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Simple Summary: Simmental cattle is a renowned breed that is extensively raised because of its high
beef and milk fat content. The early establishment of the gut microbiota is closely related to the gut
health of calves. However, the structure and function of the gut microbiota in Simmental calves before
weaning remain unclear. The development of gut microbiota in neonatal calves is a multifaceted
process affected by numerous factors. Gastrointestinal microbiota profoundly affect animal health,
productivity, and disease susceptibility, necessitating further study of specific microbial functions
during early development. Diarrhea stands out as the most prevalent ailment among lactating
calves. Changes in the structure and functionality of the gut microbiota can precipitate gut disorders,
ultimately leading to diarrhea. Therefore, thorough investigations of the early colonization patterns
of Simmental calves, along with an understanding of the gut microbiota in healthy calves versus
those afflicted by diarrhea, have significant implications for diarrhea prevention and development of
probiotic interventions.

Abstract: The objective of this study was to explore the dynamic changes in the gut microbiota
of Simmental calves before weaning and to compare the microbial composition and functionality
between healthy calves and those with diarrhea. Fourteen neonatal Simmental calves were divided
into a healthy group (n = 8) and a diarrhea group (n = 6). Rectal stool samples were collected from
each calf on days 1, 3, 5, 7, 9, 12, 15, 18, 22, 26, 30, 35, and 40. High-throughput sequencing of the 16S
rRNA gene V1–V9 region was conducted to examine changes in the gut microbiota over time in both
groups and to assess the influence of diarrhea on microbiota structure and function. Escherichia coli,
Bacteroides fragilis, and B. vulgatus were the top three bacterial species in preweaning Simmental
calves. Meanwhile, the major functions of the fecal microbiota included “metabolic pathways”,
“biosynthesis of secondary metabolites”, “biosynthesis of antibiotics”, “microbial metabolism in
diverse environments”, and “biosynthesis of amino acids”. For calves in the healthy group, PCoA
revealed that the bacterial profiles on days 1, 3, 5, 7, and 9 differed from those on days 15, 18, 22,
26, 30, 35, and 40. The profiles on day 12 clustered with both groups, indicating that microbial
structure changes increased with age. When comparing the relative abundance of bacteria between
healthy and diarrheic calves, the beneficial Lactobacillus johnsonii, Faecalibacterium prausnitzii, and
Limosilactobacillus were significantly more abundant in the healthy group than those in the diarrhea
group (p < 0.05). This study provides fundamental insights into the gut microbiota composition of
Simmental calves before weaning, potentially facilitating early interventions for calf diarrhea and
probiotic development.

Keywords: calf diarrhea; intestinal flora; high-throughput 16S rRNA

1. Introduction

Simmental cattle, a renowned dual-purpose breed originating from Switzerland, are
noted for their exceptional performance in both meat and milk production [1]. Conse-
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quently, Simmental cattle are primarily utilized in China for cross-breeding with dairy
and beef cattle [2]. Inner Mongolia is the main area for beef cattle breeding in China, with
Tongliao serving as the core area. In Tongliao, the beef cattle population exceeds three
million, with Simmental cattle being the main breed. Calf health is the most critical aspect
of beef cattle breeding [3]. Currently, calf diarrhea causes the highest rates of morbidity
and mortality, resulting in significant economic losses [4]. Limited information is available
on the fecal microbiota of bovines under extensive grazing conditions. Therefore, from
economic, ecological, and health perspectives, it is crucial to assess the bacterial diversity
(from phylum to species) in the intestines of domestic ruminants.

Early colonization of the gut microbiota significantly affects calf gut health [5]. For
neonatal calves, microbial colonization is a complex and dynamic process [6], influenced by
host–microbial interactions and various external factors [7], such as maternal microbiota,
birth process, diet, antibiotics, and weaning status. Studies indicate that the intestinal
flora of ruminants begins to develop during the fetal period, with detectable microflora
appearing in the rumen, cecum, meconium, and even amniotic fluid of calves after approxi-
mately 5 months of pregnancy [8,9]. After birth, the intestinal microbiota of neonatal calves
undergo rapid changes. Within approximately 8 h, Escherichia coli and Streptococcus colonize
all gastrointestinal regions, followed by lactic acid bacteria and Clostridium perfringens [10].
Lactic acid bacteria dominate both the cecum and stool samples from the second day to one
week after birth [11]. In 3-week-old calves, dominant bacterial genera include Bacteroides,
Prevotella, Coccus-Useriella, and Faebacillus [12], followed by the appearance of Lactococcus
flavus and cellulolytic bacteria by the fifth week [11]. By 12 weeks, Prevotella, Bacteroides,
Clostridium, and Eubacterium are the main intestinal microbiota in calves [13]. Although
these dynamic microbial changes have been extensively studied in Holstein calves, research
on Simmental calves exploring microbial colonization and function remains limited [14].

Calf diarrhea stands as a leading cause of mortality before weaning, with approxi-
mately 53.4% of calf deaths in South Korea attributed to this condition [15]. A 2018 NAHMS
study reported that 39% of calf deaths within the first 3 weeks of life in the United States
were due to diarrhea [16]. Recent studies have shown mortality rates of 7.6% in Canada
and 5.3% in Belgium [17,18]. Despite a decline in the mortality rate of US dairy calves from
11% in 2007 to 5% in 2014, the overall incidence remains high [19]. The factors contributing
to neonatal calf diarrhea are multifaceted, primarily involving nutritional factors, intestinal
inflammation, stress, and pathogenic infections [20]. Antibiotics, such as β-lactams and
sulfonamides, are commonly used to treat calf diarrhea. Overuse of antibiotics can disrupt
the gut microbiota of calves, leading to intestinal disorders. Specifically, antibiotics such
as methylene salicylic acid and bacitracin, used in calf diarrhea treatment, may enhance
the colonization of potential pathogens such as E. coli, Enterococcus, and Shigella in calf
intestines, thereby affecting the intestinal microbial balance [21].

