Diffusion on PCA-UMAP Manifold: The Impact of Data Structure Preservation to Denoise High-Dimensional Single-Cell RNA Sequencing Data
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Preprocessing of the Row Count Single-Cell Matrix
2.2. PCA-UMAP Manifold and Creation of the Distance Cells Matrix
2.3. Creation of the Affinity Matrix
2.4. Row-Stochastic Markov-Normalization of A into Markov Matrix M
2.5. Data Diffusion and Imputation
2.6. Worm Bulk Microarray Data Processing
2.7. scRNA-seq Datasets and Preprocessing
2.7.1. Peripheral Blood Mononuclear Cells Dataset
2.7.2. Neuronal Dataset
2.7.3. Epithelium Mesenchyme Transition Dataset
2.7.4. Tumor Spheroid Dataset
2.8. Multidimensional Scaling of Exponentiated Transition Markov Matrix
2.9. PHATE Visualization
2.10. Imputation Performance of Neuronal Cells
3. Results
3.1. Results Overview
- Performance of Diffusion-Based Imputation (Section 3.2): The impact of PCA and PCA-UMAP initialization on imputation performance was evaluated using bulk transcriptomic data. Various parameter settings, such as t, knn, and PCA dimensions, are used to assess the imputation performance.
- Visualization with sc-PHENIX (Section 3.3): Various visualizations are provided to demonstrate how sc-PHENIX minimizes over-smoothing compared to MAGIC. This section includes detailed analyses using different datasets, such as MNIST and neuronal datasets, to show the preservation of local and global data structures. Additionally, for the PBMC dataset, we visually evaluated the effect on gene–gene interactions.
- Evaluation of Over-Smoothing (Section 3.4): Over-smoothing is analyzed by evaluating specific gene markers across different cell phenotypes in the neuronal dataset. The ability of sc-PHENIX to maintain the integrity of these markers without excessive smoothing is compared to MAGIC.
- Evaluation of the Heterogeneity of MCF7 Cells Data (Section 3.5): The heterogeneity of spheroid data from MCF7 breast cancer cells is examined post-imputation. Differences in 3D PCA manifolds and the identification of dense clusters are discussed. The analysis highlights how sc-PHENIX captures more transition states and extreme phenotypes compared to MAGIC.
3.2. Performance of Diffusion-Based Imputation Using Bulk Data: Evaluating the Effects of PCA and PCA-UMAP Initialization
3.3. Visualization with sc-PHENIX
3.3.1. Visualization of the Exponentiated Markov Matrix Based on Different Manifold Initializations
3.3.2. Evaluation of Continuum Structure Preservation after MAGIC and sc-PHENIX on Gene–Gene Interaction Visualizations
3.3.3. Effect of Increasing Parameters and PCA Dimensions in the Cell Neighborhood Captured in the Exponentiated Markov Matrix Using MDS Visualizations
3.3.4. Distribution of Distinct Cluster Samples on Dense Regions of Mt
3.3.5. Comparing the Visual Results of PHENIX (PCA-UMAP) Versus Specialized Visualization Methods
3.3.6. The inherent Risk of Diffusion Artifacts
3.4. Evaluation of Over-Smoothing among Distinct Cell Phenotypes
3.5. Evaluation of the Heterogeneity of Spheroids of MCF7 Cells Data with Imputation
3.5.1. Differences in 3D PCA Manifold of Imputed Data
3.5.2. Over-Smoothing Analysis of Imputed Data and Continuum Structure Implications
3.5.3. GSEA Analysis of Cell Phenotype
