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Simple Summary: We show how the relationship between the sub-network entropy of malignant
up-regulated genes in twelve different types of cancer, spanning the entire spectrum of 5-year
overall survival rates, can serve as a benchmark for optimizing RNA-seq workflows. Assessing the
Shannon entropy of sub-networks formed by malignant up-regulated genes by several RNA-seq workflow
approaches, such as DESeq2 and edgeR, but also by evaluating nine normalization methods on paired
samples of TCGA RNA-seq, we found that the pipeline incorporating TPM normalization coupled with
log2 fold change yielded the best correlation coefficient between cancer aggressiveness and tumor entropy.

Abstract: RNA-seq faces persistent challenges due to the ongoing, expanding array of data processing
workflows, none of which have yet achieved standardization to date. It is imperative to determine
which method most effectively preserves biological facts. Here, we used Shannon entropy as a tool for
depicting the biological status of a system. Thus, we assessed the measurement of Shannon entropy
by several RNA-seq workflow approaches, such as DESeq2 and edgeR, but also by combining nine
normalization methods with log2 fold change on paired samples of TCGA RNA-seq representing
datasets of 515 patients and spanning 12 different cancer types with 5-year overall survival rates
ranging from 20% to 98%. Our analysis revealed that TPM, RLE, and TMM normalization, coupled
with a threshold of log2 fold change ≥1, for identifying differentially expressed genes, yielded the
best results. We propose that Shannon entropy can serve as an objective metric for refining the
optimization of RNA-seq workflows and mRNA sequencing technologies.
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1. Introduction

The utilization of RNA sequencing (RNA-seq) has advanced significantly in cancer
research and therapy over recent years [1,2]. RNA-seq, entailing thorough sequencing of
RNA transcripts, was initially introduced in 2008 [3,4]. The primary objectives of RNA-seq
analyses include the identification of differentially expressed and co-regulated genes, along
with the inference of biological significance for subsequent investigations. Bulk RNA-seq
employs a tissue or cell population as its starting material, yielding a blend of distinct gene
expression profiles from the subject material under study. The transcriptomic landscapes of
tumors exhibit considerable heterogeneity both among tumor cells, attributable to somatic
genetic modifications, and within tumor microenvironments, arising from substantial
stromal infiltration and the presence of diverse cell types within the tumor [5].

The domain of RNA-seq encounters persistent challenges, particularly concerning
data processing and analysis. Unlike the microarray domain, which has seen a convergence
of data processing methodologies into well-defined, widely accepted workflows over time,
RNA-seq presents a continuously expanding array of data processing workflows, none of
which has yet achieved standardization [6,7]. This situation partly arises from the diverse
applications of RNA-seq, which may deviate from the underlying assumptions of the
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analytical methods employed [8], as real-world data often exhibit variations beyond those
accommodated by theoretical models. Additionally, the verification of theoretical distribu-
tional assumptions remains challenging and can engender controversy [9]. Consequently,
only a limited number of such signature panels have successfully transitioned into clinical
practice due to issues of reproducibility. Nonetheless, it is recognized that certain genes
exhibit consistent expression patterns within tumors [10,11], despite substantial intra- and
inter-variability. These genes hold better promise for improved prognostics [5].

The primary method for assessing normalization techniques involves comparing the
outcomes of raw and normalized data with quantitative real-time PCR (qRT-PCR), widely
regarded as the gold standard for determining true expression values [12]. Although
qRT-PCR has long served as a reference in numerous investigations, it is not flawless as
an expression measurement assay itself, making it uncertain a priori which technology
currently yields the most precise expression estimates [13]. In a considerable portion of the
methods examined, genes exhibiting inconsistent expression across independent datasets
tended to be smaller, possess fewer exons, and exhibit lower expression levels compared to
genes with consistent expression measurements [6]. However, when evaluating relative
quantification performance, several workflows displayed high expression correlations
between RNA-seq and qRT-PCR expression intensities, indicating a generally high level of
concordance between RNA-seq and qRT-PCR, with nearly identical performance observed
across individual workflows [6]. Given that weakly expressed genes are typically utilized
as a reference by parametric methods for normalizing RNA-seq data across samples, it
is unsurprising that the detection sensitivity for their differential expression is relatively
low. In this regard, non-parametric methods exhibit superior performance but may be
susceptible to outliers with high expression levels [14]. However, depending on sequencing
coverage, genes showing high levels of differential expression are more likely to be detected,
leading to a convergence of results across methods [15]. Additionally, it appears that short
reads facilitate simpler methodological workflows compared to longer reads [16,17].

To address biological and methodological variations within a user-friendly framework, an
expanding array of open-access semiautomated pipelines is emerging online. Examples include
iDEP [18], LVBRS [19], RNAseqChef [20], and NormSeq [21]. It has been observed that achieving
consensus among pipelines enhances the diagnostic accuracy of differentially expressed genes
(DEGs), suggesting that combining diverse methodologies can yield more robust results [22].

The objective of normalization is to mitigate or remove technical variability. A preva-
lent approach, shared among numerous normalization methods, involves redistributing
signal intensities across all samples to ensure they exhibit identical distributions [23]. An
essential step in an RNA-seq analysis is normalization, where raw data are adjusted to account
for factors such as total mapped reads and coding sequence (CDS) size. Errors in normalization
can greatly impact downstream analyses, leading to inflated false positives in differential ex-
pression studies [8]. The distortions produced include false effects (false positives), effect-size
reduction, and masking of true effects (false negatives), as demonstrated by Wang et al. [24].
For instance, raw counts are often not directly comparable within and between samples [14].
Additionally, other stages of RNA-seq processing throughout the pipeline execution may also
impact outcomes. A recurring challenge is assessing the reliability of RNA-seq processing
and the confidence level associated with downstream findings. An essential consideration
in the comparison of normalization methods is to ascertain which method most effectively
retains biological veracity [12]. While several normalization methods [25] and processing
techniques [26] have been compared, discrepancies between them remain unclear.