Meanwhile, the use of antibiotics also affects the metabolic patterns of intestinal mi-
crobiota and nutrient absorption, potentially promoting colonization by drug-resistant
bacteria and increasing the risk of infection in preweaning calves [22]. Additionally, an-
tibiotic residues can adversely affect the environment, underscoring the importance of
exploring alternative antibiotics for the prevention and treatment of calf diarrhea. Probi-
otics, including Bifidobacterium pseudocatenulatum, Lactobacillus acidophilus [23], and Bacillus
subtilis [24,25], can serve as sustainable options for the prevention and treatment of diarrhea
in young calves. They can resist pathogen adhesion and enhance the intestinal barrier
function, thereby reducing intestinal damage. Studies have shown that Bifidobacterium
pseudomidobacterium produces lactic acid and short-chain fatty acids (SCFAs) to facilitate the
prevention and treatment of calf diarrhea [26]. Moreover, the proliferation of probiotics in
the intestine can lower undigested carbohydrate levels, thus reducing the risk of diarrhea
resulting from osmotic gradient disruption [27]. The above findings were mainly based
on Holstein calves, and there is a dearth of reports on probiotic applications and diarrhea
treatment in Simmental calves.
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This study investigated changes in the gut microbiota of healthy Simmental calves
and those who experienced diarrhea before weaning over time and predicted intestinal
microbial functions. Additionally, we compared the microbial composition and functions
of calves in the health and diarrhea groups before, during, and after the diarrhea period.

2. Materials and Methods
2.1. Animal Breeding

The experiment was conducted at a commercial ranch in Tongliao City, Inner Mongolia,
from February to April 2023, following protocols approved by the Laboratory Animal
Welfare and Ethics Committee of the College of Animal Science and Technology, Inner
Mongolia Minzu University (protocol code: 2022058). In total, 14 neonatal Simmental
calves (7 males and 7 females, weighing 39 ± 5 kg) were randomly selected upon birth and
enrolled in the study. They were managed according to the standard feeding protocol of
the ranch. Immediately after birth, all calves were separated from their maternal cows and
housed in individual hutches after umbilical cord disinfection. Each calf was housed in
a calf island (1.8 m × 1.4 m × 1.2 m), with bedding changed every 7 days to maintain a
healthy environment. Within 1 h of birth, each calf received 4 L of colostrum, followed by
an additional 2 L within 8–10 h. Subsequently, they were fed 5 L of whole milk per day.
The calves had ad libitum access to calf starter on the 3rd day after birth.

2.2. Daily Health Monitoring

Calves were monitored and assessed daily before morning and evening feeding.
Parameters, including nasal and eye discharge, coughing, umbilical cord inflammation,
rectal temperature, dehydration status, and overall condition, were recorded using the
specific scoring criteria outlined in a previously published article [28]. Fecal samples were
collected and scored based on fecal fluidity: 1 = normal, 2 = soft, 3 = runny, or 4 = watery.
Calves with a fecal score of 3 or 4 were classified as diarrheic [29]. The detailed scoring
criteria are provided in Supplementary File S1.

2.3. Grouping

The calves were categorized into two groups according to the occurrence of diarrhea
during the study period: diarrheal group (A) (n = 6) and healthy group (B) (n = 8). All
calves in the diarrheal group experienced diarrhea starting on day 5 and recovered by day
9 after treatment with an oral electrolyte solution. Calves in the healthy group remained
healthy throughout the experimental period. Stool samples were collected from all calves at
8:00 am on days 1, 3, 5, 7, 9, 12, 15, 18, 22, 26, 30, 35, and 40 after birth. Fecal samples were
temporarily stored in liquid nitrogen and subsequently transferred to a −80 ◦C refrigerator
for long-term storage.

2.4. High-Throughput 16S Ribosomal RNA Gene Sequencing

Total genomic DNA was extracted from stool samples using the TGuide S96 Magnetic
Stool DNA Kit (Tiangen Biotech, Beijing, China), following the manufacturer’s instructions.
The quality and quantity of the extracted DNA were assessed by electrophoresis on a 1.8%
agarose gel, and the DNA concentration and purity were determined using a NanoDrop
2000 UV-Vis spectrophotometer (Thermo Scientific, Wilmington, DE, USA). The full-length
16S rRNA gene was amplified using primer pair 27F: AGRGTTTGATYNTGGCTCAG and
1492R: TASGGHTACCTTGTTASGACTT. Both the forward and reverse 16S primers were
tagged with sample-specific PacBio barcode sequences to enable multiplexed sequenc-
ing. Barcoded primers were selected to minimize chimera formation compared with an
alternative protocol involving a second PCR reaction. PCR amplification was performed
using the KOD One PCR Master Mix (Toyobo Life Science, Wuhan, China) for 25 cycles,
comprising an initial denaturation at 95 ◦C for 2 min, followed by 10 s of denaturation at
98 ◦C, annealing at 55 ◦C for 30 s, extension at 72 ◦C for 1 min 30 s per cycle, and a final step
at 72 ◦C for 2 min. The total PCR amplicons were purified using VAHTSTM DNA Clean
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Beads (Vazyme, Nanjing, China) and quantified with the Qubit dsDNA HS Assay Kit and
Qubit 3.0 Fluorometer (Invitrogen, Thermo Fisher Scientific, Hillsboro, OR, USA). After
individual quantification, amplicons were pooled in equal proportions. SMRTbell libraries
were then generated from the amplified DNA using the SMRTbell Express Template Prep
Kit 2.0 (Beijing, China) according to the manufacturer’s instructions (Pacific Biosciences,
Beijing, China). The purified SMRTbell libraries derived from the pooled and barcoded
samples were sequenced on a PacBio Sequel II platform (Beijing Biomarker Technologies
Co., Ltd., Beijing, China) using Sequel II binding kit 2.0 (Beijing, China).