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- AlJanahi, A.A.; Danielsen, M.; Dunbar, C.E. An Introduction to the Analysis of Single-Cell RNA-Sequencing Data. Mol. Ther. Methods Clin. Dev. 2018, 10, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Kharchenko, P.V.; Silberstein, L.; Scadden, D.T. Bayesian Approach to Single-Cell Differential Expression Analysis. Nat. Methods 2014, 11, 740–742. [Google Scholar] [CrossRef] [PubMed]
- Stegle, O.; Teichmann, S.A.; Marioni, J.C. Computational and Analytical Challenges in Single-Cell Transcriptomics. Nat. Rev. Genet. 2015, 16, 133–145. [Google Scholar] [CrossRef] [PubMed]
- Grün, D.; Kester, L.; van Oudenaarden, A. Validation of Noise Models for Single-Cell Transcriptomics. Nat. Methods 2014, 11, 637–640. [Google Scholar] [CrossRef] [PubMed]
- van Dijk, D.; Sharma, R.; Nainys, J.; Yim, K.; Kathail, P.; Carr, A.J.; Burdziak, C.; Moon, K.R.; Chaffer, C.L.; Pattabiraman, D.; et al. Recovering Gene Interactions from Single-Cell Data Using Data Diffusion. Cell 2018, 174, 716–729.e27. [Google Scholar] [CrossRef] [PubMed]
- Hou, W.; Ji, Z.; Ji, H.; Hicks, S.C. A Systematic Evaluation of Single-Cell RNA-Sequencing Imputation Methods. Genome Biol. 2020, 21, 218. [Google Scholar] [CrossRef] [PubMed]
- Rostom, R.; Svensson, V.; Teichmann, S.A.; Kar, G. Computational Approaches for Interpreting scRNA-Seq Data. FEBS Lett. 2017, 591, 2213–2225. [Google Scholar] [CrossRef] [PubMed]
- Kumari, S.; Jayaram, B. Measuring Concentration of Distances—An Effective and Efficient Empirical Index. IEEE Trans. Knowl. Data Eng. 2017, 29, 373–386. [Google Scholar] [CrossRef]
- Andrews, T.S.; Hemberg, M. Identifying Cell Populations with scRNASeq. Mol. Aspects Med. 2018, 59, 114–122. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, H.; Rudin, C.; Shaposhnik, Y. Understanding How Dimension Reduction Tools Work: An Empirical Approach to Deciphering T-SNE, UMAP, TriMap, and PaCMAP for Data Visualization. J. Mach. Learn. Res. 2021, 22, 1–73. [Google Scholar]
- Moon, K.R.; van Dijk, D.; Wang, Z.; Gigante, S.; Burkhardt, D.B.; Chen, W.S.; Yim, K.; van den Elzen, A.; Hirn, M.J.; Coifman, R.R.; et al. Visualizing Structure and Transitions in High-Dimensional Biological Data. Nat. Biotechnol. 2019, 37, 1482–1492. [Google Scholar] [CrossRef] [PubMed]
- Peres-Neto, P.R.; Jackson, D.A.; Somers, K.M. How Many Principal Components? Stopping Rules for Determining the Number of Non-Trivial Axes Revisited. Comput. Stat. Data Anal. 2005, 49, 974–997. [Google Scholar] [CrossRef]
- Amir, E.-A.D.; Davis, K.L.; Tadmor, M.D.; Simonds, E.F.; Levine, J.H.; Bendall, S.C.; Shenfeld, D.K.; Krishnaswamy, S.; Nolan, G.P.; Pe’er, D. viSNE Enables Visualization of High Dimensional Single-Cell Data and Reveals Phenotypic Heterogeneity of Leukemia. Nat. Biotechnol. 2013, 31, 545–552. [Google Scholar] [CrossRef] [PubMed]
- McInnes, L.; Healy, J.; Saul, N.; Großberger, L. UMAP: Uniform Manifold Approximation and Projection. J. Open Source Softw. 2018, 3, 861. [Google Scholar] [CrossRef]
- Kobak, D.; Linderman, G.C. Initialization Is Critical for Preserving Global Data Structure in Both T-SNE and UMAP. Nat. Biotechnol. 2021, 39, 156–157. [Google Scholar] [CrossRef]
