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Simple Summary: Small open reading frames (sORFs; fewer than 300 nucleotides or fewer than
100 amino acids) are short DNA sequences that can regulate cellular processes or produce functional
peptides. Identifying these sORFs, especially in non-genic regions, remains challenging despite
advances in sequencing technology. To address this, we developed D-sORF, a machine-learning
framework that predicts coding sORFs using the nucleotide context and motifs around start codons.
D-sORF achieves 94.74% precision and 92.37% accuracy, outperforming experimental methods such
as ribosome sequencing (Ribo-Seq) in identifying peptide-producing transcripts and filtering out
false positives. Unlike traditional conservation-based methods, D-sORF’s significant advantage
is recognizing sORFs with low sequence similarity. Its robust prediction capabilities make it a
valuable tool for researchers. It can enhance our understanding of sORFs’ roles, potentially leading
to discoveries in terms of gene regulation and new therapeutic targets. By accurately distinguishing
small coding sequences from non-coding ones, D-sORF significantly contributes to genomic research
and its applications in medicine and biotechnology.

Abstract: Small open reading frames (sORFs; <300 nucleotides or <100 amino acids) are widespread
across all genomes, and an increasing variety of them appear to be translating from non-genic regions.
Over the past few decades, peptides produced from sORFs have been identified as functional in
various organisms, from bacteria to humans. Despite recent advances in next-generation sequencing
and proteomics, accurate annotation and classification of sORFs remain a rate-limiting step toward
reliable and high-throughput detection of small proteins from non-genic regions. Additionally, the
cost of computational methods utilizing machine learning is lower than that of biological experiments,
and they can be employed to detect sORFs, laying the groundwork for biological experiments. We
present D-sORF, a machine-learning framework that integrates the statistical nucleotide context and
motif information around the start codon to predict coding sORFs. D-sORF scores directly for coding
identity and requires only the underlying genomic sequence, without incorporating parameters
such as the conservation, which, in the case of sORFs, may increase the dispersion of scores within
the significantly less conserved non-genic regions. D-sORF achieves 94.74% precision and 92.37%
accuracy for small ORFs (using the 99 nt medium length window). When D-sORF is applied to
sORFs associated with ribosomes, the identification of transcripts producing peptides (annotated
by the Ensembl IDs) is similar to or superior to experimental methodologies based on ribosome-
sequencing (Ribo-Seq) profiling. In parallel, the recognition of putative negative data, such as the
intron-containing transcripts that associate with ribosomes, remains remarkably low, indicating that
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D-sORF could be efficiently applied to filter out false-positive sORFs from Ribo-Seq data because of
the non-productive ribosomal binding or noise inherent in these protocols.

Keywords: small open reading frames; sORF; machine learning; motif prediction; ribosome sequencing;
genomic annotation

1. Introduction

Small open reading frames (sORFs; <100 amino acids) are widespread across all
genomes. Their predominantly non-genic location also contributes to the low conserva-
tion scores, traditionally used to indicate functional significance in short sequences [1].
Advances in recent decades have revealed various peptides encoded by sORFs in vari-
ous organisms, from bacteria to humans [2–19]. These studies have illuminated the roles
of microproteins encoded by sORFs in regulating essential biological processes, includ-
ing metabolism [7,13], DNA damage response [20], endocytosis [21], immune surveil-
lance [22,23], development [10,14], and cell death [12]. For instance, specific microproteins
have been implicated in fine-tuning metabolic pathways and the orchestration of cellu-
lar responses to DNA damage [20], highlighting their potential as therapeutic targets
and biomarkers.

The classification of long intergenic, interleaving, and antisense non-coding transcripts
(lncRNAs) has traditionally used an arbitrary cut-off ORF length of fewer than 100 amino
acids. It also relies on the low scores from alignment-based algorithms for nucleotide
and protein conservation. As a result, many lncRNAs may have been erroneously mis-
classified as non-coding [24]. An emerging understanding is that lncRNAs have risen
relatively recently in evolution and may represent a de novo source of novel protein-coding
genes [25]. These transcripts share all the features of coding genes (Cap, polyA, 5′, and
3′ UTRs). Still, they tend to harbor much smaller ORFs, contain fewer introns, exhibit
weak sequence constraints, and show limited phylogenetic conservation [26–28]. To date,
protein-coding and functional sORFs have been found in various transcripts. These include
untranslated regions of mRNA (5′ and 3′ UTRs), lncRNAs, and microRNA transcripts
(pri-miRNAs) [19,29–31].

Advances in ribosome-sequencing profiling (Ribo-Seq) [32–34] and proteomics [35,36]
provided the tools necessary to identify protein-coding sORFs. They revealed that the
translation of non-coding regions could also be pervasive [37,38]. Various computational
methods for ribosome-profiling data have been developed that rely upon specific dis-
tribution features of ribosome footprints, like the ORF and FLOSS scores [39–41], and
allow the genome-wide identification of many long non-coding RNAs (lncRNAs), 5′ and
3′ UTRs [37,38] associated with ribosomes [39,42,43]. Sequencing of ribosome-protected
mRNA fragments (RFPs) from samples treated with antibiotics that halt ribosomes at
translation initiation sites (TIS) [44] allows the identification of sORFs with experimentally
validated TIS positions. However, these datasets have only recently begun to be compiled
compared to traditional antibiotics, such as cycloheximide [41]. During the last few years,
corresponding public resources have been established, like the GWIPS-viz browser [45], sm-
Prot [46], OpenProt [47], and www.sorfs.org (1 March 2023) [39–41] databases, to correctly
classify sORFs and discover novel micropeptides.

Many lncRNAs, as well as 5′ and 3′ UTRs of mRNAs [37,38], have been reported
to show ribosome-profiling patterns similar to canonical non-coding RNAs (e.g., rRNA)
that are known not to be translated, implying that many lncRNAs are unlikely to produce
functional peptides [48]. However, the ribosome footprints and the translational machinery
heavily depend on the transcript abundance and cellular types and states. Genomes
undergo widespread transcription during stress to produce a diverse range of non-coding
RNAs [49–51]. Therefore, a large proportion of sORFs are expressed in response to stress
and exported to the cytoplasm to associate with the translational machinery [49–51]. This
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fact may indicate that computational annotation pipelines based on experimental data may
inherit a significant range of transcriptional and translational “noise”, which may act as a
rate-limiting step toward the identification of unknown small protein-coding genes or other
types of regulatory sORFs that could associate with ribosomes to control the translation of
other genes [52]. In addition, mass spectroscopy analyses have found many fewer peptides
than predicted sORFs, indicating that accurate annotation of sORFs is critical for both their
reliable identification and their unbiased nomenclature classification as protein-coding,
functional sORFs or biological/technical “noise” [53].