2.5. Bioinformatic Analysis

Qualified sequences exceeding a 97% similarity threshold were assigned to operational
taxonomic units (OTUs) using USEARCH (version 10.0). Taxonomic annotation of the
OTUs was conducted using the Naive Bayes classifier in QIIME2 [30], utilizing the SILVA
database [31] (release 138.1) with a confidence threshold of 70%. The α-diversity test was
performed to determine the complexity of species diversity in each sample using QIIME2
(version 2020.6) software. Beta diversity was analyzed using principal co-ordinate analysis
(PCoA) to evaluate species diversity across the samples. Bacterial abundance and diversity
were compared using one-way analysis of variance. The gut microbiome was considered
significant if its relative abundance exceeded 0.1% and was present in over half of the
animals in at least one age group. FAPROTAX software (https://anaconda.org/bioconda/
fastx_toolkit, accessed on 25 May 2024) was employed to predict the function of intestinal
fecal microorganisms in calves, focusing on metabolic pathways with a CPM > 5 observed
in at least 50% of the animals within each treatment group.

2.6. Statistical Analysis

Data were analyzed using Microsoft Excel 2019 and SPSS 25.0. A nonparametric
Wilcoxon test was performed to assess differences in the α-diversity index and relative
abundance of microbiota between the control and diarrhea groups on the same sampling
day. The top five bacterial species were compared between adjacent time points within
each group, with p < 0.05 indicating statistical significance and 0.05 < p < 0.10 suggesting a
trend towards significance. In addition, a similarity analysis between the two groups was
conducted using ANOSIM. The results were interpreted as follows. When p < 0.05 and
r < 0.5, the intestinal microbiota between the two groups were similar; when p < 0.05 and
r > 0.75, the microbiota were completely different; when 0.5 < r < 0.75, they were different;
and 0.3 < r < 0.5 indicated a tendency towards difference. No significant differences were
observed for r < 0.3. A Wilcoxon test was applied to compare intergroup differences
between the control and diarrhea groups on the same sampling day for gut microbiota
function [32], with p < 0.05 indicating statistical significance.

2.7. Nucleotide Sequence Accession Numbers

All sequences were deposited in the NCBI Sequence Read Archive and are publicly
accessible under accession number PRJNA1072024. These files can be accessed via the
following link: https://www.ncbi.nlm.nih.gov/bioproject/PRJNA1072024 (accessed on 1
February 2024).

3. Results
3.1. Data Collection and Diversity of Gut Microbiota

In total, amplicon sequencing of preweaning Simmental calves’ intestinal microbiota
yielded 2,185,694 high-quality sequences, which were assigned to a total of 1122 OTUs based
on 97% nucleotide sequence similarity (Supplementary File S2). Both the sparsity and rank
abundance curves exhibited saturation trends, indicating that the depth and uniformity
of sequencing met the requirements for subsequent analyses (Supplementary File S3). The
calves in the healthy group exhibited 34 shared OTUs across various time points, with
additional 12, 15, 28, 11, 8, 7, 9, 16, 27, 13, 20, 16, and 123 OTUs specific to days 1, 3, 5,

https://anaconda.org/bioconda/fastx_toolkit
https://anaconda.org/bioconda/fastx_toolkit
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA1072024
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7, 9, 12, 15, 18, 22, 26, 30, 35, and 40 (Figure 1a). Similarly, calves in the diarrheal group
displayed 34 shared OTUs across different time points, with additional 24, 15, 22, 12, 12,
4, 8, 10, 16, 27, 20, 29, and 108 OTUs specific to days 1, 3, 5, 7, 9, 12, 15, 18, 22, 26, 30,
35, and 40 (Figure 1b). Additionally, α-diversity indices (ACE, Chao1, PD-whole-tree,
Shannon, and Simpson) were compared at adjacent time points for calves in both healthy
and diarrheal groups, revealing no significant differences throughout the preweaning
period (Supplementary File S3).
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Figure 1. Petalograms of intestinal microbial OTUs at different time points during the preweaning
period in Simmental calves. (a) Healthy group and (b) diarrheal group.

The PCoA results revealed that the microbial profiles of calves in the healthy group
exhibited similar structures on days 1, 3, 5, 7, and 9, as well as on days 15, 18, 22, 26, 30,
35, and 40. However, on day 12, the microbial profiles of the calves intersected with two
distinct clusters (Figure 2a). Similarly, for calves in the diarrheal group, the microbial
profiles were similar on days 1, 3, and 5, as well as on days 15, 18, 22, 26, 30, 35, and 40.
However, on days 7, 9, and 12, the microbial profiles intersected with the aforementioned
two clusters (Figure 2b).
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Figure 2. Comparison of bacterial profiles of calves across different sampling points using principal
co-ordinate analysis (PCoA). (a) PCoA plot generated using unweighted Jaccard for 13 different time
points of calves in the healthy groups. The two principal components explained 22.65% and 5.90% of
the variance. (b) PCoA plot generated using unweighted Jaccard for 13 different time points of calves
in the diarrheal groups. The two principal components explained 18.13% and 7.42% of the variance.
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3.2. Taxonomic Composition of Healthy Simmental Calves during Preweaning Period