Another approach that has been pursued is normalization by referencing housekeep-
ing or spike-in genes [21]. Housekeeping genes are assumed to exhibit consistent expression
levels across samples from diverse tissues, and it has been demonstrated that normalizing
qRT-PCR data using conventional reference genes yields comparable results to those ob-
tained using stable reference genes selected from RNA-seq data [27]. However, the notably
small dispersions and proportion of DEGs in spike-in data could yield substantially varied
benchmarking results [28], rendering this technique unreliable [29].
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There are essentially two categories of RNA-seq normalization methods [14]: (i) non-
parametric methods that do not impose a rigid model of gene expression to be fitted. These
methods implicitly consider that data distribution cannot be defined by a finite set of
parameters, so the amount of information about the data can increase with its volume [22].
An example of non-parametric methods is Reads per Kilobase Per Million Mapped Reads
(RPKM, [30]), where counts of mapped reads are normalized by reference to the total
read number and CDS size. These methods also include RPKM variations such as FPKM
and TPM [12,31], and (ii) parametric methods entail the mapping of expression values
for a specific gene into a specific distribution, such as a Poisson or negative binomial.
One example of a parametric method is DESeq2 [32], which normalizes count data and
estimates variance using a negative binomial distribution model [33]. This approach is
predicated on the assumption that the majority of genes are not differentially expressed,
and it accommodates variations in sequencing depth across samples.

Parametric and non-parametric methods can be used to assess the differential expres-
sion on a gene-by-gene basis or on a population-wide basis. Following normalization, differential
expression analysis on a gene-by-gene basis is conducted by log transformation to ascertain
fold changes, expressed as positive (up-regulation) or negative values (down-regulation). The
classification threshold for fold changes is determined according to the logarithm base of 2.
Therefore, a log fold change of 1 corresponds to a twofold difference in expression, while a
log fold change of 2 corresponds to a fourfold difference in expression, etc.

In the population-wide approach, as utilized by Carels et al. [34], the threshold for
differential expression is established by referencing the overall population of DEGs, which
is modeled by fitting a Gaussian function to the observed distribution of DEGs. According
to this methodology, a gene is categorized as being up-regulated (or down-regulated) if its
normalized raw count exceeds a critical value determined based on a user-defined p-value.
Consequently, for a gene to be classified as up-regulated, its level of differential expression
must surpass that of the majority of other genes within the population (population-wide).

The method of evaluating the expression of genes by reference to the population of
DEGs has been used to identify up-regulated hub targets in solid tumors [10,11,34–36].

Through the utilization of this approach, Conforte et al. [10] reaffirmed the correla-
tion observed by Breitkreutz et al. [37] between the entropy degree of protein–protein
interactions (PPI) and cancer aggressiveness, initially discovered using KEGG, this time
employing RNA-seq data sourced from TCGA.

Here, we propose utilizing the negative correlation between the entropy of the PPI
sub-network of malignant up-regulated genes and tumor aggressiveness, quantified by
the 5-year overall survival (OS) rate of patients, as a benchmark for evaluating RNA-
seq processing methods. We validated this process in three steps: (i) We evaluated the
performance of RPKM and median normalization on a gene-by-gene basis and by referencing
the population of DEGs across eight types of cancer (475 patients), spanning 5-year OS
rates from 30% to 98%, according to previous studies [10,11]. (ii) We compared RPKM
to seven read count normalizations, i.e., transcript per million (TPM, [38]), counts per
million (CPM, [14]), median (Med, [14]), upper quantile (UQ, [39]), relative log expression
(RLE, [32]), quantile normalization (QN, [40]), and trimmed mean of M-values (TMM, [41]),
as well as to two cross-sample distribution-based methods, i.e., DESeq2 [32] and edgeR [42].
(iii) Based on the best performing methodologies identified in these comparisons, we tested
paired samples from additional cancer types from TCGA to validate the approach, including
bladder carcinoma (BLCA), lung adenocarcinoma (LUAD), colon adenocarcinoma (COAD),
and uterine carcinoma (UCS).

According to this Bayesian learning process, we found the following: (i) The coefficient
of correlation between average entropy per cancer type and aggressiveness (5-year OS)
is a suitable metric for the comparative performance of biological information extraction
from sub-networks of up-regulated malignant genes. (ii) TMM, QN, and RLE, a group of
methods that determine a scaling factor for variation stabilization, produced a correlation
coefficient similar to TPM but with a standard deviation approximately 25% lower. The
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straightforward approach of combining a normalization method (even without a scaling
factor for variation stabilization) with log2 fold change yielded better average correlation
coefficients than probabilistic methods such as DESeq2 and edgeR for determining network
entropy. (iii) The correlation coefficient decreased from r ≈ −0.94 to r ≈ −0.67 when the
number of cancer types increased from 8 to 12.

2. Materials and Methods
2.1. RNA-Seq

The gene expression data were acquired in the form of RNA-seq files (raw counts)
of paired samples (malignant and healthy tissue from the same patient from a cohort
of 515 individuals; Table S1) from the GDC Data Portal (https://portal.gdc.cancer.gov/,
accessed on 1 March 2020, see [11]). The data sourced from GDC are presented in Table 1
and account for 12 different types of cancer.

Table 1. Raw counts from RNA-seq of paired samples from GDC.

Cancer Type Abbreviation OS 1 GDC, n 2

Bladder carcinoma 3 BLCA 20 17
Stomach adenocarcinoma STAD 38 27
Lung adenocarcinoma LUAD 40 57
Lung squamous cell carcinoma LUSC 47 48
Liver hepatocellular carcinoma LIHC 49 50
Kidney renal clear cell carcinoma KIRC 63 71
Colon adenocarcinoma 3 COAD 68 40
Kidney renal papillary cell carcinoma KIRP 75 31
Breast cancer BRCA 82 46
Uterine carcinoma 3 UCS 89 22
Thyroid cancer THCA 93 56
Prostate cancer PRAD 98 50

1 OS: 5-year overall survival taken from Liu et al. [43] according to Conforte et al. [10], %. 2 n: sample size,
number. 3 Accessed on 15 June 2024, see Section 2.2 and Table S2.

RNA-seq profiles were available for 60,483 GDC sequences (Ensembl accessions).
However, to compute entropy, we needed PPIs that were extracted from the 2017 version of
IntAct (https://www.ebi.ac.uk/intact/download/ftp, accessed on 11 January 2018). Given
that IntAct PPIs are given in UniprotKB accessions, the process of establishing equivalence
between Ensembl and UniProtKB accessions (Esembl2UK step) was limited to 15,526 genes
(~75% of the human proteome). Consequently, it was this latter dataset that underwent the
entire comparative analysis.