The problem of identifying small coding ORFs was addressed for the first time nearly
a decade ago through an algorithm based only on sequence information [54]. Since then,
various sORF-specific ab initio prediction pipelines have been implemented. A group used
a combination of cross-species conservation analysis and a phylogenetic assessment of
the alignment-based mutations for their synonymous or nonsynonymous nature (Ka/Ks
values) [18,54,55]. Others used a hexamer composition bias between coding and non-coding
sequences at consecutive windows of 30 bp with a step size of 3 bp [56], coupled with
a phylogenetic-based assessment of synonymous versus nonsynonymous substitutions
rates, to select more functional sORFs [57]. However, alignment-based methods can be
limited depending on the corresponding sORF’s length, conservation, and amino acid
composition [42], and algorithms comparing coding vs. non-coding sequences have been
thus far performed in small windows, not using the sequence features of a translating ORF,
like the presence of a translation initiation site (TIS) [44,58].

In this paper, we present D-sORF, a support vector machine-based framework utilizing
prediction accuracy supported by a machine-learning model fed with features extracted
from the nucleotide composition of the ORF and the sequence information around the
start codon, i.e., the translation initiation site (TIS), in a large set of well-established pro-
teins [44]. D-sORF can be applied in a genome-wide manner or just on sORFs associated
with ribosomes to classify them based on a large window of sequence identity to the TIS
and ORF nucleotide composition without the incorporation of parameters like conservation
and phylogenicity. D-sORF calculates and classifies sORFs between 60 and 100 amino
acids in length with 97.88% precision and 96.60% accuracy. For sORFs between 33 and
60 amino acids, the precision reaches 94.74%, while the classification accuracy is 92.37%.
For sORFs shorter than 33 amino acids, 91.16% precision and 88.15% accuracy are achieved.
Remarkably, when D-sORF is applied to a selection of sORFs from the sORFs.org database
annotated by both Ribo-Seq data and Ensembl Gene ID (i.e., they represent true micro-
proteins), 935 of the 1075 sORFs are identified as positive, achieving 77.96% accuracy and
outperforming all the other computational approaches, including FLOSS.

2. Materials and Methods

In this section, we describe the D-sORF framework as well as the datasets used for the
evaluation of our method.

2.1. Positive Datasets

The positive datasets exclusively originated from protein-coding regions (Figure 1A).
Initially, we identified and retrieved 43,084 protein sequences corresponding to 19,031 unique
UniProt IDs from the Ensembl Repository. It is important to mention that we also retrieved
sequences with UniProt/Swiss-Prot IDs. Meanwhile, a small upstream region of 100 nu-
cleotides was also retrieved for each sequence to extract features around the translation
initiation site.
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Figure 1. Dataset creation workflow for the datasets used for training and validation of the D-
sORF algorithm. (A) All the positive datasets originated from protein-coding sequences with an
Ensembl ID. For the curated TIS positions, only Swiss-Prot labelled transcripts were selected. The
source dataset was split randomly into training and simulation datasets. The training dataset was
subsequently parted in ML model training and evaluation subsets. Only one isoform (the longest)
per gene was selected for constructing the simulated positive dataset used for validation. (B) For the
negative dataset construction, intergenic regions, non-overlapping with coding loci, were selected.
Two different negative validation datasets were created. One was balanced (N = 10,000) and one
imbalanced (N = 200,000) compared to the positive dataset (N = 10,000). (C) The sORFs dataset was
created from the orfs.org repository by obtaining the corresponding nucleotide sequence for all the
sORFs, together with the host region coordinates, annotations and all the metrics (PhyloP, PhastCon,
ORFscore, FLOSS) available in the repository. For each sORF sequence, a 100 nts upstream region
was also extracted and combined, then forwarded to the D-sORF algorithm. The resulting scores
were compared with the algorithmic metrics available in the sorfs.org repository in order to gain
biological insight.

This initial dataset was split into two parts. The first part consisted of 8144 coding
sequences with only one isoform in Swiss-Prot to avoid unnecessary complexity deriving
from alternative start sites. This first part was retained for the machine-learning component
of the algorithm. It was divided into two non-overlapping sets for training and testing,
respectively (see Section 2.6). The second part of the initial dataset (i.e., the remaining



Biology 2024, 13, 563 5 of 19

34,940 sequences) was used to construct a positive simulated sORF dataset, which corre-
sponded to 10,887 genes with alternative isoforms, from which the longest isoform for each
gene was selected as the source sequence (for simplicity).

2.2. Negative Datasets

The negative dataset (Figure 1B) was constructed from the RefSeq database (hg38) [59],
where the gene-mediated regions’ coordinates and sizes were annotated. To avoid the
inclusion of sequences rich in functional information (i.e., promoters), the first 2000 bases
upstream of each gene were discarded. Next, the intergenic space was used to extract
the negative datasets for training and evaluation. The negative dataset for training was
extracted from the 20 K to 50 K size intergenic regions. To ensure that the negative
training dataset was balanced with the positive dataset (as described above), 8100 non-
annotated/non-functional regions starting with ATG and a mean length of 210 bases
were extracted. Regions larger than 50 K in length were utilized (not overlapping with
the training datasets) to extract 210,000 sequences split into two datasets of 10,000 and
200,000 (balanced and unbalanced relative to the positive simulated dataset, respectively)
to be used as simulated negative datasets. Since the identification of functional sORFs is
known to be a heavily imbalanced task, the second negative simulated sORF dataset was
constructed to be over 20 times larger compared to the positive simulated sORF dataset
(i.e., 10,000 sequences).