For healthy Simmental calves, regardless of age, 20 bacterial phyla were identified
in their stool samples throughout the experiment. The top 10 bacterial phyla were Firmi-
cutes (39.586 ± 1.773%), Bacteroidota (29.488 ± 1.821%), Proteobacteria (25.959 ± 2.487%),
Fusobacteriota (2.538 ± 0.539%), Verrucomicrobiota (0.772 ± 0.204%), Actinobacteriota
(0.454 ± 0.098%), Desulfobacterota (0.453 ± 0.072%), Cyanobacteria (0.400 ± 0.124%),
Campylobacterota (0.267 ± 0.105%), and Elusimicrobiota (0.062 ± 0.023%) (Figure 3a).
Additionally, 328 bacterial genera were identified at the genus level. The 10 predominant
bacterial genera were Escherichia-Shigella (20.628 ± 2.483%), Bacteroides (19.208 ± 1.504%),
Faecalibacterium (4.374 ± 0.627%), Alloprevotella (3.330 ± 0.559%), Clostridium sensu stricto 1
(2.367 ± 0.639%), Streptococcus (2.269 ± 0.520%), Fusobacterium (2.538 ± 0.539%), Butyricicoc-
cus (2.433 ± 0.429%), Lachnoclostridium (2.338 ± 0.253%), and Parabacteroides (2.081 ± 0.300%)
(Figure 3b). Moreover, 503 bacterial species were identified, with E.coli (20.628 ± 2.483%), B.
fragilis (8.023 ± 1.309%), B. vulgatus (6.589 ± 0.830%), F. prausnitzii (3.837 ± 0.602%), S. pas-
teurianus (2.103 ± 0.520%), B. pullicaecorum (2.308 ± 0.432%), C. perfringens (1.717 ± 0.468%),
F. mortiferum (1.939 ± 0.501%), R. gnavus_CC55_001C (1.769 ± 0.355%), and C. kerstersii
(1.447 ± 0.433%) being the 10 predominant bacterial species (Figure 3c). Furthermore, no
significant difference in the relative abundance of the top five bacterial species was detected
between adjacent time points (Figure 3d).
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3.3. Taxonomic Composition of Simmental Calves Infected with Diarrhea during Preweaning
Period

For the calves in the diarrheal group, 17 phyla were detected throughout the experiment
regardless of age. The top 10 bacterial phyla included Firmicutes (41.492 ± 2.317%), Bac-
teroidota (29.384 ± 2.341%), Proteobacteria (21.615 ± 3.043%), Fusobacteriota (3.815 ± 1.009%),
Verrucomicrobiota (2.170 ± 0.564%), Actinobacteriota (0.722 ± 0.188%), Cyanobacteria
(0.480 ± 0.133%), Desulfobacterota (0.292 ± 0.066%), Elusimicrobiota (0.119 ± 0.0019%),
and Campylobacterota (0.020 ± 0.016%) (Figure 4a). Additionally, 135 bacterial gen-
era were identified, of which Bacteroides (20.756 ± 1.895%) was the most dominant, fol-
lowed by Escherichia-Shigella (17.129 ± 3.057%), Faecalibacterium (4.433 ± 0.689%), Fusobac-
terium (3.813 ± 1.099%), Lactobacillus (2.971 ± 1.265%), Lachnoclostridium (2.383 ± 0.989%),
Clostridium_sensu_stricto_1 (2.654 ± 0.342%), Akkermansia (2.164 ± 0.564%), [Ruminococ-
cus]_gnavus_group (1.646 ± 0.374%), and Tyzzerella (1.751 ± 0.276%) (Figure 4b). A total
of 458 bacterial species were identified at the species level. The top 10 annotated species
were E. coli (17.129 ± 3.057%), B. vulgatus (7.695 ± 1.051%), B. fragilis (5.308 ± 1.339%), F.
prausnitzii (3.449 ± 0.536%), F. mortiferum (2.598 ± 0.977%), L. amylovorus (2.638 ± 1.186%),
A. muciniphila (2.16 4 ± 0.564%), B. uniformis (1.909 ± 0.351%), R. bacterium (1.713 ± 0.432%),
and R. gnavus_CC55_001C (1.451 ± 0.345%) (Figure 4c).
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Moreover, significant changes in the relative abundances of the top five bacterial
species were observed between adjacent time points. The results showed significant
differences in the relative abundance of B. fragilis between days 5 (13.000 ± 12.460%) and
7 (6.868 ± 6.322%) (p = 0.047), and F. prausnitzii exhibited significant differences between
days 12 (4.573 ± 1.396%) and 15 (6.377 ± 2.011%) (p = 0.046) (Figure 4d). No significant
differences were observed in the relative abundances of other bacteria at the species level.

3.4. Similarity Analysis of Gut Microbiota of Simmental Calves during Preweaning Period

In our study, ANOSIM analysis was used to conduct pairwise comparisons of gut
microbial structures in preweaning calves between the healthy and diarrheal groups at
13 time points. In the healthy group, the gut microbiota exhibited similarity between days 1
and 7 (r < 0.5), as well as between days 18 and 40 (r < 0.5). However, the microbial structure
on day 12 differed between the two age groups (Table 1). In the diarrheal group, similar
gut microbial patterns were observed in two age groups, between days 1 and 15 (r < 0.5) as
well as between days 18 and 35 (r < 0.5) (Table 2).

3.5. Differential Analysis of Intestinal Microbiota of Simmental Calves between Healthy and
Diarrheal Groups

In this study, we conducted a comparative analysis to identify potential differences
in bacterial taxonomy between calves in the healthy and diarrheal groups from birth
through the stage of diarrheal resolution (1, 3, 5, 7, and 9 days). Notably, on day 1 after
birth, significant differences were observed in the relative abundances of three bacterial
species between calves in the healthy and diarrheal groups. Specifically, Limosilactobacillus
(diarrheal group: 0, healthy group: 0.035 ± 0.021%, p = 0.046) and P. mirabilis (diarrheal
group: 0.073 ± 0.071%, healthy group: 0.043 ± 0.01%, p = 0.032) exhibited higher relative
abundances in the diarrheal group than in the healthy group. Conversely, L. johnsonii
showed a lower relative abundance in the diarrheal group than in the healthy group
(diarrheal group: 0.012 ± 0.010%, healthy group: 0.030 ± 0.019%, p = 0.012) (Table 3).

On day 3 following birth, significant differences were observed in the relative abun-
dances of four bacterial species between both groups. Four bacterial species displayed
significantly lower relative abundances in the diarrheal group than in the healthy group,
including the relative abundance of F. prausnitzii (diarrheal group: 0.029 ± 0.023%, healthy
group: 1.619 ± 1.461%, p = 0.014), P. russellii (diarrheal group: 0.023 ± 0.018%, healthy
group: 1.330 ± 0.720%, p = 0.008), E. ramosum (diarrheal group: 0.778 ± 0.416%, healthy
group: 2.283 ± 0.611%, p = 0.023), and L. johnsonii (diarrheal group: 0, healthy group:
1.208 ± 1.113%, p = 0.023) (Table 3).