2.2. Overall Survival

The 5-year survival rates of the malignant tissues were inferred based on the over-
all survival (OS) data available from the Cancer Genome Atlas Clinical Data Resource
(TCGA-CDR) [43], which contains curative clinical and survival data from TCGA patients
specifically designed to eliminate incomplete survival (follow-up) information. Table S1 of
Liu et al. [43] has two columns, “OS” and “OS.time”, that were used in GraphPad Prism
(Boston, MA, USA) software version 5.02 for survival curve analysis for BLCA, COAD,
and UCS, indicating death/event as 1 and censored data as 0. This analysis resulted in sur-
vival rates corresponding to days to “death/last follow-up” for each cancer type (Table S2,
Figure S1). The survival rate observed over 5 years (1200 days) was used to represent each
cancer type. The 5-year OS of STAD, LUSC, LUAD, LIHC, KIRC, KIRP, BRCA, THCA, and
PRAD were drawn from Table S4 (https://www.frontiersin.org/articles/10.3389/fgene.20
19.00930/full#supplementary-material, accessed on 10 May 2024) of Conforte et al. [10].

2.3. Basic Normalization Methods

RPKM: The gene expression in reads per kilobase (RPK) of a gene is defined as the
ratio of the number of reads mapped to it over its length (in kilobases) and RPKM as the
ratio of the RPK of a gene over the total reads in the sample (in millions) [30].

https://portal.gdc.cancer.gov/
https://www.ebi.ac.uk/intact/download/ftp
https://www.frontiersin.org/articles/10.3389/fgene.2019.00930/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2019.00930/full#supplementary-material
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Here, we computed RPKM (RPKM normalization step) according to Formula (1)

RPKM =
RCg

L ×
(

RCpc −
(
δ × RCpc

)) × 109 (1)

where:
RCg: number of reads mapped to the gene;
RCpc: number of reads mapped to all protein-coding genes;
L: size of the coding sequence in base pairs;
δ: A tuning factor such that when δ = 0, Formula (1) is equivalent to the standard

RPKM. In this work, we used δ = 0.95 because it optimized the coefficient of correlation
between entropy and 5-year OS.

TPM: The gene expression in transcripts per million (TPM) of a gene is defined as
the ratio of its RPK over the sum of all RPKs (per million) [38]. We computed raw counts
in accordance with Formula (2) using a custom Perl script derived from the one used for
RPKM calculation.

TPMi =
RPKi

∑n
i=1 RPKi

×106 (2)

Median: We used a custom Perl script to implement the procedure described in
https://scienceparkstudygroup.github.io/rna-seq-lesson/05-descriptive-plots/index.html#
43-deseq2-normalized-counts-median-of-ratios-method (accessed on 10 May 2024) for nor-
malizing paired samples of raw counts obtained from GDC RNA-seq data (median normal-
ization step).

2.4. Extended Normalization Methods

In this section, we aim to compare the normalization methods provided by the Norm-
Seq server (https://arn.ugr.es/normSeq, accessed on 10 May 2024) to RPKM and TPM.
Briefly and citing Scheepbouwer et al. [21], the purpose of these methods can be summa-
rized as follows:

Counts Per Million (CPM): CPM normalization corrects for library size without
considering transcript length [14].

Median (Med): median normalization adjusts the data of each individual sample by
adding a constant value to achieve the same median value across all samples [14].

Upper Quantile (UQ): all genes with a read count of 0 are removed, followed by a
division of the remaining gene counts by the upper quartile [39].

Relative log expression (RLE): for each gene, the RLE scaling factor is computed as the
median of the ratio of the read counts by taking the geometric mean across all samples [32].

Quantile normalization (QN): quantile normalization applies a mathematical trans-
formation to the rank statistics across samples [40].

Trimmed mean of M-values (TMM): the TMM method estimates scale factors for
comparing libraries on a relative scale [41].

2.5. Differential Expression Method

Here, we considered DESeq2 [32] and edgeR [42] as reference software for benchmark-
ing the capacity of entropy to report on the extraction of biological information given the
complexity of sub-networks associated with malignant up-regulated genes. Both packages
are cross-sample distribution-based methods that estimate the dispersion parameter for
each gene, reflecting the variability of read counts according to the negative binomial
distribution. This software applies the Benjamani–Hochberg procedure to control the false
discovery rate (FDR), helping manage the multiple testing problems inherent in RNA-seq
data analysis (cf. https://bioconductor.org/packages/release/bioc/manuals/DESeq2
/man/DESeq2.pdf, accessed on 10 May 2024). However, they differ in their normalization
methods: DESeq2 is based on the median of ratios to normalize read counts (MRN), and
EdgeR is based on the trimmed mean of M-values (TMM). DESeq2 was run from the iDEP

https://scienceparkstudygroup.github.io/rna-seq-lesson/05-descriptive-plots/index.html#43-deseq2-normalized-counts-median-of-ratios-method
https://scienceparkstudygroup.github.io/rna-seq-lesson/05-descriptive-plots/index.html#43-deseq2-normalized-counts-median-of-ratios-method
https://arn.ugr.es/normSeq
https://bioconductor.org/packages/release/bioc/manuals/DESeq2/man/DESeq2.pdf
https://bioconductor.org/packages/release/bioc/manuals/DESeq2/man/DESeq2.pdf
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server (http://bioinformatics.sdstate.edu/idep/, accessed on 10 May 2024) [18] and edgeR
from NormSeq (https://arn.ugr.es/normSeq, accessed on 10 May 2024).

2.6. Up-Regulated Genes

Gene-by-gene: Log2 fold change was computed with a custom Perl script (log fold
change step). Genes exhibiting a differential expression exceeding log2 > +1 (fold change = 2)
were categorized as up-regulated.

Population-wide: To identify significant DEGs in the tumor samples, we subtracted
the gene expression values of control samples from their respective tumor-paired samples.
The resulting values were referred to as differential gene expression (DEG step). Negative
differential gene expression values indicated higher gene expressions in control samples,
while positive differential gene expression values indicated higher gene expressions in
tumor samples.

To expand the distribution of DEGs, we eventually applied a log transformation
(xlogx step).

The Gaussian function was fitted onto the normalized differential expression with the
Python package scipy. Probability density and cumulative distribution functions (PDF and
CDF, respectively) were computed within the range of differential gene expression from
−30,000 to +30,000 to calculate the critical value (CVC step) corresponding to a one-tail
cumulative probability p = 0.975, equivalent to a p-value α = 0.025. Genes were categorized
as up-regulated if their differential expression exceeded the critical value associated with
p = 0.975. The range of −30,000 to +30,000 was suitable for the p-value and normalization
conditions outlined in this report.