2.3. Small ORF Datasets

Data for the Ribo-Seq-derived sORFs (Figure 1C) were obtained from sorf.org, a public
repository for sORFs identified by ribosome footprint sequencing. The analysis encom-
passed human sORFs with lengths of fewer than 100 AAs. Among the various information
provided by the repository, the corresponding annotation regarding the sORF’s host ge-
nomic region was used to group the sORFs as exonic (located in the coding sequence of a
gene), intronic (located in the intronic part of a gene), intergenic (sORFs located between
genes), ncRNA (sORFs located on non-coding RNA), 3′-UTR (sORFs located in the 3′-UTR),
5′-UTR (sORFs located in the 5′-UTR), NMD (nonsense-mediated decay; if the coding
sequence, following the appropriate reference of a transcript, finishes >50 bp from a down-
stream splice site, then it is tagged as NMD), TEC (to be experimentally confirmed; used
for non-spliced EST clusters that have polyA features), NSD (non-stop decay; transcripts
that have polyA features, including a signal, without a prior stop codon in the CDS), and
sORFs (sORFs corresponding to Ensembl-annotated protein-coding ORFs of fewer than
or equal to 100 AAs). The latter subgroup was a biological positive dataset representing
true coding sORFs. From the 2,623,034 downloaded records, sorfs.org provides (FLOSS
score [37], ORFscore [39], PhyloP [55], and PhastCon [60]) metrics for 2,180,501 sORFs. We
selected the last mentioned for a detailed investigation.

2.4. D-sORF Machine-Learning Framework

D-sORF is a modular machine-learning framework consisting of three sequential
components, namely data preprocessing and transformation, machine-learning algorithm
selection and evaluation, and sORF predictor (Figure 2).
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Figure 2. Workflow of the D-sORF Framework. (A) In the “preprocessing and transformation”
module, the input sequence datasets were cleared from ambiguous and low-quality sequences and
sequence windows for the TIS and CC (coding composition) were separated for feature extraction. A
vector was created for all the CC and TIS features individually as well as from the unification of the
corresponding TIS and CC features. These vectors were the drivers of the training process. (B) In the
“ML algorithm selection and evaluation” module, comparison and selection between well-known ML
algorithms (e.g., SVM, RF) took place. For each feature vector (CC, TIS and combined CC with TIS), a
separate output model was trained to be used from the D-sORF main module (predictor). (C) The
D-sORF predictor was fed with sORFs for processing. The best fitting window among 55, 99, and
180 was selected based on the sORF length. The user could select which model to apply (CC, TIS or
combinatory CC+TIS mode) The Diana-sORF returns a score in the range [0 to 1]. Higher scoring
values provide the sORF with a greater chance of being coding.

2.5. Data Preprocessing and Transformation

The data preprocessing and transformation module takes as input the positive and
negative datasets in standard FASTA format (Figure 2A). This module analyzes the raw
FASTA data, transforming them into the appropriate internal structures while performing
the essential quality control to exclude unqualified sequences, e.g., sequences with ambi-
guities (only A, C, T, and G are allowed). Following this essential initial step, the module
continues the feature extraction process, extracting two separate sequence windows for
the TIS and coding composition (CC) sampling regions to score two separate features for
the coding potential (Supplementary Figure S1). The TIS window includes nucleotides at
positions −7 to +5 centered at the given start codon of the sORF sequence. It represents
the translation initiation site (TIS) pattern, excluding the start codon and thus avoiding
the potential bias of start codon usage in sORFs. Subsequently, each nucleotide window
is transformed into a new binarized representation based on the code A = 0001, C = 0010,
T = 0100, and G = 1000 (binary sequences with the greatest Hamming distance), resulting
in a 36-element vector.

To capture the coding composition (CC) of a given sORF, three different sequence
length CC windows of 54 nts, 99 nts, and 180 nts were extracted downstream of the first
+90 nts until the corresponding stop codon. The first 90 nts were omitted from training and
testing to avoid plausible signal peptides known to precede the protein-specific nucleotide
context [61]. Signal peptides have a very specific amino acid composition [2] and can
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produce a negative bias during the training procedure. All the windows were extracted
on a 3-step basis to maintain the in-frame information. Subsequently, a 64-element vector
was created containing the frequency of each of the 64 different 3-mers. Finally, the TIS and
CC-derived vectors were unified.

2.6. ML Algorithm Selection and Evaluation

The initial dataset, consisting of 16,200 examples (8100 positive and 8100 negative),
was randomly split to create the training (9720—60%), validation (3240—20%), and test
(3240—20%) subsets. The positive–negative ratio was maintained in the datasets produced
above. Three well-known machine-learning algorithms were investigated, namely Support
Vector Machine (SVM) [62], k-Nearest Neighbor (k-NN) [63], and Random Forest (RF) [64].

To ensure unbiased model selection based on performance, the hyper-parameter space
of the algorithms was tested for the best combination toward the best cross-validation score.
The hyper-parameters optimized for SVM were (a) the kernel type used in the algorithm,
(b) the kernel coefficient gamma, and (c) the penalty parameter C. The hyper-parameters
optimized for k-NN were (a) the number of neighbors, (b) the weight function used in
the prediction, and (c) the algorithm used to compute the nearest neighbor. Finally, the
hyper-parameters tuned for RF were (a) the number of trees in the forest, (b) the function
to measure the quality of a split, and (c) the number of features to consider when looking
for the best split.

The search in the hyper-parameter space was performed exhaustively, considering
all the parameter combinations. The tuning of the hyper-parameters was performed on
the training data using 10-fold cross-validation. After obtaining the best hyper-parameter
combination for each algorithm, the three algorithms (SVM, k-NN, RF) were re-trained
on the training set using the selected hyper-parameter combination. The final accuracy of
each model was measured using the initially reserved test set. Trained models compose the
D-sORF predictor core. SVM (RBF kernel) achieved the best performance (ACC = 98.1%),
followed by RF (ACC = 97.5%), and finally, k-NN (ACC = 94%). Hence, the analysis
proceeded using the SVM classifier. To obtain the probabilities for each respective label,
the parametric approach based on Platt’s sigmoid model [3] was used, based on fitting a
logistic regression model (sigmoid) to a classifier’s scores. The validation set was used for
the probability calibration, which differs from the model-fitting dataset.