- Sakaue, S.; Hirata, J.; Kanai, M.; Suzuki, K.; Akiyama, M.; Lai Too, C.; Arayssi, T.; Hammoudeh, M.; Al Emadi, S.; Masri, B.K.; et al. Dimensionality Reduction Reveals Fine-Scale Structure in the Japanese Population with Consequences for Polygenic Risk Prediction. Nat. Commun. 2020, 11, 1569. [Google Scholar] [CrossRef] [PubMed]
- Malzer, C.; Baum, M. A Hybrid Approach to Hierarchical Density-Based Cluster Selection. In Proceedings of the 2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), Karlsruhe, Germany, 14–16 September 2020. [Google Scholar]
- Tjärnberg, A.; Mahmood, O.; Jackson, C.A.; Saldi, G.-A.; Cho, K.; Christiaen, L.A.; Bonneau, R.A. Optimal Tuning of Weighted knn- and Diffusion-Based Methods for Denoising Single Cell Genomics Data. PLoS Comput. Biol. 2021, 17, e1008569. [Google Scholar] [CrossRef]
- Wagner, F.; Yan, Y.; Yanai, I. K-Nearest Neighbor Smoothing for High-Throughput Single-Cell RNA-Seq Data. bioRxiv 2018, 217737. [Google Scholar]
- Patruno, L.; Maspero, D.; Craighero, F.; Angaroni, F.; Antoniotti, M.; Graudenzi, A. A Review of Computational Strategies for Denoising and Imputation of Single-Cell Transcriptomic Data. Brief. Bioinform. 2021, 22, bbaa222. [Google Scholar] [CrossRef]
- Coifman, R.R.; Lafon, S.; Lee, A.B.; Maggioni, M.; Nadler, B.; Warner, F.; Zucker, S.W. Geometric Diffusions as a Tool for Harmonic Analysis and Structure Definition of Data: Diffusion Maps. Proc. Natl. Acad. Sci. USA 2005, 102, 7426–7431. [Google Scholar] [CrossRef]
- Huang, M.; Wang, J.; Torre, E.; Dueck, H.; Shaffer, S.; Bonasio, R.; Murray, J.I.; Raj, A.; Li, M.; Zhang, N.R. SAVER: Gene Expression Recovery for Single-Cell RNA Sequencing. Nat. Methods 2018, 15, 539–542. [Google Scholar] [CrossRef] [PubMed]
- Elyanow, R.; Dumitrascu, B.; Engelhardt, B.E.; Raphael, B.J. netNMF-Sc: Leveraging Gene-Gene Interactions for Imputation and Dimensionality Reduction in Single-Cell Expression Analysis. Genome Res. 2020, 30, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Linderman, G.C.; Zhao, J.; Roulis, M.; Bielecki, P.; Flavell, R.A.; Nadler, B.; Kluger, Y. Zero-Preserving Imputation of Single-Cell RNA-Seq Data. Nat. Commun. 2022, 13, 192. [Google Scholar] [CrossRef]
- Cheng, Y.; Ma, X.; Yuan, L.; Sun, Z.; Wang, P. Evaluating Imputation Methods for Single-Cell RNA-Seq Data. BMC Bioinform. 2023, 24, 302. [Google Scholar] [CrossRef]
- Lytal, N.; Ran, D.; An, L. Normalization Methods on Single-Cell RNA-Seq Data: An Empirical Survey. Front. Genet. 2020, 11, 501166. [Google Scholar] [CrossRef]
- Lange, M.; Bergen, V.; Klein, M.; Setty, M.; Reuter, B.; Bakhti, M.; Lickert, H.; Ansari, M.; Schniering, J.; Schiller, H.B.; et al. CellRank for Directed Single-Cell Fate Mapping. Nat. Methods 2022, 19, 159–170. [Google Scholar] [CrossRef]
- Francesconi, M.; Lehner, B. The Effects of Genetic Variation on Gene Expression Dynamics during Development. Nature 2014, 505, 208–211. [Google Scholar] [CrossRef] [PubMed]
- Cutler, A.; Breiman, L. Archetypal Analysis. Technometrics 1994, 36, 338–347. [Google Scholar] [CrossRef]
- McInnes, L.; Healy, J.; Astels, S. Hdbscan: Hierarchical Density Based Clustering. J. Open Source Softw. 2017, 2, 205. [Google Scholar] [CrossRef]