In a subsequent step, the protein–protein interaction (PPI) sub-networks were inferred
for the proteins identified as products of up-regulated genes (obtained by gene-by-gene or
population approaches). The sub-networks were derived by cross-referencing these gene
lists with the human interactome (SRC step).

The human interactome (151,631 interactions among 15,526 human proteins with
UniProtKB accessions) was obtained from the intact-micluster.txt file (version updated
December 2017), accessed on 11 January 2018.

We used the PPI sub-networks of up-regulated genes from each patient to determine
the connectivity degree of each vertex (protein) by automatically counting their edges (CC
step). These metrics were used to compute the Shannon entropy (ETP step) of each PPI
sub-network, as elaborated in the section entitled “Shannon Entropy” below.

2.7. Shannon Entropy

Shannon entropy is a suitable measure to calculate the complexity or information
content of networks (see Zenil et al. [44]); it was calculated with Formula (3)

H = −∑n
k=1 p(k)log2(p(k)) (3)

where p(k) is the probability of occurrence of a vertex with a rank order k (k edges) in
the sub-network considered. The sub-networks were generated automatically from gene
lists found to be up-regulated in each patient. The edges between sub-network vertices
were established by referencing the interactions described in the IntAct interactome [45].
Subsequently, the sub-network vertices were listed and counted. The events of k edges
were computed from the minimum value of one edge between two vertices to the event
corresponding to the vertex with the maximal edges n and its neighbors for the sub-network
under consideration. When k did not match any vertex in the network, its corresponding
entropy was not computed because it would result in an undefined value (log2(0) is
undefined). All the Perl scripts involved in this process were custom-made and described
in Pires et al. [11]. The script for entropy calculation produced results identical to those
obtained using the Entropy function of R (https://www.rdocumentation.org/packages/
DescTools/versions/0.99.54/topics/Entropy, accessed on 10 May 2024).

http://bioinformatics.sdstate.edu/idep/
https://arn.ugr.es/normSeq
https://www.rdocumentation.org/packages/DescTools/versions/0.99.54/topics/Entropy
https://www.rdocumentation.org/packages/DescTools/versions/0.99.54/topics/Entropy
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2.8. Statistics

The correlations were obtained with the classical formula r = cov(X,Y)/σXσY and
orthogonal regression lines as reported by Jolicoeur [46]. The scripts of this report can be
downloaded from GitHub: https://github.com/BiologicalSystemModeling/Theranostics,
accessed on 10 May 2024 under the MIT License.

3. Results
3.1. Step 1: Assessment of Normalization on a Gene-by-Gene or Population-Wide Basis

When comparing the up-regulated genes as computed by the gene-by-gene approach
for RPKM (Figure 1A) and median (Figure 1B) normalization methods, we obtained the
plots of Figure 1C and Figure 1D, respectively.
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Figure 1. Pipelines to compute the relationship between the entropy of up-regulated gene networks
in GDC-paired samples from the RNA-seq of 8 cancer types and their 5-year OS by the gene-by-gene
approach. (A). Pipeline of RPKM normalization and log fold change. (B). Median normalization
and log fold change. (C). RPKM (A pipeline; r = −0.91; y = −0.0196 x + 4.08). (D). Mednorm (B
pipeline; r = −0.80; y = −0.0107 x + 3.41). 1 STAD, 2 LUSC, 3 LIHC, 4 KIRC, 5 KIRP, 6 BRCA, 7 THCA,
8 PRAD. The boxes represent the average entropy per cancer type, and the whiskers correspond to
their standard deviations.

https://github.com/BiologicalSystemModeling/Theranostics
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When considering log fold change, the correlation coefficient improved with RPKM
normalization (r = −0.91; Figure 1C) compared to the Mednorm approach (r = −0.80;
Figure 1D) in the gene-by-gene analysis. Although the slope associated with the pipeline
in Figure 1C is greater than that of Figure 1D, the disparities in correlation between both
relationships are not striking.

When comparing the correlation coefficients of both normalization methods within the
population-wide approach (Figure 2A,B), it is evident that the linear regression associated
with the negative correlation by RPKM (Figure 2C) is maintained, albeit slightly lower
(r = −0.84).
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(D). Mednorm (B pipeline; r = −0.16; the correlation is too low to fit a regression line). 1 STAD,
2 LUSC, 3 LIHC, 4 KIRC, 5 KIRP, 6 BRCA, 7 THCA, 8 PRAD. The boxes represent the average entropy
per cancer type, and the whiskers correspond to their standard deviations.
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Conversely, in Figure 3D, the linear regression linked to the negative correlation by
Mednorm is lost as the correlation coefficient does not exceed r = −0.16, indicating a loss of
discrimination power for highly expressed genes. This loss of discrimination power for
highly expressed genes can be attributed to the use of the median to mitigate the variance
introduced by these genes.
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Figure 3. Pipelines to compute the relationship between the entropy of up-regulated gene networks
in GDC-paired samples from the RNA-seq of 8 cancer types and their 5-year OS by the population-wide
approach. (A). Pipeline of RPKM normalization without the xlogx step. (B). Pipeline of median
normalization without the xlogx step. (C). RPKM (A pipeline; r = −0.72; y = −0.0067 x + 2.40).
(D). Mednorm (B pipeline; r = −0.17; the correlation is too low to fit a regression line). 1 STAD,
2 LUSC, 3 LIHC, 4 KIRC, 5 KIRP, 6 BRCA, 7 THCA, 8 PRAD. The boxes represent the average entropy
per cancer type, and the whiskers correspond to their standard deviations.
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The effect of the xlogx transformation is depicted in Figure 4, where the histogram
of the RPKM pipeline without xlogx transformation is shown in Figure 4A, and the same
pipeline with the inclusion of the xlogx step is presented in Figure 4B. The addition of the
xlogx step results in a flattening and broadening of the DEG distribution, enhancing the list
of genes categorized as up-regulated.
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Figure 4. Histogram of the DEGs of the TCGA-A7-A0D9 sample using the RPKM pipeline. (A): With-
out xlogx transformation (pipeline of Figure 3A). (B): With xlogx transformation (pipeline of
Figure 2A). The dot line stands for the critical value corresponding to the p-value 0.025 above which
genes are considered up-regulated in tumors relative to their paired control on a population-wide basis.