2.7. sORF Predictor

The final standalone algorithm of the D-sORF framework is the sORF predictor
(Figure 2C), which is based on the trained ML model and can be applied for the clas-
sification of a given sORF. Similar to the training and evaluation module, two types of
windows were selected for the TIS and CC feature extraction (Figure 3). The CC window
can be 54, 99, or 180 nts according to the sORF length. In the default operation mode, the
algorithm selects the longest windows for feature extraction but allows this option to be
parameterized by the user. After that, the TIS and CC features are concatenated inline,
resulting in a 100-dimension feature vector, which is classified by the appropriate ML
model of 54 nts, 99 nts, or 180 nts, respectively, returning a score ranging from 0 to 1. The
user can configure the D-sORF predictor with any trained models, depending on the sORF
length range under study.

The downstream analysis proceeds by incorporating big data originating from sorfs.org.
It produces a series of reports that categorize the outputs according to the annotation, host
region, D-sORF classification, and all the metrics for encoding the ability or classification
parameters provided by the repository.
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Figure 3. Workflow of the D-sORF predictor. The signal peptide on the sORF sequence is not excluded
for the CC sequence (user can enable this feature). The start codon is removed in order to extract
the TIS pattern sequence. Both the TIS and CC features are used for the classification and automatic
selection of the best fitting window sequence (54, 99, 180) and ML model, according to the sORF
length. Processing starts using as an input the sORF sequence combined with the upstream flanking
region. After that, the TIS (9 nts) and CC (the biggest among 54, 99, 180 nts) sequences are extracted.
The TIS sequences are then converted to a 36-dimension vector using the same binary table as in the
training module. This constitutes the first part of the final 100-dimension vector, while the coding
composition 64-dimension vector constitutes the second part. The derived vector is then forwarded
to the appropriate ML model (54, 99, and 180 nts) for the sORF to be classified.

3. Results

Two different approaches were employed for the evaluation of D-sORF. Specifically,
different types of simulated datasets were used for the initial algorithmic evaluation of
D-sORF. Furthermore, the biological significance of D-sORF was evaluated by large-scale
analysis of experimentally validated sORFs and by comparing D-sORF’s performance to
the available metrics for coding potential (FLOSS score, ORFscore, PhyloP, PhastCon) and
to the different sORF annotation classes. The Ensembl ID-labeled class of sORFs annotated
as small proteins was used as the most representative biological positive dataset, while the
sORFs annotated as introns were selected as a biological negative dataset.

3.1. Algorithm Evaluation

To evaluate the predictive strength of the classification models created from the fea-
tures, the TIS and CC alone or in combination, the algorithm was tested using the following
seven sets of features: TIS on its own, CC on its own with three different length windows
(54, 99, and 180 nts), and combinations of TIS with each of the different length CC windows.
When applying the problem of recognizing coding sORFs on real data (genome, transcripts,
and ribosome-associated transcripts), the ratio of positive to negative data is heavily unbal-
anced, with negative data usually being over-represented. To partly model this imbalance
in our evaluation procedure, two different pairs of validation datasets were created: the
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first pair represented a balanced combination of 10,000 positive with 10,000 negative sam-
ples, whereas the second contained an over-represented negative dataset (200,000), i.e.,
twenty times larger than the positive set.

We performed two sets of evaluation procedures, one for each balanced and one
for each unbalanced group of datasets. In each experiment, we compared the seven
previously mentioned models (TIS, CC54, CC99, CC180, CC54+TIS, CC99+TIS, CC180+TIS).
In all cases, the classifiers with the combined features performed better compared to
the CC and TIS alone. For the balanced dataset, the classification of an sORF using
only the smallest size, CC54, reached 0.87 precision, 0.86 sensitivity, 0.87 accuracy, and
0.87 specificity (Supplementary Table S1A). When the algorithm encompassed the TIS
features (i.e., CC54+TIS), the precision, sensitivity, accuracy, and specificity of D-sORF
changed to 0.91, 0.85, 0.88, and 0.92, respectively (Supplementary Table S1B). The other
two models, CC99 and CC180, presented similar improvements (Supplementary Table
S1C–F). The combined model was termed CP to represent the unified coding potential
feature. Since it showed the best performance, we may conclude that both features (TIS and
CC) have added value when combined, thus highlighting the potential role of the TIS in
sORFs’ encoding ability (Supplementary Figure S2). The trade-off between sensitivity and
specificity and the differences between CC and CP were demonstrated using ROC curve
diagrams (Figure 4).

Figure 4. D-sORF ROC curves. Sensitivity vs. specificity diagrams following integration of the TIS
and CC features into a unified coding potential (CP) feature. The diagrams depict the framework
performance after the integration of the TIS in 54, 99, and 180 nts CC window mode (A) for balance
data, and (B) for imbalanced data.

Similarly, in the unbalanced dataset, the classifiers exhibited the same behavior as in
the balanced set. The unified model CP, combining the two different features (i.e., TIS and
CC180), performed better and exhibited the best performance compared to the TIS and
CC models alone. CC180+TIS achieves 0.69, 0.95, 0.97, and 0.97 (0.63, 0.96, 0.97, and 0.97
for CC180), while CC99+TIS shows 0.47, 0.90, 0.95, and 0.95 (0.40, 0.91, 0.93, and 0.93 for
CC99) for precision, sensitivity, accuracy, and specificity (Supplementary Table S1I,J,K,L).
The CC54+TIS model shows 0.34, 0.84, 0.91, and 0.92 for the same metrics (0.26, 0.85, 0.88,
and 0.88 for CC54) (Supplementary Table S1G,H). Based on these results, we can conclude
that although the larger the CC window, the better the performance, D-sORF retains good
scores for sensitivity and specificity for all the window sizes (Supplementary Figure S2).

It is worth noting that D-sORF is a threshold-enabled algorithm, and users can adjust
the threshold for fine-tuning. All the above metrics were obtained using a threshold value
of 0.5 (scores above 0.5 count as coding). The sensitivity and specificity are balanced for
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a threshold of 0.9. Using this value significantly increases the algorithm’s precision. For
instance, the precision in the unbalanced dataset reaches 0.68 from 0.34 for CC54+TIS, 0.77
from 0.47 for CC99+TIS, and 0.87 from 0.69 for CC180+TIS (Supplementary Table S1H,L).