On day 5 after birth, when diarrhea occurred, the relative abundance of three bacte-
rial species showed significantly lower relative abundances in the diarrheal group com-
pared with those in the healthy group: F. bumbilicata (diarrheal group: 0, healthy group:
0.269 ± 0.159%, p = 0.010), G. bgenomosp 3 (diarrheal group: 0.057 ± 0.037%, healthy group:
2.764 ± 1.556%, p = 0.019), and C. bpharyngocola (diarrheal group: 0.309 ± 0.309%, healthy
group: 1.376 ± 0.609%, p = 0.040) (Table 3).

On day 7 after birth, the relative abundances of five bacterial species were markedly
higher in the diarrheal group than in the healthy group, including S. mitis (diarrheal group:
0.380 ± 0.380%, healthy group: 0.005 ± 0.008%, p = 0.013), E. ramosum (diarrheal group:
0.638 ± 0.252%, healthy group: 0.087 ± 0.053%, p = 0.019), P. mirabilis (diarrheal group:
0.180 ± 0.099%, healthy group: 0.026 ± 0.017%, p = 0.019), A. muciniphila (diarrheal group:
2.96: ± 2.760%, healthy group: 0.004 ± 0.003%, p = 0.040), and L. amylovorus (diarrheal
group: 0.011 ± 0.004%, healthy group: 0.002 ± 0.001%, p = 0.040) (Table 3).
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Table 1. ANOSIM pairwise comparison matrix of fecal microbiota of calves in the healthy group (n = 8).

Healthy Group 1 d 3 d 5 d 7 d 9 d 12 d 15 d 18 d 22 d 26 d 30 d 35 d 40 d

1 d 0
3 d r = 0.398 * 0
5 d r = 0.402 * r = −0.001 0
7 d r = 0.340 * r = 0.363 * r = 0.328 * 0
9 d r = 0.718 * r = 0.544 * r = 0.491 * r = −0.021 0

12 d r = 0.861 * r = 0.789 * r = 0.667 * r = 0.199 * r = 0.137 * 0
15 d r = 0.889 * r = 1 * r = 0.988 * r = 0.871 * r = 0.954 * r = 0.646 * 0
18 d r = 1 * r = 1 * r = 0.996 * r = 0.947 * r = 0.992 * r = 0.845 * r = 0.027 0
22 d r = 1 * r = 0.985 * r = 0.978 * r = 0.925 * r = 0.951 * r = 0.801 * r = 0.388 * r = 0.122 0
26 d r = 0.985 * r = 0.961 * r = 0.962 * r = 0.900 * r = 0.934 * r = 0.735 * r = 0.314 * r = 0.068 r = −0.109 0
30 d r = 1 * r = 1 * r = 0.996 * r = 0.965 * r = 0.996 * r = 0.907 * r = 0.525 * r = 0.213 * r = −0.034 r = −0.634 0
35 d r = 1 * r = 1 * r = 0.999 * r = 0.996 * r = 1 * r = 0.969 * r = 0.824 * r = 0.422 * r = 0.181 * r = 0.007 r = −0.047 0
40 d r = 1 * r = 0.998 * r = 0.991 * r = 0.980 * r = 0.996 * r = 0.906 * r = 0.611 * r = 0.413 * r = 0.252 * r = 0.014 r = 0.091 r = 0.064 0

* represents pairwise comparison with a p-value < 0.05. Values with r < 0.5 are bolded. When p-value < 0.05, fecal microbiotas between two age groups were considered completely
different at r-value > 0.75; different at 0.5 < r-value < 0.75; tended to be different data 0.3 < r-value < 0.5; not different at r-value < 0.3.

Table 2. ANOSIM pairwise comparison matrix of fecal microbiota of calves in the diarrheal group (n = 6).

Diarrhea Group 1 d 3 d 5 d 7 d 9 d 12 d 15 d 18 d 22 d 26 d 30 d 35 d 40 d

1 d 0
3 d r = 0.017 0
5 d r = 0.362 * r = 0.125 0
7 d r = 0.533 * r = 0.409 * r = 0.022 0
9 d r = 0.635 * r = 0.619 * r = 0.024 r = −0.192 0

12 d r = 0.861 * r = 0.833 * r = 0.709 * r = 0.347 * r = 0.128 0
15 d r = 0.938 * r = 1 * r = 0.924 * r = 0.728 * r = 0.425 * r = −0.099 0
18 d r = 0.942 * r = 0.976 * r = 0.887 * r = 0.728 * r = 0.474 * r = 0.039 r = −0.110 0
22 d r = 0.983 * r = 0.996 * r = 0.979 * r = 0.867 * r = 0.648 * r = 0.109 r = 0.051 r = −0.011 0
26 d r = 0.935 * r = 0.976 * r = 0.864 * r = 0.715 * r = 0.611 * r = 0.094 r = 0.132 r = −0.057 r = −0.185 0
30 d r = 0.972 * r = 0.968 * r = 0.949 * r = 0.888 * r = 0.709 * r = 0.240 * r = 0.174 r = −0.002 r = −0.067 r = −0.204 0
35 d r = 0.998 * r = 1 * r = 0.997 * r = 0.992 * r = 0.898 * r = 0.583 * r = 0.462 * r = 0.302 * r = −0.019 r = −0.093 r = −0.004 0
40 d r = 0.959 * r = 0.968 * r = 0.947 * r = 0.912 * r = 0.863 * r = 0.561 * r = 0.581 * r = 0.435 * r = 0.146 r = 0.056 r = 0.105 r = −0.098 0

* represents pairwise comparison with a p-value < 0.05. Values with r < 0.5 are bolded. When p-value < 0.05, fecal microbiotas between two age groups were considered completely
different at r-value > 0.75; different at 0.5 < r-value < 0.75; tended to be different data 0.3 < r-value < 0.5; not different at r-value < 0.3.
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Table 3. Relative abundance comparison of intestinal microbiota between calves in the healthy and
diarrheal groups at different time points.