The flattening and broadening of the DEG distribution is correlated with that of the
δ tuning factor. The native RPKM formula (δ = 0) produces a very narrow distribution,
while with δ = 0.95, the normalized counts are inflated, which results in spreading the DEG
distribution for the pipelines of Figure 2A or Figure 3A. Thus, as δ increases above 0, the
DEG distribution becomes narrower, the critical value associated with the same p-value
decreases, the size of the up-regulated gene list decreases, and the entropy decreases. The
entropy reduction is expected from the fact that the probability of drawing a hub with a
high connection degree is lower in a small list than in a large one. By contrast, varying
δ had no effect on the size of the up-regulated gene list in the Figure 1A pipeline since,
whatever the normalized value of read counts, the proportion between the malignant and
reference RNA-seq through log2 fold change remains the same. Thus, tuning δ was only
effective for the population-wide approach but not for the gene-by-gene one.

To gain a deeper insight into the impact of computing differential expression on a
population-wide basis versus a gene-by-gene approach, let us consider the practical scenario of
BRCA: (i) A gene may exhibit expression levels in tumors that are at least two times higher
(fold change ≥ 2) compared to its corresponding normal tissue, where its expression level
may be close to zero. Despite being expressed at least two times higher in tumors compared
to normal tissue, it may still be expressed at a low level if compared to other DEGs after
normalization. This example illustrates that such a gene might not be categorized as up-
regulated by a population-wide approach, whereas it would be by a gene-by-gene approach.
An instance of this case is MKI67, whose normalized expression levels were <x> = 1541.9
(σ = 1034.7) in the tumor and <x> = 261.4 (σ = 190.3) in the normal tissue. (ii) The population-
wide approach considers DEGs to be significant when the expression difference between
the tumor and the normal tissue surpasses that of the DEG population based on a specified
p-value threshold. In other words, the absolute value of the expression difference in the
tumor does not necessarily need to be at least two times greater than that in the normal
tissue; it simply needs to exceed the critical value associated with the chosen p-value. An
example of this is the chaperone HSP90AB1, whose normalized expression levels were
<x> = 16,748.9 (σ = 5174.2) in the tumor and <x> = 12,491.7 (σ = 2865.3) in the normal
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tissue. (iii) Considering the xlogx transformation, the resulting distribution flattening and
broadening amplifies (by a factor of 3) the critical value associated with a specific p-value.
This alteration may influence its association with the classification of a gene as up-regulated
or not, as indicated by the higher entropy observed when compared to pipelines lacking the
xlogx step. For instance, considering a p-value of 0.025, the critical values were <x> = 3104.9
(σ = 371.7) for the RPKM pipeline without the xlogx step and <x> = 10,900.7 (σ = 1364.2)
for that pipeline including it.

3.2. Step 2: Comparison of Normalization Methods and Differential Expression
Determination Processes

The average entropies in Table 2 were calculated from each paired sample (Table S3)
by replacing RPKM by TPM in the pipeline of Figure 1A and replacing the normalization
method step in Figure 1B with UQ, Med, CPM, RLE, QN, or TMM.

Table 2. Comparison of RPKM to seven normalization methods and two methods of differentially
expressed gene (DEG) identification.

Normalization Methods
DEG Method NN 1 RPKM TPM UQ

Cancer 5-y. OS DESeq2 edgeR Av. St. Dev. Av. St. Dev. Av. St. Dev. Av. St. Dev.

STAD 37.67 2.277 1.452 3.217 0.751 3.114 0.432 3.222 0.468 3.065 0.733
LUSC 47.25 3.028 1.399 3.158 0.451 3.168 0.405 3.221 0.420 2.472 0.619
LIHC 48.63 2.470 1.370 3.452 0.719 3.460 0.551 3.351 0.551 3.178 0.862
KIRC 63.24 2.482 1.224 2.666 0.545 2.671 0.293 2.659 0.318 2.083 0.624
KIRP 75.28 2.406 1.449 2.654 0.612 2.594 0.408 2.613 0.452 2.083 0.611
BRCA 81.90 2.362 1.374 2.812 0.600 2.720 0.468 2.731 0.493 2.377 0.655
THCA 93.02 1.905 1.084 2.354 0.577 2.166 0.340 2.133 0.360 2.002 0.711
PRAD 97.83 1.445 0.738 2.172 0.764 2.097 0.526 2.073 0.534 1.945 0.720
Correl. −0.722 −0.720 −0.910 −0.914 −0.942 −0.814
Av. 0.627 0.428 0.449 0.692
St. Dev. 0.109 0.087 0.081 0.084

Normalization methods
Med CPM RLE QN TMM

Cancer 5-y. OS Av. St. Dev. Av. St. Dev. Av. St. Dev. Av. St. Dev. Av. St. Dev.

STAD 37.67 3.100 0.764 3.105 0.433 3.110 0.307 3.217 0.257 3.108 0.319
LUSC 47.25 3.181 0.449 2.487 0.398 3.161 0.354 3.100 0.351 3.162 0.361
LIHC 48.63 3.399 0.733 3.439 0.558 3.495 0.175 3.560 0.208 3.497 0.202
KIRC 63.24 2.690 0.547 2.663 0.291 2.652 0.255 2.641 0.203 2.654 0.244
KIRP 75.28 2.654 0.612 2.588 0.408 2.587 0.270 2.633 0.259 2.588 0.408
BRCA 81.90 2.682 0.599 2.693 0.472 2.690 0.307 2.757 0.307 2.686 0.309
THCA 93.02 2.214 0.561 2.152 0.338 2.154 0.311 2.285 0.259 2.157 0.325
PRAD 97.83 2.046 0.770 2.070 0.528 2.095 0.380 2.150 0.406 2.098 0.379
Correl. −0.926 −0.777 −0.911 −0.898 −0.911
Av. 0.629 0.428 0.295 0.281 0.318
St. Dev. 0.116 0.090 0.063 0.070 0.068

1 NN stands for “no normalization”.

Table 2 shows that the correlation coefficient between entropy and 5-year OS for the
sub-networks of malignant up-regulated genes of eight cancer types was lower for DESeq2
and edgeR (r = −0.72) compared to the correlation obtained with a log2 fold change ≥ 1
filter applied to the raw count normalized with any method (even with no normalization).
RLE and PCA plots are given in Figure S2 for DESeq2.