- Liao, Y.; Wang, J.; Jaehnig, E.J.; Shi, Z.; Zhang, B. WebGestalt 2019: Gene Set Analysis Toolkit with Revamped UIs and APIs. Nucleic Acids Res. 2019, 47, W199–W205. [Google Scholar] [CrossRef]
- Vu, H.T.; Kaur, H.; Kies, K.R.; Starks, R.R.; Tuteja, G. Identifying Novel Regulators of Placental Development Using Time-Series Transcriptome Data. Life Sci. Alliance 2023, 6, e202201788. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; He, J.; Zhong, L.; Huang, L.; Gong, B.; Hu, J.; Qian, H.; Yang, Z. Single-Cell Transcriptome Reveals Diversity of Müller Cells with Different Metabolic-Mitochondrial Signatures in Normal and Degenerated Macula. Front. Neurosci. 2022, 16, 1079498. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Li, M.; Guo, S.; Li, M.; Cao, Z.; Luo, X.; Liu, J.; Liang, R.; Shao, Y.; Yang, Y.; et al. Histone Deacetylase 1 Expression and Regulatory Network in Lung Adenocarcinoma Based on Data Mining and Implications for Targeted Treatment. J. Oncol. 2023, 2023, 2745074. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-W.; Kilic, O.; Deo, M.; Jimenez-Cowell, K.; Demirdizen, E.; Kim, H.; Turcan, Ş. CIC Reduces xCT/SLC7A11 Expression and Glutamate Release in Glioma. Acta Neuropathol. Commun. 2023, 11, 13. [Google Scholar] [CrossRef] [PubMed]
- Ramdas, A.; Trillos, N.G.; Cuturi, M. On Wasserstein Two-Sample Testing and Related Families of Nonparametric Tests. Entropy 2017, 19, 47. [Google Scholar] [CrossRef]
- Zheng, J.X.; Pawar, S.; Goodman, D.F.M. Graph Drawing by Stochastic Gradient Descent. IEEE Trans. Vis. Comput. Graph. 2019, 25, 2738–2748. [Google Scholar] [CrossRef] [PubMed]
- KNeighborsClassifier. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html (accessed on 29 May 2024).
- Tasic, B.; Menon, V.; Nguyen, T.N.; Kim, T.K.; Jarsky, T.; Yao, Z.; Levi, B.; Gray, L.T.; Sorensen, S.A.; Dolbeare, T.; et al. Adult Mouse Cortical Cell Taxonomy Revealed by Single Cell Transcriptomics. Nat. Neurosci. 2016, 19, 335–346. [Google Scholar] [CrossRef]
- Mukherjee, S.; Zhang, Y.; Fan, J.; Seelig, G.; Kannan, S. Scalable Preprocessing for Sparse scRNA-Seq Data Exploiting Prior Knowledge. Bioinformatics 2018, 34, i124–i132. [Google Scholar] [CrossRef]
- Scipy.stats.tukey_hsd—SciPy v1.13.1 Manual. Available online: https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.tukey_hsd.html (accessed on 29 May 2024).
- Haghverdi, L.; Buettner, F.; Theis, F.J. Diffusion Maps for High-Dimensional Single-Cell Analysis of Differentiation Data. Bioinformatics 2015, 31, 2989–2998. [Google Scholar] [CrossRef]
- Deng, L. The MNIST Database of Handwritten Digit Images for Machine Learning Research [best of the Web]. IEEE Signal Process. Mag. 2012, 29, 141–142. [Google Scholar] [CrossRef]
- Yin, J.; Hu, D.; Zhou, Z. Growing Locally Linear Embedding for Manifold Learning. J. Pattern Recognit. Res. 2007, 2, 1–16. [Google Scholar]
- Mugavin, M.E. Multidimensional Scaling: A Brief Overview. Nurs. Res. 2008, 57, 64. [Google Scholar] [CrossRef] [PubMed]
- Saelens, W.; Cannoodt, R.; Todorov, H.; Saeys, Y. A Comparison of Single-Cell Trajectory Inference Methods. Nat. Biotechnol. 2019, 37, 547–554. [Google Scholar] [CrossRef] [PubMed]
- Expression-Official, D.-S.C.G. 10x Genomics Support 2021. Available online: https://support.10xgenomics.com/single-cell-gene-expression (accessed on 20 June 2023).