Day Bacteria
Group

p-Value
A B

1 d

L. johnsonii 0.012 ± 0.010% 0.030 ± 0.019% 0.012

Limosilactobacillus 0 0.035 ± 0.021% 0.046

P. mirabilis 0.073 ± 0.071% 0.043 ± 0.017% 0.032

3 d

P. russellii 0.023 ± 0.018% 1.330 ± 0.720% 0.008

F. prausnitzii 0.029 ± 0.023% 1.619 ± 1.461% 0.014

E. ramosum 0.778 ± 0.416% 2.283 ± 0.611% 0.023

L. johnsonii 0.002 ± 0.002% 1.208 ± 1.113% 0.023

5 d

F. umbilicata 0 0.269 ± 0.159% 0.010

G. genomosp._3 0.057 ± 0.037% 2.764 ± 1.556% 0.019

C. pharyngocola 0.309 ± 0.309% 1.376 ± 0.609% 0.040

7 d

S. mitis 0.380 ± 0.380% 0.005 ± 0.008% 0.013

E. ramosum 0.638 ± 0.252% 0.087 ± 0.053% 0.019

P. mirabilis 0.180 ± 0.099% 0.026 ± 0.017% 0.019

A. muciniphila 2.967 ± 2.760% 0.004 ± 0.003% 0.040

L. amylovorus 0.011 ± 0.004% 0.002 ± 0.001% 0.040

9 d

P. russellii 0.032 ± 0.026% 6.153 ± 5.149% 0.004

L. murinus 8.123 ± 7.134% 0.128 ± 0.127% 0.010

F. necrophorum 0.071 ± 0.042% 0.001 ± 0.001% 0.012

S. mitis 0.012 ± 0.018% 8.893 ± 0.003% 0.012

A. muciniphila 0.159 ± 0.096% 0.008 ± 0.006% 0.020

B. vulgatus 16.951 ± 7.283% 4.473 ± 2.922% 0.020

L. johnsonii 0.262 ± 0.253% 2.409 ± 1.656% 0.020

P. dorei 0.003 ± 0.003% 0.005 ± 0.005% 0.020

K. pneumoniae 1.384 ± 1.285% 0.003 ± 0.002% 0.028

E. coli 27.465 ± 11.439% 52.753 ± 7.410% 0.039

After the recovery phase of calf diarrhea, specifically on day 9 after birth, significant
differences were noted in the relative abundance of 10 bacterial species between both
groups. Five bacterial species exhibited higher relative abundances in the diarrheal group
than in the healthy group: L. murinus (diarrheal group: 8.123 ± 7.134%, healthy group:
0.128 ± 0.127%, p = 0.010), F. necrophorum (diarrheal group: 0.071 ± 0.042%, healthy group:
0.001 ± 0.001%, p = 0.012), A. muciniphila (diarrheal group: 0.159 ± 0.096%, healthy group:
0.008 ± 0.006%, p = 0.020), B. vulgatus (diarrheal group: 16.951 ± 7.283%, healthy group:
4.473 ± 2.922%, p = 0.020), and K. pneumoniae (diarrheal group: 1.384 ± 1.285%, healthy
group: 0.003 ± 0.002%, p = 0.028). Meanwhile, the relative abundances of five other bacterial
species in the diarrheal group were significantly lower than those in the healthy group:
P. russellii (diarrheal group: 0.032 ± 0.026%, healthy group: 6.153 ± 5.149%, p = 0.004)
S. mitis (diarrheal group: 0.012 ± 0.018%, healthy group: 8.893 ± 0.003%, p = 0.012), P.
dorei (diarrheal group: 0.003 ± 0.003%, healthy group: 0.005 ± 0.005%, p = 0.020), E. coli
(diarrheal group: 27.465 ± 11.439%, healthy group: 52.753 ± 7.410%, p = 0.039), and L.
johnsonii (diarrheal group: 0.262 ± 0.253%, healthy group: 2.409 ± 1.656%, p = 0.020)
(Table 3).
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3.6. Prediction of Intestinal Microbial Functions of Simmental Calves

In total, 364 KEGG pathways (metabolic pathways with CPM > 5 in at least 50% of
the animals in each treatment group) were predicted from fecal samples of healthy neona-
tal calves. However, 25 pathways classified as exogenous were subsequently removed,
leaving 181 pathways for further analysis (Supplementary File S2). These 181 identi-
fied KEGG pathways belonged to four first-level KEGG functions, which were “Cellular
Processes” (2.900 ± 0.029%), “Environmental Information Processing” (7.001 ± 0.104%),
“Genetic Information Processing” (7.941 ± 0.083%), and “Metabolism” (78.293 ± 0.093%)
(Figure 5a). Additionally, 27 secondary-level KEGG functions were identified, with “Global
and overview maps” (41.855 ± 0.084%), “Carbohydrate metabolism” (10.202 ± 0.056%),
“Amino acid metabolism” (6.479± 0.033%), “Membrane transport” (4.313± 0.073%), “Metabolism
of cofactors and vitamins” (4.136 ± 0.017%), “Energy metabolism” (3.999 ± 0.015%), “Nu-
cleotide metabolism” (3.752 ± 0.025%), “Translation” (3.309 ± 0.044%), “Replication
and repair” (2.971 ± 0.029%), and “Signal transduction” (2.649 ± 0.039%) being the
top 10 functions (Figure 5b). Furthermore, the top 10 KEGG pathways were “Metabolic
pathways” (17.483 ± 0.031%), “Biosynthesis of secondary metabolites” (7.743 ± 0.021%),
“Biosynthesis of antibiotics” (5.684 ± 0.023%), “Microbial metabolism in diverse environ-
ments” (4.422 ± 0.032%), “Biosynthesis of amino acids” (3.942 ± 0.031%), “ABC trans-
porters” (3.230 ± 0.035%), “Carbon metabolism” (2.719 ± 0.005), “Two-component system”
(2.312 ± 0.033%), “Ribosome” (2.274 ± 0.024%), and “Purine metabolism” (2.162 ± 0.011%)
(Figure 5c).
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3.7. Differences in Microbial Functions of Calves between Healthy and Diarrheal Groups