This table also shows that TPM (r = −0.94) ranks highest among methods without
variance stabilization by a scaling factor, such as RPKM (r = −0.91), UQ (r = −0.81), Med
(r = −0.93), and CPM (r = −0.77). Some of these methods performed even better than
variance-stabilized methods (RLE: r = −0.91, QN: r = −0.90, TMM: r = −0.91), but they
exhibited nearly double the rate of average standard deviation (0.4 to 0.6 compared to ~0.3).

The variance stabilization of RLE, QN, and TMM normalizations can be verified from
their RLE plots [47] compared to UQ, Med, and CPM (Figure S3). However, variance
stabilization does not necessarily improve the PCA classification of control and tumor
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samples (Figure S4); in some cases, the PCA classification is effective, and in others, it is
not, without any apparent correlation to any specific feature.

3.3. Step 3: Generalization of the Degree-Entropy vs. 5-Year OS Relationship

Since the eight cancer types in Table 2 could be the result of an over-fitting process,
we included paired samples of four additional cancer types: BLCA, LUAD, COAD, and
UCS. Table 3 shows that it is indeed the case; however, the negative relationship between
entropy and 5-year OS is maintained. The best result was obtained with TPM (r = −0.674),
while RLE (r = −0.602) and TMMM (r = −0.598) exhibited lower correlation coefficients
but were similar and had a lower variance.

Table 3. Comparison of the best performing methods for RNA-seq of 12 cancer types.

Normalization Methods
RPKM TPM Med RLE TMM

Cancer 5-y. OS Av. St. Dev. Av. St. Dev. Av. St. Dev. Av. St. Dev. Av. St. Dev.

BLCA 20.00 3.103 0.368 3.146 0.398 2.847 0.641 3.023 0.288 3.018 0.286
STAD 37.67 3.114 0.432 3.222 0.468 3.100 0.764 3.110 0.307 3.108 0.319
LUAD 40.00 2.500 0.452 2.499 0.479 2.297 0.785 2.355 0.427 2.355 0.429
LUSC 47.25 3.168 0.405 3.221 0.420 3.181 0.449 3.161 0.354 3.162 0.361
LIHC 48.63 3.460 0.551 3.351 0.551 3.399 0.733 3.495 0.175 3.497 0.202
KIRC 63.24 2.671 0.293 2.659 0.318 2.690 0.547 2.652 0.255 2.654 0.244
COAD 68.45 2.943 0.360 2.943 0.390 2.650 1.191 2.878 0.329 2.887 0.308
KIRP 75.28 2.594 0.408 2.613 0.452 2.654 0.612 2.587 0.270 2.588 0.408
BRCA 81.90 2.720 0.468 2.731 0.493 2.682 0.599 2.690 0.307 2.686 0.309
UCS 89.27 2.948 0.285 2.946 0.332 3.323 0.471 2.866 0.197 2.868 0.192
THCA 93.02 2.166 0.340 2.133 0.360 2.214 0.561 2.154 0.311 2.157 0.325
PRAD 97.83 2.097 0.526 2.073 0.534 2.046 0.770 2.095 0.380 2.098 0.379
Correl. −0.643 −0.674 −0.397 −0.602 −0.598
Av. 0.407 0.433 0.677 0.300 0.313
St. Dev. 0.084 0.076 0.198 0.071 0.075

By plotting the relationship entropy vs. 5-year OS for TPM (Figure 5A) and RLE
(Figure 5B), one can better visualize the lower variation associated with RLE compared to
TPM. Both relationships are very similar. The decrease in the correlation coefficient from
TPM to RLE or TMM is due to the decrease in covariance. The covariance for TPM was
−6.458, while for RLE, it was −5763. From this, one may conclude that variance stabilization
through the application of a scaling factor has a negative effect on the correlation.
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genes vs. their corresponding patients’ 5 year OS. (A). TPM (r = −0.67; y = −0.0114 x + 3.518). (B). RLE
(r = −0.60; y = −0.0101 x + 3.401). 1 BLCA, 2 STAD, 3 LUAD, 4 LUSC, 5 LIHC, 6 KIRC, 7 COAD,
8 KIRP, 9 BRCA, 10 UCS, 11 THCA, 12 PRAD. The boxes represent the average entropy per cancer
type, and the whiskers correspond to their standard deviations.
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4. Discussion
4.1. Biological Significance of Degree-Entropy

As highlighted in Abrams et al. [12], the primary objective of RNA-seq processing
should be the preservation of biological signals. However, given the intricate nature of
biological systems, careful consideration must be given to minimize processing biases while
accurately capturing these signals. While RNA-seq offers insights into gene expression, it
captures only a fraction of biological characteristics and thus falls short of fully encompass-
ing biological signals. It is therefore argued that a system approach to gene expression is
necessary to achieve comprehensive understanding.

Linking RNA-seq data to the interactome provides a system-level dimension by inte-
grating gene expression data with the topological structure of the biological system under
investigation. The interactome facilitates a synthetic transformation of gene expression
data into a representation of the biological system, serving as a benchmark. Nonetheless,
questions arise regarding the common attributes of biological systems, and methodologies
suitable for mathematically representing and evaluating RNA-seq processing performances.

Among the distinguishing features of biological systems, adaptability emerges promi-
nently [48]. There exists a trade-off between adaptability and the robustness of biological
networks [49], where robustness signifies stability and resilience denotes the ability to
return to equilibrium after perturbation. Both attributes are crucial for the survival of
biological entities [50]. Studies consistently demonstrated that resilience at lower organiza-
tional levels contributes significantly to the robustness of entire systems [51]. Key features
of resilience at the network level encompass modularity, redundancy, and diversity [52],
wherein (i) redundancy in pathways or isoforms enhances adaptation to varying environ-
mental conditions, (ii) modularity represents dense clusters of connections between vertices,
and (iii) diversity refers to the variety of elements within the system. These features can be
depicted by network topology, specifically by the distribution of edges per vertex.