- Schwabe, D.; Formichetti, S.; Junker, J.P.; Falcke, M.; Rajewsky, N. The Transcriptome Dynamics of Single Cells during the Cell Cycle. Mol. Syst. Biol. 2020, 16, e9946. [Google Scholar] [CrossRef]
- Muciño-Olmos, E.A.; Vázquez-Jiménez, A.; Avila-Ponce de León, U.; Matadamas-Guzman, M.; Maldonado, V.; López-Santaella, T.; Hernández-Hernández, A.; Resendis-Antonio, O. Unveiling Functional Heterogeneity in Breast Cancer Multicellular Tumor Spheroids through Single-Cell RNA-Seq. Sci. Rep. 2020, 10, 12728. [Google Scholar] [CrossRef]
- Karch, J.; Molkentin, J.D. Regulated Necrotic Cell Death: The Passive Aggressive Side of Bax and Bak. Circ. Res. 2015, 116, 1800–1809. [Google Scholar] [CrossRef]
- Syntichaki, P.; Tavernarakis, N. Death by Necrosis. Uncontrollable Catastrophe, or Is There Order behind the Chaos? EMBO Rep. 2002, 3, 604–609. [Google Scholar] [CrossRef]
- Direct Comparative Analyses of 10X Genomics Chromium and Smart-seq2. Genom. Proteom. Bioinform. 2021, 19, 253–266. [CrossRef] [PubMed]
- Pugh, C.W.; Ratcliffe, P.J. Regulation of Angiogenesis by Hypoxia: Role of the HIF System. Nat. Med. 2003, 9, 677–684. [Google Scholar] [CrossRef]
- Riffle, S.; Hegde, R.S. Modeling Tumor Cell Adaptations to Hypoxia in Multicellular Tumor Spheroids. J. Exp. Clin. Cancer Res. 2017, 36, 102. [Google Scholar] [CrossRef]
- Powan, P.; Luanpitpong, S.; He, X.; Rojanasakul, Y.; Chanvorachote, P. Detachment-Induced E-Cadherin Expression Promotes 3D Tumor Spheroid Formation but Inhibits Tumor Formation and Metastasis of Lung Cancer Cells. Am. J. Physiol. Cell Physiol. 2017, 313, C556–C566. [Google Scholar] [CrossRef]
- Liu, C.-Y.; Lin, H.-H.; Tang, M.-J.; Wang, Y.-K. Vimentin Contributes to Epithelial-Mesenchymal Transition Cancer Cell Mechanics by Mediating Cytoskeletal Organization and Focal Adhesion Maturation. Oncotarget 2015, 6, 15966–15983. [Google Scholar] [CrossRef]
- Lüönd, F.; Tiede, S.; Christofori, G. Breast Cancer as an Example of Tumour Heterogeneity and Tumour Cell Plasticity during Malignant Progression. Br. J. Cancer 2021, 125, 164–175. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Du, J.; Wang, Y.; Jia, H. A Coagulation-Related Gene-Based Prognostic Model for Invasive Ductal Carcinoma. Front. Genet. 2021, 12, 722992. [Google Scholar] [CrossRef]
- Gao, S.; Soares, F.; Wang, S.; Wong, C.C.; Chen, H.; Yang, Z.; Liu, W.; Go, M.Y.Y.; Ahmed, M.; Zeng, Y.; et al. CRISPR Screens Identify Cholesterol Biosynthesis as a Therapeutic Target on Stemness and Drug Resistance of Colon Cancer. Oncogene 2021, 40, 6601–6613. [Google Scholar] [CrossRef]
- Groves, S.M.; Ildefonso, G.V.; McAtee, C.O.; Ozawa, P.M.M.; Ireland, A.S.; Stauffer, P.E.; Wasdin, P.T.; Huang, X.; Qiao, Y.; Lim, J.S.; et al. Archetype Tasks Link Intratumoral Heterogeneity to Plasticity and Cancer Hallmarks in Small Cell Lung Cancer. Cell Syst. 2022, 13, 690–710.e17. [Google Scholar] [CrossRef] [PubMed]
- Groves, S.M.; Ireland, A.; Liu, Q.; Simmons, A.J.; Lau, K.; Iams, W.T.; Tyson, D.; Lovly, C.M.; Oliver, T.G.; Quaranta, V. Cancer Hallmarks Define a Continuum of Plastic Cell States between Small Cell Lung Cancer Archetypes. bioRxiv 2021. [Google Scholar] [CrossRef]
- Smith, C.L.; Eppig, J.T. The Mammalian Phenotype Ontology: Enabling Robust Annotation and Comparative Analysis. Wiley Interdiscip. Rev. Syst. Biol. Med. 2009, 1, 390–399. [Google Scholar] [CrossRef]