3.2. Application of D-sORF in Annotating Experimentally Detected sORFs in Genomic Regions
Enriched with Coding and Non-Coding Transcripts

D-sORF’s performance on real-life sORFs was tested using the sorfs.org repository
of experimentally validated sORFs regarding their start codon and association with the
ribosome footprinting coding patterns. In addition, the sORFs used were already annotated
by sorfs.org regarding their location around or within the main mRNA coding frame, as
annotated by Ensembl. Exonic sORFs are located in the exons of mRNAs but out of frame,
while intronic sORFs are in the introns of mRNA genes. Moreover, 5′ and 3′ UTRs represent
sORFs located in mRNAs’ corresponding exonic but non-genic regions. LncRNAs, TEC,
pseudogene, and NMD groups are sORFs located in transcripts annotated by Ensembl as
Long Non-Coding RNAs, as To-be-Experimentally Confirmed protein-coding, as Pseudo-
genes, and as transcripts with premature stop codons likely to be degraded through the
Non-sense Mediated Decay pathway, correspondingly. Finally, sORFs detected in lncRNAs
but located at distal genomic sites (>5000 bp ± of any mRNA) were studied separately from
the rest of the lncRNAs, as Intergenic (Supplementary Figure S3). The above biotype groups
contain transcripts harboring a spectrum of expected or known coding/non-coding capac-
ity. Based on current knowledge, the intronic regions show the most biological relevance as
a negative control (highly non-coding group).

At the same time, the 5′ UTR sORFs represent an established genomic location of a
known functional subclass of sORFs, named upstream ORFs (uORFs), with an established
role in mostly repressing but also, for a subset of them, regulating the translation of the
mRNA ORFs [65]. However, we considered 5′ UTR sORFs as a test group, not as a biological
positive reference group of genomic regions with mainly and highly coding sORFs. Instead,
we selected a subset of transcripts from the sorfs.org database corresponding to the Ensembl
IDs of validated microproteins (i.e., <100 amino acids).

The resulting D-sORF scores across all the above annotation groups were compared
to all the available classification metrics used in the sorfs.org database to classify the de-
tected sORFs’ coding potential, such as the FLOSS score, ORFscore, PhyloP, and PhastCon
(Figure 5). The PhyloP and PhastCon scores are based on phylogenetic information, while
the ORFscore and FLOSS scores algorithmically analyze different distribution parameters
from ribosome-footprinting experiments. For each type of score, the cut-off values sug-
gested in the corresponding reference papers on sorfs.org were used [40,41]. The PhyloP
and PhastCon algorithms showed a relative constitutive detection rate across all the anno-
tation groups, including the positive (Ensembl sORFs) and negative (Intronic) groups. The
PhyloP system scored for the coding sORFs with an increased frequency, while PhastCon
had a decreased frequency rate in both of the above groups compared to the corresponding
detection rates of the experimentally-based algorithms of ORFscore and FLOSS.

In contrast, D-sORF detected coding sORFs across all the groups (including positive
and negative groups) with a frequency rate almost similar to the experimentally based
algorithm ORFscore. In addition, D-sORF’s classification of coding sORFs showed a
comparable detection rate to the experimentally based FLOSS score with some important
discrepancies, which could be attributed to the increased sensitivity of the FLOSS score,
as indicated by its increased detection rate (68.99%) within the intronic negative group.
Regarding the positive group of annotated micropeptides (Ensembl sORFs) contained in
the sorfs.org database, D-sORF scored as positive 935 out of 1075 (86.98%), showing similar
discriminatory ability to ORFscore (955 out of 1075, 88.84%) and proving its biological
significance in identifying true-positive peptide-encoding sORFs. A representative subset
is presented in Appendix A.
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Figure 5. Genome-wide application of D-sORF to classify experimentally validated sORFs as coding.
The table contains all the sORFs from the sorfs.org database and shows the absolute count and
percentage of sORFs classified as positive by D-sORF, PhyloP, PhastCon, ORFscore, and FLOSS at
their corresponding cut-off values. The sORFs have been annotated based on sorfs.org classification
parameters as exonic (sORFs located in the exonic part of a gene), intronic (sORFs located partially or
completely overlapping introns), intergenic (sORFs in lncRNAs at distal sites > 5000 bp), lncRNA
(sORFs overlapping long non-coding RNAs), 3′ UTR (sORFs in 3′-UTR regions of genes), 5′ UTR
(sORFs in 5′-UTR regions of genes), Ensembl sORF (sORFs corresponding to Ensembl ID protein-
coding ORFs of fewer or equal to 100 AA), NMD (classified as nonsense-mediated decay if sORF
overlaps the coding sequence of a transcript that finishes >50 bp from a downstream splice site) and
TEC (to be experimentally confirmed as protein-coding, overlapping EST clusters that have polyA
features). The colors associated with each sORF class indicate the genomic region from which they
originate, as illustrated in Supplementary Figure S3.

Reassuringly, D-sORF, unlike PhyloP, PhastCon, and FLOSS, scored low (~24%) in
the mainly non-coding class of intronic sORFs, again similarly to the experimentally
based ORFscore (~20%), establishing its biological relevance in understanding coding
potentiality in rare or newly evolved sORFs. It is important to note that the 5′ UTR
sORFs showed the second to highest positivity detection after the Ensembl sORFs by
both D-sORF (~54%) and ORFscore (~59%) (Figure 5). In summary, D-sORF performed
significantly better (as ORFscore) than the FLOSS score. For example, in the lncRNA class
of sORFs, which is expected to be enriched for peptide-encoding sORFs, D-sORF showed a
comparable prediction score (47.82%) to ORFscore (47.17%). In comparison, FLOSS and
PhyloP produced significantly greater positive counts (85.68% and 93.60%) for lncRNAs.