Hubs have been associated with protein essentiality based on their positional context
within the network [53,54]. Additionally, hubs can act as bottlenecks, linking numerous
inputs to a limited number of outputs. These bottleneck proteins, as pivotal connectors, are
more likely to be essential [55]. The essentiality of central hubs within modules surpasses
that of peripheral hubs [53,54], and inhibiting them exerts a more profound disarticulating
effect on the network compared to less connected vertices [56,57]. In cancer contexts,
hubs can rewire pathways through negative and positive feedback loops [50,51,58–62],
leveraging their ability to interface with partners from diverse pathways [63]. Stochastic
alterations in tumor cell transcriptional programs enhance their adaptative potential across
varying conditions. Gurova [64] hypothesized that unstable chromatin facilitates stochastic
transitions between transcriptional programs in aggressive cancers, potentially enabling
the repurposing of existing signal transduction pathways [58,65]. Many cancer-related
hubs function as chaperones, rectifying misfolded proteins arising from mutations, thereby
decoupling genetic variations (mutations) from phenotypic expression and isolating low-
level fluctuations from high-level functionalities (phenotype variation) [50]. These resilience
mechanisms are needed for sustaining or even enhancing tumor aggressiveness within
their environment [58,66].

These considerations underscore the importance of evaluating biological systems us-
ing networks, particularly PPI networks, in the context of cancer. Entropy serves as a metric
for assessing the structural and dynamic properties of networks, which is biologically
relevant because the macroscopic resilience of a steady state correlates with the uncertainty
in the underlying microscopic processes, a property quantifiable through entropy [53].
Given that cancer-related hubs exhibit topological properties associated with the key bi-
ological functions discussed earlier, their evaluation within sub-networks of malignant
up-regulated genes is crucial for elucidating tumor characteristics. The overexpression of
hubs significantly contributes to an elevation in the overall entropy rate [67]. However,
entropy alone lacks significance without contextualization. Therefore, accurately examin-
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ing its correlation with patient 5-year OS, a measure of cancer aggressiveness, becomes
paramount [10].

The biological systems represented by tumors across 12 cancer types, ranging in
aggressiveness from 20% to 98%, exhibit considerable complexity and variability. Sources
of variance in RNA-seq include (i) the tissue origin of samples, (ii) sequencing technology,
(iii) sequencing equipment, (iv) sequencing personnel, (v) sequencing coverage, (vi) read
size, and (vii) differential expression profiles. These factors collectively influence workflow
performance, prompting questions about whether (i) the workflow can consistently achieve
high success rates across samples of such diverse complexity or (ii) it can demonstrate
superior performance with specific sample types. Ideally, a workflow capable of delivering
reliable results across a broad spectrum of biological complexities is preferred. Maximizing
the correlation coefficient between entropy and aggressiveness across this diversity of
biological contexts is akin to identifying the optimal combination of technologies that
performs effectively across the spectrum of variability.

It is well acknowledged that multiple genomic clonal populations within a neoplasm
arise from divergent evolution of progeny cells, leading to increased tumor heterogeneity
over time [68–73]. Significant temporal changes in transcriptome profiling and chromatin
accessibility have been observed due to the emergence of distinct cell populations [74].

Given that tumor aggressiveness is known to correlate positively with complexity [75–78],
entropy emerges as a suitable metric for benchmarking RNA-seq workflows. Here, we
consider tumor heterogeneity and complexity comprehensively, focusing solely on bulk
RNA-seq. In bulk RNA-seq, up-regulated genes reflect the average expression levels
conserved across the various cell lineages within the tumor sample being sequenced [79].
If this sample is representative of the entire tumor, one may hypothesize that up-regulated
genes identified in bulk RNA-seq represent the primary determinants of cancer—those that
render the tumor compatible with its environment. Expanding on this, the quantitative
concept of aggressiveness can be defined as a secondary determinant of biological systems,
stemming from their ability to more or less effectively exploit an ecological niche [80]. In
the context of cancer, this niche exists between the tumor and its host tissue. In contrast to
genes whose overexpression is consistently significant throughout the tumor, those that
are selectively overexpressed in specific cell lineages without a discernible impact on the
overall tumor level could be regarded as secondary determinants.

As highlighted by Baltazar et al. [81], “mean entropies represent the average contribu-
tion from individual hubs”. Consequently, given that aggressive tumors exhibit heightened
complexity and molecular heterogeneity, and considering that networks accurately portray
tumor biology, entropy emerges as a pertinent measure of network topology (i.e., com-
plexity) and aggressiveness, as demonstrated by Conforte et al. [10]. Furthermore, hubs
should be acknowledged as key components influencing network entropy [56]. Therefore,
we advocate for the importance of leveraging the relationship between tumor entropy and
5-year OS (or any other measure of cancer aggressiveness) as a benchmark for evaluating
RNA-seq processing methodologies. Ultimately, it is imperative to identify the optimal
workflow for diagnosing hubs that are most suitable for theranostic applications.

According to Hu et al. [82], hubs show significant enrichment in the PPI network of
18 classes of diseases, including those of the stomatognathic, endocrine, digestive, respira-
tory, female urogenital, nervous, and musculoskeletal systems, as well as cancers. Therefore,
it is plausible to anticipate a correlation between network topology and the specific charac-
teristics of these diseases. However, we would expect that a RNA-seq workflow optimized
for cancer should also be applicable to RNA-seq from other biological systems. The main
divergence lies in the read mapping process, primarily due to the frequent occurrence
of mutation, fusion, and indel events in genes affected by malignant processes. Given
that cancer poses the most demanding scenario for extracting biological information via
RNA-seq, there is no apparent reason why a workflow tailored for tumor samples would
not be suitable for RNA-seq aimed at characterizing other biological contexts.
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4.2. Comparison of Gene-by-Gene and Population-Wide Approaches

The correlation observed between the entropy of up-regulated genes using the gene-
by-gene approach and the 5-year OS (r = −0.91) with STAD, LUSC, LIHC, KIRC, KIRP,
BRCA, THCA, and PRAD suggests that the PPI sub-network of up-regulated genes as-
sociated with aggressive cancer (LUSC, LIHC, and STAD) exhibits greater complexity.
This complexity is characterized by an increased number of hubs and alternative path-
ways, providing higher redundancy when compared to less aggressive cancers (THCA,
PRAD). The remarkably high correlation coefficient delineates three distinct groups of
entropy versus aggressiveness, with KIRC, KIRP, and BRCA positioned in the middle. The
heightened pathway redundancy observed in aggressive cancer serves as a mechanism
for tumor resilience to therapeutics and a propensity for relapse. The negative correlation
identified through the gene-by-gene approach corroborates findings from previous stud-
ies [10,37,83–85]. Notably, this correlation remains robust despite the various origins of
the TCGA data, which were generated in different laboratories by disparate teams, using
distinct sequencing technologies.