- Blake, J.A.; Baldarelli, R.; Kadin, J.A.; Richardson, J.E.; Smith, C.L.; Bult, C.J. Mouse Genome Database Group Mouse Genome Database (MGD): Knowledgebase for Mouse-Human Comparative Biology. Nucleic Acids Res. 2021, 49, D981–D987. [Google Scholar] [CrossRef]
- Indovina, P.; Rainaldi, G.; Santini, M.T. Hypoxia Increases Adhesion and Spreading of MG-63 Three-Dimensional Tumor Spheroids. Anticancer Res. 2008, 28, 1013–1022. [Google Scholar] [PubMed]
- Han, S.J.; Kwon, S.; Kim, K.S. Challenges of Applying Multicellular Tumor Spheroids in Preclinical Phase. Cancer Cell Int. 2021, 21, 152. [Google Scholar] [CrossRef] [PubMed]
- Otto, D.; Jordan, C.; Dury, B.; Dien, C.; Setty, M. Quantifying Cell-State Densities in Single-Cell Phenotypic Landscapes Using Mellon. bioRxiv 2023. [Google Scholar] [CrossRef] [PubMed]
- Chari, T.; Pachter, L. The Specious Art of Single-Cell Genomics. PLoS Comput. Biol. 2023, 19, e1011288. [Google Scholar] [CrossRef] [PubMed]
- Packer, J.S.; Zhu, Q.; Huynh, C.; Sivaramakrishnan, P.; Preston, E.; Dueck, H.; Stefanik, D.; Tan, K.; Trapnell, C.; Kim, J.; et al. A Lineage-Resolved Molecular Atlas of Embryogenesis at Single-Cell Resolution. Science 2019, 365, eaax1971. [Google Scholar] [CrossRef] [PubMed]
- Khodadadi-Jamayran, A.; Tsirigos, A. Graph Drawing-Based Dimensionality Reduction to Identify Hidden Communities in Single-Cell Sequencing Spatial Representation. bioRxiv 2020. [Google Scholar] [CrossRef]
- Padron-Manrique, C.; Vázquez-Jiménez, A.; Esquivel-Hernandez, D.A.; Martinez Lopez, Y.E.; Neri-Rosario, D.; Sánchez-Castañeda, J.P.; Giron-Villalobos, D.; Resendis-Antonio, O. Mb-PHENIX: Diffusion and Supervised Uniform Manifold Approximation for Denoizing Microbiota Data. Bioinformatics 2023, 39, btad706. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cristian, P.-M.; Aarón, V.-J.; Armando, E.-H.D.; Estrella, M.-L.Y.; Daniel, N.-R.; David, G.-V.; Edgar, M.; Paul, S.-C.J.; Osbaldo, R.-A. Diffusion on PCA-UMAP Manifold: The Impact of Data Structure Preservation to Denoise High-Dimensional Single-Cell RNA Sequencing Data. Biology 2024, 13, 512. https://doi.org/10.3390/biology13070512
Cristian P-M, Aarón V-J, Armando E-HD, Estrella M-LY, Daniel N-R, David G-V, Edgar M, Paul S-CJ, Osbaldo R-A. Diffusion on PCA-UMAP Manifold: The Impact of Data Structure Preservation to Denoise High-Dimensional Single-Cell RNA Sequencing Data. Biology. 2024; 13(7):512. https://doi.org/10.3390/biology13070512
Chicago/Turabian StyleCristian, Padron-Manrique, Vázquez-Jiménez Aarón, Esquivel-Hernandez Diego Armando, Martinez-Lopez Yoscelina Estrella, Neri-Rosario Daniel, Giron-Villalobos David, Mixcoha Edgar, Sánchez-Castañeda Jean Paul, and Resendis-Antonio Osbaldo. 2024. "Diffusion on PCA-UMAP Manifold: The Impact of Data Structure Preservation to Denoise High-Dimensional Single-Cell RNA Sequencing Data" Biology 13, no. 7: 512. https://doi.org/10.3390/biology13070512
APA StyleCristian, P. -M., Aarón, V. -J., Armando, E. -H. D., Estrella, M. -L. Y., Daniel, N. -R., David, G. -V., Edgar, M., Paul, S. -C. J., & Osbaldo, R. -A. (2024). Diffusion on PCA-UMAP Manifold: The Impact of Data Structure Preservation to Denoise High-Dimensional Single-Cell RNA Sequencing Data. Biology, 13(7), 512. https://doi.org/10.3390/biology13070512