | 0.07 | −0.92, 0.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beauchamp, G.; Barve, S. Gazing Strategies among Sentinels of a Cooperative Breeder Are Repeatable but Unrelated to Survival. Biology 2024, 13, 458. https://doi.org/10.3390/biology13060458
Beauchamp G, Barve S. Gazing Strategies among Sentinels of a Cooperative Breeder Are Repeatable but Unrelated to Survival. Biology. 2024; 13(6):458. https://doi.org/10.3390/biology13060458
Chicago/Turabian StyleBeauchamp, Guy, and Sahas Barve. 2024. "Gazing Strategies among Sentinels of a Cooperative Breeder Are Repeatable but Unrelated to Survival" Biology 13, no. 6: 458. https://doi.org/10.3390/biology13060458
APA StyleBeauchamp, G., & Barve, S. (2024). Gazing Strategies among Sentinels of a Cooperative Breeder Are Repeatable but Unrelated to Survival. Biology, 13(6), 458. https://doi.org/10.3390/biology13060458