Moreover, the correlation level associated with the gene-by-gene approach underscores
the relationship between the entropy of up-regulated genes and the 5-year OS, serving as
an objective benchmark for refining bioinformatic pipelines and sequencing technologies.
This benchmark aids in fine-tuning the pipelines to maximize the extraction of biological
information from RNA-seq data with high precision, as detailed in this report.

The gene-by-gene approach extracts more up-regulated genes than the population-wide
method because certain genes, which may be up-regulated by a factor of 2 in the tumor
compared to control, might still exhibit low-level up-regulation on a population-wide scale. A
filter for RPKM > 10 [7] did not change this picture significantly. In contrast, the difference
in differential gene expression between the tumor and its paired reference is statistically
greater than that obtained by the gene-by-gene approach.

We concluded from the above that the population-wide approach extracts fewer relevant
genes in terms of up-regulation when compared to the gene-by-gene approach. However, the
number of hubs taken into account by the population-wide approach is proportional to that of
the gene-by-gene approach, which explains why the linear regression between entropy and
5-year OS remains consistent. The reason why the correlation coefficient is lower for the
population-wide approach (r = −0.84) compared to the gene-by-gene approach (r = −0.91) is
that the variance increases proportionally to the average gene expression. Since the average
of gene expression is larger for the sample of up-regulated genes in the population-wide
approach compared to the gene-by-gene one, it is expected that the correlation coefficient
is lower for the population-wide approach than for the gene-by-gene one (given the average
variance is larger); however, the linear regression is maintained.

When excluding the xlogx step from the RPKM pipeline, we observed a diminution
of the correlation coefficient from r = −0.84 to r = −0.72. Since the diminution of the
correlation coefficient is due to an increase in variance, we concluded the xlogx step has an
effect on variance stabilization.

The median normalization produced a correlation with a lower correlation coefficient
(r = −0.80) compared to RPKM, considering the gene-by-gene approach. However, when
considering the population-wide approach, the median correlation disappeared (r = −0.16)
even if the xlogx step was excluded from the pipeline (r = −0.17), which indicates that
genes significantly up-regulated on a statistical basis are not suitably normalized by the
Mednorm method. This suggests that a bias is introduced by this method of normalization
in genes with extreme levels of gene expression.

4.3. Comparison of Normalization Methods and Differential Expression Determination Processes

By reference to entropy, we found that DESeq2 and edgeR were not effective in
assessing the complexity of the biological network across a large cohort encompassing
a 5-year OS aggressiveness rate ranging from 20 to 98%. From this finding, one might
conclude that methods relying on negative binomial distribution and Benjamani–Hochberg
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procedure for false discovery rate (FDR) control are not optimal for extracting biological
complexity from RNA-seq data. Conversely, normalization methods such as TPM, RLE,
and TMM combined with log2 fold change appear suitable for this purpose.

4.4. The Relationship of Degree-Entropy and 5-Year OS

It is interesting to note the negative correlation between degree-entropy and 5-year OS,
albeit this correlation diminishes notably when analyzing paired samples of 12 cancer types
rather than eight. The underperformance of Med in this context indicates its inadequate
adaptation to biological samples, characterized by significant topological complexity varia-
tion. This underscores the presence of overfitting in the previous analyses. The decrease
in correlation observed for a larger set of cancer types suggests that tumors adjusted their
gene up-regulation patterns to form more or less complex sub-networks depending on the
cancer type and its environment. This consideration holds importance in guiding clinical
decisions regarding optimal therapeutic strategies. For instance, therapies targeting hubs
may be less effective in tumors exhibiting lower entropy levels.

Among the types of errors that could account for the correlation reduction across the
12 cancer types, it should be noted that the standard deviation associated with the x axis is
unknown. Although 5-year OS is a statistical metric intended to ensure the robustness of
the data on the x axis, uncertainties remain. Another factor to consider is that the efficacy
of treatments for specific cancer types can vary independently of their aggressiveness. This
variability can influence the 5-year OS, which has generally increased over time but at
differing rates depending on the type of cancer.

5. Conclusions

In this report, we discuss the use of the negative correlation between the sub-network
entropy of malignant up-regulated genes and 5-year OS as a benchmark to assess the
efficiency of a workflow to extract information from raw-read counts. We believe the
exercise is relevant because this negative correlation is a biological observation based on
a cohort of 515 patients across 12 different cancer types that cumulates a variability that
was not corrected. This exercise is interesting in the sense that it compares workflows
covering different strategies and involving parametric and non-parametric normalization
methods. We found that the pipeline incorporating TPM and RLE or TMM normalizations
coupled with log2 fold change yielded the best correlation coefficient between cancer
aggressiveness and tumor entropy. We also observed that the discrimination power of
median normalization vanished for genes with high expression levels. The workflow
configuration had a strong impact on the sub-network entropy of malignant up-regulated
genes, consistent with biological observation. Here, we did not pretend to be exhaustive in
method comparison, but rather to draw the readers’ attention to the potential of using this
correlation to fine tune alternative workflows described in the literature.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biology13070482/s1. Figure S1: Kaplan–Meier plots corresponding
to the data from Table S1. These plots were obtained based on Table S1 of Liu et al. [43]. This table
has two columns, “OS” and “OS.time”, that were used in GraphPad Prism software for survival
curve analysis for BLCA (A), COAD (B), and UCS (C), indicating death/event as 1 and censored
data as 0; Figure S2: RLE and PCA plots of DESeq2; Figure S3: RLE plots produced by NormSeq for
six normalizing methods (UQ, Med, CPM, RLE, QN, and TMM) for STAD (A), LUSC (B), LIHC (C),
KIRC (D), KIRP (E), BRCA (F), THCA (G), and PRAD (H). Cancer samples are plotted as blue and
controls as red.; Figure S4: PCA plots produced by NormSeq for six normalizing methods (UQ, Med,
CPM, RLE, QN, and TMM) for STAD (A), LUSC (B), LIHC (C), KIRC (D), KIRP (E), BRCA (F), THCA
(G), and PRAD (H); Table S1: Rates of 6-year survival for BLCA, COAD, and UCS; Table S2: Lists of
TCGA paired samples used to produce the degree-entropies of this study; Table S3: Lists of degree
entropies per cancer type.
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