To gain more insight, 1075 Ensembl sORFs and 4848 intronic sORFs with prediction
scores by all the metrics were plotted in Venn diagrams. In the Ensembl sORF positive
group, significant overlapping of common positive sORFs was observed (573/1075 ~54%)
for all the metrics and (804 ~75%) for D-sORF, ORFscore, and FLOSS combined (Figure 6A).
On the contrary, in the intronic category, slight overlapping of common positive sORFs
(137/4824 ~3%) was observed (Figure 6B). It remains to be investigated whether the above
small percentage of intronic sORFs that were detected as positive by all the metrics and
by D-sORF, ORFscore, and FLOSS score combined could represent a subset of circular
RNA transcripts that translate microproteins with significant biological roles in human
diseases [66].



Biology 2024, 13, 563 12 of 19

Figure 6. Evaluation of D-sORF compared to all the metrics available in the sorfs.org repository. Venn
diagram of (A) Ensembl-validated sORFs and (B) intronic sORFs. Presenting the results of all the
different algorithms and metrics. Counts and percentages of sORFs that were classified as positive
and are in common between D-sORF, PhyloP, ORFscore, and FLOSS are shown. Only sORFs with
values from all the scores were used. (C) The relation of the prediction from the Ensembl-annotated
sORFs and intronic sORFs at different thresholds for D-sORF, PhyloP, ORFscore, and FLOSS.

Importantly, using the Ensembl-labeled sORFs as a positive set and intronic sORFs as
a negative one, D-sORF’s biological specificity surpassed PhyloP, PhastCon, and FLOSS
score both in accuracy (77.96% vs. 22.00%, 40.31%, and 42.69%) and precision (44.63% vs.
18.76%, 19.43%, and 23.49%). The metrics are slightly lower than ORFscore. Statistical
measures for all the metrics are presented in Supplementary Table S2.

Finally, all the metric scores for the Ensembl and intronic sORFs were plotted against
each other. Especially for PhyloP and ORFscore, we normalized and shifted to the 0–1
interval to have comparable values. Figure 6C shows that D-sORF performed significantly
better than FLOSS score (the main computational classification tool used in processing
ribosome profiling information) and surpassed all the other algorithms/metrics. The
above results indicate that even though the D-sORF algorithm is purely trained on in
silico datasets with strictly ab initio computational processes, it can accurately predict
coding sORFs better than experimentally based Ribo-Seq algorithms and alignment-based
frameworks. In essence, D-sORF can be applied as an unbiased sORF classifier that can be
used alone or with other metrics to functionally classify transcripts and describe various
biological aspects of sORF classes.
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4. Discussion

Our knowledge of the translational “vocabulary” of the human genome has expanded
thanks to ribosome profiling, or “Ribo-seq”, which has identified hundreds of open reading
frames (ORFs) within long non-coding RNAs (lncRNAs) and putative untranslated regions
(UTRs) of protein-coding genes. Reference gene annotation programs, however, have been
cautious in incorporating these ORFs due to unknowns regarding their physiological roles
and experimental repeatability. Nonetheless, it is evident that many “Ribo-seq ORFs”
have physiological significance, whereas others control gene regulation or produce stable
proteins. In the end, the lack of a standardized ORF annotation pipeline has produced a
vicious cycle: studies looking into the roles of Ribo-Seq ORFs will be impeded by their lack
of recognition as long as reference annotation databases continue to ignore them [67].

Here, we present D-sORF, which could be used alone or in combination with experimental-
based metrics to filter down candidate encoding sORFs from different annotation groups
and, therefore, increase the rate of their experimental validation. In addition, D-sORF
can be used to discriminate ORFs that associate with ribosome footprint patterns but
show true-negative coding potential and thus may have a non-coding regulatory function
instead. D-sORF’s significant advantage is that it can predict positive and negative sORFs
equally well. Thus it can be applied to functionally classify lncRNAs and other non-
coding transcripts that either encode sORFs and thus represent a recently evolved class of
protein-coding genes or regulate the translational machinery in a non-coding manner.

D-sORF is an ab initio scoring system that accurately distinguishes coding from non-
coding sORFs based on the nucleotide context of a 180 nts coding ORF composition window
and a 9 nts window around the TIS of experimentally validated protein-coding ORFs,
compared to windows of similar length in carefully curated intergenic regions used as
negative datasets. D-sORF represents the first-of-its-kind classification algorithm powered
by trained machine-learning models to predict putative translating sORFs in the human
genome accurately. Compared to phylogenetic and sequence conservation approaches, like
PhyloP and PhastCon, D-sORF exhibited superior performance in accurately depicting,
through prediction, the sORF encoding resemblance to protein ORFs. This indicates that,
in general, ab initio nucleotide similarity approaches are more effective than cross-species
comparison pipelines in utilizing the sequence information of recently evolved small ORFs
with little similarity to known proteins and low conservation in the amino acid sequences.

Specifically, PhastCon and PhyloP showed a general trend to predict low or high scores
for all the sORFs regardless of their annotation class, including the negative group. For
instance, although PhyloP scores high for Ensembl sORFs, it also scores high for intronic
sORFs (~94%), showing ~5% specificity and 22% accuracy (see Supplementary Table S2).
However, D-sORF, FLOSS, and ORFscore performed with the highest accuracy rate and
represented the top three algorithms with the highest prediction accuracy, which were
able to discriminate true positives from the Ensembl sORF class. Significantly, these three
algorithms also scored the lowest for the best-known negative set of the intronic sORF class.

Furthermore, although D-sORF is based only on sequence training, it showed better
discriminatory ability than the Fragment Length Organization Similarity Score (FLOSS),
representing the most recent Ribo-Seq algorithmic scoring described by [37]. This algorithm
identifies true ribosome footprints by measuring the magnitude of disagreement between
the RPF-length distribution of Ensembl-annotated protein-coding sequences and the RPF-
length distribution of an sORF. D-sORF’s performance is similar to ORFscore, another
Ribo-Seq sORF annotation algorithm that, in contrast to the FLOSS system, is known to
have stringent parameters for detecting true ribosome footprints outside the annotated
CDS of protein-coding genes (i.e., in lncRNAs, 5′ and 3′ UTR regions) [39]. This indicates
that Ribo-Seq-based algorithms might suffer from a translational bias, depending on the
pattern of translational efficiency they score.