Second-level KEGG functions were compared between calves in the healthy and
diarrheal groups on days 5, 9, 15, 30, 35, and 40. Specifically, on day 5 after birth, the
three functions demonstrated significant differences between the two groups. Among
these, two functions exhibited significantly higher relative contents in calves in the di-
arrheal group than in calves in the healthy group, namely “Environmental adaptation”
(diarrheal group: 0.156 ± 0.010%, healthy group: 0.142 ± 0.009%, p = 0.046) and “Cellular
community-prokaryotes” (diarrheal group: 1.588 ± 0.162%, healthy group: 1.361 ± 0.124%,
p = 0.047). Conversely, the relative content of the “Folding, sorting and degradation”
function was notably lower in diarrheal group calves compared to the healthy group (di-
arrheal group: 1.401 ± 0.072%, healthy group: 1.505 ± 0.069%, p = 0.048). On day 9 after
birth, following diarrheal recovery, a notable difference was observed between the two
groups in one function, with the relative content significantly higher in the diarrheal group
compared to the healthy group, “Endocrine system” (diarrheal group: 0.527 ± 0.045%,
healthy group: 0.460 ± 0.057%, p = 0.044). Similarly, on day 15, a significant difference
was noted in one function between both groups, namely “Cell motility” (diarrheal group:
0.369 ± 0.153%, healthy group: 0.587 ± 0.177%, p = 0.043). Likewise, on day 30, a single
function showed a significant disparity between the groups, namely “Metabolism of ter-
penoids and polyketides” (diarrheal group: 1.034 ± 0.045%, healthy group: 1.104 ± 0.030%,
p = 0.016). Additionally, on day 35, one function exhibited a significant difference between
the two groups: “Folding, sorting and degradation” (diarrheal group: 1.587 ± 0.036%,
healthy group: 1.527 ± 0.028%, p = 0.012). On day 40, significant differences were ob-
served in seven functions between the two groups. The relative content of four functions
was notably higher in diarrheal group calves than the healthy group: “Transcription”
(diarrheal group: 0.173 ± 0.011%, healthy group: 0.153 ± 0.009%, p = 0.012), “Repli-
cation and repair” (diarrheal group: 3.173 ± 0.107%, healthy group: 2.975 ± 0.160%,
p = 0.025), “Nucleotide metabolism” (diarrheal group: 3.871 ± 0.146%, healthy group:
3.676 ± 0.152%, p = 0.046), and “Translation” (diarrheal group: 3.628 ± 0.119%, healthy
group: 3.377 ± 0.239%, p = 0.036). Conversely, the relative content of three functions was
significantly lower in diarrheal group calves than the healthy group: “Energy metabolism”
(diarrheal group: 3.927 ± 0.107%, healthy group: 4.104 ± 0.078%, p = 0.013), “Amino acid
metabolism” (diarrheal group: 6.500 ± 0.150%, healthy group: 6.780 ± 0.203%, p = 0.031),
and “Digestive system” (diarrheal group: 0.041 ± 0.016%, healthy group: 0.063 ± 0.013%,
p < 0.05) (Figure 6).
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4. Discussion

The health of calves is crucial for both farmers, owing to its effect on farm prof-
itability, and consumers, who are increasingly concerned about the welfare and health
of farm animals [14]. In neonatal ruminants, nutrient digestion primarily occurs in the
intestine because of underdeveloped rumen. The gut microbiota is crucial for host nu-
trition, absorption, metabolism, immune regulation, and gut health [33]. In this study,
14 preweaning Simmental calves were selected, and their stool samples were subjected to
high-throughput sequencing of the V1–V9 region of the 16S rRNA gene. Microbial profiling
has revealed diverse and dense microbial colonization in neonatal calves [34]. Throughout
the experimental period, α-diversity indices, including Chao1, Simpson, and ACE, showed
no significant differences with age in both healthy and diarrheal groups, which may be
attributed to individual variation or the limited number of preweaning calves. In contrast
to our findings, significant differences were observed in Chao1 and Shannon indices among
different age groups of Holstein calves [34]. Such discrepancies may arise from breed
differences between Holstein and Simmental calves or variations in the sampling points.

In healthy Simmental calves, analysis of intestinal microbiota changes during the
preweaning period using PCoA revealed structural shifts in the gut microbiome. The
intestinal microbial structure of calves remained similar from days 1 to 9, with a noticeable
transition on day 12, likely linked to intestinal maturation and changes in feed intake.
However, feed intake was not measured in this study, highlighting the need for further
investigation to explore the correlation between feed intake and intestinal microbial col-
onization. Additionally, the microbial structure remained similar from days 15 to 40,
suggesting that microorganisms tended to mature and stabilize during this period. Our
findings align with those of previous studies on Holstein calves, which also exhibited
age-related changes, with microbial structures on days 21 and 42 resembling each other but
differing from day 7 of the preweaning period [34]. Both studies indicated a gradual matu-
ration process of the intestinal microbiota, although the timing of transition to maturity
and stability may vary based on the calf breed and sampling time.