Our results show that D-sORF showed remarkable prediction sensitivity and was
comparable only to Ribo-Seq-based algorithms. Nevertheless, D-sORF’s ab initio approach
and carefully curated positive and negative training datasets, coupled with deep-learning
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models, may represent what is needed to facilitate an alignment-free and data-independent
functional classification of experimentally validated sORFs.

D-sORF has significant potential in real-world biological research, particularly in
studying low-conservation and/or low-similarity sORFs. These small but crucial genomic
elements can encode functional microproteins in various regulatory processes. By accu-
rately predicting coding sORFs, D-sORF can help toward achieving robust annotation,
identification, and experimental validation of novel microproteins. This capability, which
does not rely on experimental data, is especially relevant in shedding light on previously
unexplored aspects of gene regulation and cellular function and understanding diseases
where microproteins might play a role in the metabolism, DNA repair, and immune
response pathways.

5. Conclusions

Our study introduces D-sORF, a machine-learning framework designed to predict
coding small open reading frames (sORFs) using the nucleotide context and motif informa-
tion around the start codons. D-sORF demonstrates high precision (94.74%) and accuracy
(92.37%) in identifying sORFs, surpassing traditional and experimental methods such as
ribosome sequencing (Ribo-Seq).

D-sORF enhances the prediction accuracy by outperforming conservation-based ap-
proaches, making it particularly effective in recognizing recently evolved sORFs with low
sequence similarity. Additionally, the tool effectively filters out false positives, such as
intronic sORFs, often mistakenly identified by other methods. Its broad applicability allows
D-sORF to be applied to various genomic datasets. It provides a robust method for distin-
guishing coding sORFs from non-coding sequences without relying on parameters like the
sequence conservation. Furthermore, D-sORF can functionally characterize non-coding
transcripts, potentially identifying novel protein-coding genes or regulatory elements.

Overall, D-sORF represents a significant advancement in genomic research, offering a
reliable method for sORF detection that can facilitate discoveries in gene regulation and
protein function. This tool holds promise for enhancing our understanding of the genomic
landscape and its implications for biology and medicine.
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Appendix A

The dataset comprises fifty predicted small open reading frames (sORFs) identified
by the D-sORF tool as potentially functional. Each entry in the table includes the unique
sORF identifier assigned by sORFs.org, the length of the sORF in nucleotides, and the
translated amino acid sequence. The dataset includes sORFs from various studies, provid-
ing a comprehensive resource for understanding the functional potential of these small
but significant genomic elements. Analysis of the sequences can reveal common motifs,
structural properties, and potential roles in cellular processes. All the sORFs in the list are
labeled by Ensembl as sORFs, as declared by sORFs.org.

sORF ID Length Sequence

SorfId=andreev_2015:538832 300
MVLRRLLAALLHSPQLVERLSESRPIRRAAQLTAFALLQAQLRGQDAARR
LQDLAAGPVGSLCRRAERFRDAFTQELRRGLRGRSGPPPGSQRGPGANI

SorfId=elkon_2015:50819 210
MLRWLRDFVLPTAACQDAEQPTRYETLFQALDRNGDGVVDIGELQEGLR
NLGIPLGQDAEEVGRRRGAA

SorfId=fritsch_2012:225652 180
MRQLKGKPKKETSKDKKERKQAMQEARQQITTVVLPTLAVVVLLIVVFVY
VATRPTITE

SorfId=andreev_2015:496184 213
MAPWSREAVLSLYRALLRQGRQLRYTDRDFYFASIRREFRKNQKLEDAEAR
ERQLEKGLVFLNGKLGRII

SorfId=rubio_2014:98637 141 MKESSIDDLMKSLDKNSDQEIDFKEYSVFLTMLCMAYNDFFLEDNK

SorfId=andreev_2015:629427 261
MTDRYTIHSQLEHLQSKYIGTGHADTTKWEWLVNQHRDSYCSYMGHFDL
LNYFAIAENESKARVRFNLMEKMLQPCGPPADKPEEN

SorfId=crappe_2014:52683 249
MSATWTLSPEPLPPSTGPPVGAGLDAEQRTVFAFVLCLLVVLVLLMVRCVR
ILLDPYSRMPASSWTDHKEALERGQFDYALV

SorfId=calviello_2016:870882 252
MEALGSGHYVGGSIRSMAAAALSGLAVRLSRPQGTRGSYGAFCKTLTRTLL
TFFDLAWRLRKNFFYFYILASVILNVHLQVYI

SorfId=andreev_2015:491102 189
MAAATLTSKLYSLLFRRTSTFALTIIVGVMFFERAFDQGADAIYDHINEGVRA
CAIPDLGPA

SorfId=calviello_2016:375783 189
MTKAGSKGGNLRDKLDGNELDLSLSDLNEVPVKELVSIVPRGPGAHLRRA
LAPTWATYFPLL

SorfId=liu_HEK_2013:259226 204
MLSRLQELRKEEETLLRLKAALHDQLNRLKVTPRPSPAPPPFLPSDHFPPTW
ASVVTTCCGQFSATH

SorfId=gonzalez_2014:380995 267
MSIMDHSPTTGVVTVIVILIAIAALGALILGCWCYLRLQRISQSEDEESIVGDG
ETKEPFLLVQYSAKGPCVERKAKLMTPNGPEVHG

SorfId=calviello_2016:540138 264
MYCLQWLLPVLLIPKPLNPALWFSHSMFMGFYLLSFLLERKPCTICALVFLA
ALFLICYSCWGNCFLYHCSDSPLPESAHDPGVVGT

SorfId=calviello_2016:185382 207
MAPAAAPSSLAVRASSPAATPTSYGVFCKGLSRTLLAFFELAWQLRMNFPYF
YVAGSVILNIRLQVHI

SorfId=andreev_2015:177588 294
MEEISLANLDTNKLEAIAQEIYVDLIEDSCLGFCFEVHRAVKCGYFYLEFAE
TGSVKDFGIQPVEDKGACRLPLCSLPGEPGNGPDQQLQRSPPEFQ

SorfId=andreev_2015:409703 114 MITDVQLAIFANMLGVSLFLLVVLYHYVAVNNPKKQE

SorfId=andreev_2015:37830 279
MTKLAQWLWGLAILGSTWVALTTGALGLELPLSCQEVLWPLPAYLLVSAGC
YALGTVGYRVATFHDCEDAARELQSQIQEARADLARRGLRF

SorfId=andreev_2015:13871 279
MWPVFWTVVRTYAPYVTFPVAFVVGAVGYHLEWFIRGKDPQPVEEEKSISE
RREDRKLDELLGKDHTQVVSLKDKLEFAPKAVLNRNRPEKN

SorfId=park_2016:1581934 237
MREENKGMPSGGGSDEGLASAAARGLVEKVRQLLEAGADPNGVNRFGRR
AIQVAGAPGPRRQGARERGARPRRIGAGT

SorfId=gonzalez_2014:153430 150 VRDKKLLNDLNGAVEDAKTARLFNITSSALAASCIILVFIFLRYPLTDY
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sORF ID Length Sequence

SorfId=fritsch_2012:974998 183
MDAVSQVPMEVVLPKHILDIWVIVLIILATIVIMTSLLLCPATAVIIYRMRTHP
ILSGAV

SorfId=andreev_2015:137699 264
MSTSVPQGHTWTQRVKKDDEEEDPLDQLISRSGCAASHFAVQECMAQHQD
WRQCQPQVQAFKDCMSEQQARRQEELQRRQEQAGAHH

SorfId=andreev_2015:321927 207
VGVGKNKCLYALEEGIVRYTKEVYVPHPRNTEAVDLITRLPKGAVLYKTFVH
VVPAKPEGTFKLVAML

SorfId=calviello_2016:206180 141 MPAGVPMSTYLKMFAASLLAMCAGAEVVHRYYRPDLVSAGGLLFYF

SorfId=gonzalez_2014:52803 162 VNIDHFTKDITMKNLVEPSLSSFDMAQKRIHALMEKDSLPRFVRSEFYQELIK

SorfId=elkon_2015:525198 114 MVVDRLFLWTFIIFTSVGTLVIFLDATYHLPPPDPFP

SorfId=andreev_2015:272691 150 MDINRRRYPAHLARSSSRKYTELPHGAISEDQAVGPADIPCDSTGQTST

SorfId=calviello_2016:187121 222
LLYLGRDYPKGADYFKKRLKNIFLKNKDVKNPEKIKELIAQGEFVMKELEAL
YFLRKYRAMKQRYYSDTNKTN

SorfId=loayza_puch_2016:211324 231
MDLRRVKEYFSWLYYQYQIISCCAVLEPWERSMFNTILLTIIAMVVYTAYVFI
PIHIRLAWEFFSKICGYHSTISN

SorfId=gonzalez_2014:438290 78 MLDIFILMFFAIIGLVILSYIIYLL

SorfId=cenik_2015:853557 171
MADVSERTLQLSVLVAFASGVLLGWQANRLRRRYLDWRKRRLQDKLAAT
QKKLDLA

SorfId=andreev_2015:169859 174
MPTGKQLADIGYKTFSTSMMLLTVYGGYLCSVRVYHYFQWRRAQRQAAE
EQKTSGIM

SorfId=crappe_2014:5055 144 DVGSLDEKMKSLDVNQDSELKFNEYWRLIGELAKEIRKKKDLKIRKK

SorfId=calviello_2016:673102 225
MFDIKAWAEYVVEWAAKDPYGFLTTVILALTPLFLASAVLSWKLAKMIEARE
KEQKKKQKRQENIAKAKRLKKD

SorfId=ingolia_2012:368307 69 LGMEEEDVIEVYQEQTGGHSTV

SorfId=andreev_2015:611100 273
MPKRKAKGDAKGDKAKVKDEPQRRSARLSAKPAPPKPEPRPKKASAKKG
EKLPKGRKGKADAGKDGNNPAKNRDASTLQSQKAEGTGDAK

SorfId=elkon_2015:4281 108 MPQTFSGGRGFELDSGSDDMDPGRPRPPRDPDELH

SorfId=calviello_2016:40163 273
MRDPVSSQYSSFLFWRMPIPELDLSELEGLGLSDTATYKVKDSSVGKMIGQ
ATAADQEKNPEGDGLLEYSTFNFWRAPIASIHSFELDLL

SorfId=elkon_2015:564093 213
MPARRLLLLLTLLLPGLGVSDRGAWGGGQLATAGSGPGQRRGAGAGVRAG
SATAAARCPVSPAVGGSGRA

SorfId=andreev_2015:217825 87 VERIKERVEEKEGIPPQQQRLIYSGKQM

SorfId=calviello_2016:764879 126 VSKCSEEIKNYIEERSGEDPLVKGIPEDKNPFKEKGSCVIS

SorfId=calviello_2016:642790 204
VKAAFTRAYNKEAHLTPYSLQAIKASRHSTSPSLDSEYNEELNEDDSQSDEK
DQDAIETDAMIKVVF

SorfId=andreev_2015:308992 210
MTTLIPILSTFLFEDFSKASGFKGQRPETLHERLTLVSVYAPYLLIPFILLIFML
RSPYYKYEEKRKKK

SorfId=gonzalez_2014:172668 129 VSKAAADLMTYCDAHACEDPLITPVPTSENPFREKKFFCALL

SorfId=andreev_2015:216730 162 VIPKRTNRPGISTTDRGFPRARYRARTTNYNSSRSRFYSGFNSRPRGRVYRSG

SorfId=gonzalez_2014:645009 93 VFRYSLQKLAYTVSRTGRQVLGERRQRAPN

SorfId=werner_2015:456667 147 MVITSENDEDRGGQEKESKEESVLAMLGIIGTILNLIVIIFVYIYTTL

SorfId=iwasaki_2016:288070 114 MAEGNTLISVDYEIFGKVQGVFFRKHTQVCGLQALGW

SorfId=andreev_2015:619791 195
MMNNGLLQQPSALMLLPCRPVLTSVALNANFVSWKSRTKYTITPVKMRK
SGGRDHTGGNKDRGI

SorfId=werner_2015:555128 159 MGCHSSKSTTVAAESQKLEEEREGREPGLETGTQAADCKDAPLKDGTPEPKS
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