Similar to the results of previous studies on calf fecal intestinal microbiota targeting
the V1–V4 hypervariable regions of the 16S rRNA gene through 454 pyrosequencing [35],
Firmicutes, Bacteroidetes, and Proteobacteria were the dominant phyla in preweaning
Simmental calves, constituting over 90% of the total bacterial composition. Moreover, E.
coli, B. fragilis, and B. vulgatus emerged as the dominant species, consistent with studies on
dynamic changes in the intestinal microbiota of preweaning Holstein calves [36]. Escherichia,
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as facultative anaerobes, can create a conducive environment for anaerobic bacterial colo-
nization soon after calf birth [37]. Therefore, the high abundance of Escherichia is closely
related to intestinal oxygen consumption. Additionally, Bacteroides metabolize nutrients
to produce acetic acid, which serves as a substrate for Butyricoccus and Megamonas to
produce butyric and propionic acids [38]. Butyrate is crucial for intestinal epithelial cells as
an energy source [39] and for inhibiting proinflammatory cytokine signaling pathways [40].
Substantial colonization by E. coli, B. fragilis, and B. vulgatus during early life plays an
important role in gut health, potentially contributing to the maturation and functionality of
intestinal processes.

During days 5–7, coinciding with the onset of diarrhea, there was a significant change
in the relative abundance of B. vulgatus in calves in the diarrheal group [41]. The reduction
in the relative abundance of B. vulgatus may potentially influence the growth and health
of preweaning calves affected by diarrhea. Previous studies have suggested that oral
administration of F. prausnitzii significantly reduces the incidence of severe diarrhea and
mortality in lactating Holstein calves while promoting growth and intestinal health [42].
In our study, the relative abundance of F. prausnitzii in the gut microbiota of calves in the
diarrheal group was higher on day 15 than on day 12, indicating an increase after the
calves recovered from diarrhea. This finding aligns with previous research highlighting
the role of F. prausnitzii in neonatal calf intestinal health. Comparative analysis revealed
significant differences in the relative abundance of intestinal microbiota between calves in
the healthy and diarrheal groups at the corresponding sample collection points. Studies on
preweaning Holstein calves have shown that milk supplemented with Lactobacillus reuteri
L81 and Lactobacillus johnsonii L29 enhances growth performance, immunity, and antioxidant
capacity, while reducing the incidence of diarrhea [43]. Interestingly, a higher relative
abundance of L. johnsonii was detected in the intestines of Simmental calves in the healthy
group on days 1, 3, and 9, suggesting a potential probiotic effect of L. johnsonii closely related
to the absence of diarrhea in these calves. The oral administration of F. prausnitzii is closely
associated with a reduced rate of calf diarrhea [44]. In our study, the relative abundance
of F. prausnitzii was significantly higher in the intestines of calves in the healthy group on
day 3 after birth, possibly contributing to the absence of diarrhea in this group. Meanwhile,
Limosilactobacillus supplementation has been shown to alleviate the symptoms of ETEC
K88-induced diarrhea in piglets by modulating macrophage phenotypes [45]. Therefore, the
higher relative abundance of Limosilactobacillus observed on day 1 in neonatal Simmental
calves could potentially contribute to the prevention of calf diarrhea. Therefore, L. johnsonii,
F. prausnitzii, and Limosilactobacillus may play significant roles in preventing diarrhea in
Simmental calves and could be developed as potential probiotic bacteria. Conversely, E.
coli is a potentially pathogenic bacterium that causes neonatal calf diarrhea [46]. On day
9, shortly after recovery from diarrhea, the relative abundance of E. coli in the diarrheal
group was significantly higher than in the healthy group, suggesting a heightened risk of
recurrent diarrhea in calves in the diarrheal group.

In contrast to the predicted main intestinal functions of Holstein calves [34], the core
functions identified in preweaning Simmental calves not only included functions related
to nutrient metabolism but also encompassed “Biosynthesis of antibiotics”, which may be
linked to breed-specific productive properties. This finding suggests that the gut microbes
of preweaning Simmental calves may tend to promote intestinal health through antibiotic
production. Furthermore, differences in intestinal microbial functions between calves in the
healthy and diarrheal groups were examined. A significantly higher relative abundance
of “Environmental adaptation” function was observed on day 5 in the healthy group,
indicating that the intestinal microbiota of healthy calves exhibited stronger adaptability to
the intestinal environment and maintained better homeostasis [47]. By day 40, the relative
abundances of “energy metabolism” and “amino acid metabolism” functions in the healthy
group surpassed those in the diarrheal group. These functions are crucial in the hindgut of
preweaning calves and provide essential energy and nutrients to the host [48]. Therefore,
our findings suggest that the gut microbiome of calves in the healthy group may contribute
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more effectively to providing energy and nutrients to the host than calves in the diarrheal
group.

In future animal husbandry practices, veterinarians, veterinary technicians, and farm-
ers should receive training in veterinary knowledge to understand the critical importance
of early intestinal health in young livestock [49]. The development and application of probi-
otics are crucial for promoting the growth and development of young calves. Furthermore,
educating modern students about 16S rRNA gene V1–V9 sequencing technology and its
practical applications in classrooms will contribute to cultivating knowledgeable students
and skilled veterinarians [50].

5. Conclusions

This study investigated the dynamic changes in the intestinal microbiota of prewean-
ing Simmental calves and predicted the functions of their gut microbiota. E. coli, B. fragilis,
and B. vulgatus emerged as dominant bacterial species. Major intestinal functions in-
cluded “Biosynthesis of secondary metabolites”, “Biosynthesis of antibiotics”, “Microbial
metabolism in diverse environments”, and “Biosynthesis of amino acids”. Moreover,
pronounced dynamic changes in the intestinal microbiota of calves in both healthy and
diarrheal groups were observed with increasing age. Although further understanding is
needed on the interactions between miRNA/mRNA–TLR–microbiome, our analysis pro-
vides insights into their role as modulators in communication between biological processes
and metabolic pathways, which are crucial for establishing innate and adaptive immunity
during the transition from calves to ruminants. Furthermore, significantly higher relative
abundances of L. johnsonii, F. prausnitzii, and Limosilactobacillus were detected in the gut of
the calves in the healthy group, which may be closely related to the absence of diarrhea.
Our study offers valuable insights into the prevention of diarrhea and development of
probiotics for Simmental calves.
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