Revisiting the Venoarteriolar Reflex–Further Insights from Upper Limb Dependency in Healthy Subjects
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.3. Technologies
2.4. Analytics
3. Results
4. Discussion
4.1. Influence of the Anatomical Location on the Venoarteriolar Reflex
- Skin microcirculation was assessed using LDF. It is known that optical technologies with different wavelengths reach skin at different depths and therefore assess different microvascular networks [44]. This has been consistently observed when comparing LDF with PPG [46,47], PPG of different wavelengths (green vs. red) [44], as well as LDF of different wavelengths [17];
- The assessed skin was heated to 34 °C. Analyzing heated skin may lead to a misrepresentation of skin blood flow during limb dependency. Heating such small skin areas does not change the blood distribution in the entire limb/region. Therefore, it is logical that the VAR-mediated vasoconstriction in heated skin may be less intense compared to the vasoconstriction in non-heated skin;
- Non-glabrous skin regions were assessed, which are known to have considerably less arteriovenous anastomoses (AAVs) and less post-ganglionic sympathetic fibers than the glabrous skin of the fingers and toes [48]. Therefore, it is possible that the magnitude and physiological mechanisms underlying the VAR differ between glabrous and non-glabrous skin.
4.2. Potential Involvement of the Sympathetic Nervous System in Upper Limb Dependency
4.3. Potential Involvement of Non-Sympathetic Mechanisms
4.4. Potential Influence of the Endothelium
4.5. Regarding the Decrease in Contralateral Perfusion
4.6. Practical Implications of the VAR
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Breit, G.A.; Watenpaugh, D.E.; Ballard, R.E.; Hargens, A.R. Acute cutaneous microvascular flow responses to whole-body tilting in humans. Microvasc. Res. 1993, 46, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Okazaki, K.; Fu, Q.; Martini, E.R.; Shook, R.; Conner, C.; Zhang, R.; Crandall, C.G.; Levine, B.D. Vasoconstriction during venous congestion: Effects of venoarteriolar response, myogenic reflexes, and hemodynamics of changing perfusion pressure. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2005, 289, 1354–1359. [Google Scholar] [CrossRef] [PubMed]
- Crandall, C.; Shibasaki, M.; Yen, T. Evidence that the human cutaneous venoarteriolar response is not mediated by adrenergic mechanisms. J. Physiol. 2002, 538, 599–605. [Google Scholar] [CrossRef] [PubMed]
- Hassan, A.A.; Tooke, J. Mechanism of the postural vasoconstrictor response in the human foot. Clin. Sci. 1988, 75, 379–387. [Google Scholar] [CrossRef]
- Henriksen, O. Sympathetic reflex control of blood flow in human peripheral tissues. Acta Physiol. Scand. 1991, 603, 33–39. [Google Scholar]
- Skagen, K.; Henriksen, O. Changes in subcutaneous blood flow during locally applied negative pressure to the skin. Acta Physiol. Scand. 1983, 117, 411–414. [Google Scholar] [CrossRef]
- Szolcsányi, J. Neuroregulation of cutaneous microcirculation: The shadow of Sir Thomas Lewis. Trends Pharmacol. Sci. 2013, 34, 591–592. [Google Scholar] [CrossRef]
- Theisen, D.; Vanlandewijck, Y.; Sturbois, X.; Francaux, M. Blood distribution adaptations in paraplegics during posture changes: Peripheral and central reflex responses. Eur. J. Appl. Physiol. 2000, 81, 463–469. [Google Scholar] [CrossRef]
- Andersen, E.B.; Boesen, F.; Hendriksen, O.; Sonne, M. Blood flow in skeletal muscle of tetraplegic man during postural changes. Clin. Sci. 1986, 70, 321–325. [Google Scholar] [CrossRef]
- Skagen, K.; Jensen, K.; Henriksen, O.; Knudsen, L. Sympathetic reflex control of subcutaneous blood flow in tetraplegic man during postural changes. Clin. Sci. 1982, 62, 605–609. [Google Scholar] [CrossRef]
- Henriksen, O. Local Reflex in Microcirculation in Human Subcutaneous Tissue. Acta Physiol. Scand. 1976, 97, 447–456. [Google Scholar] [CrossRef] [PubMed]
- Henriksen, O. Effect of Chronic Sympathetic Denervation upon Local Regulation of Blood Flow in Human Subcutaneous Tissue. Acta Physiol. Scand. 1976, 97, 377–384. [Google Scholar] [CrossRef]
- Henriksen, O. Local Nervous Mechanism in Regulation of Blood Flow in Human Subcutaneous Tissue. Acta Physiol. Scand. 1976, 97, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Snyder, K.A.M.; Shamimi-Noori, S.; Wilson, T.E.; Monahan, K.D. Age- and limb-related differences in the vasoconstrictor response to limb dependency are not mediated by a sympathetic mechanism in humans. Acta Physiol. 2012, 205, 372–380. [Google Scholar] [CrossRef]
- Henriksen, O.; Nielsen, S.L.; PPaaske, W.; Sejrsen, P. Autoregulation of Blood Flow in Human Cutaneous Tissue. Acta Physiol. Scand. 1973, 89, 538–543. [Google Scholar] [CrossRef]
- Fujii, N.; McGarr, G.W.; McNeely, B.D.; Ichinose, M.; Nishiyasu, T.; Kenny, G.P. KCa and KV channels modulate the venoarteriolar reflex in non-glabrous human skin with no roles of KATP channels, NOS, and COX. Eur. J. Pharmacol. 2020, 866, 172828. [Google Scholar] [CrossRef]
- Malanin, K.; Kolari, P.J. The venoarteriolar response of the skin in healthy legs measured at different depths. Clin. Physiol. 1998, 18, 441–446. [Google Scholar] [CrossRef]
- Rathbun, S.; Heath, P.J.; Whitsett, T. The venoarterial reflex. Vasc. Med. 2008, 13, 315–316. [Google Scholar] [CrossRef]
- Silva, H.; Ferreira, H.A.; da Silva, H.P.; Monteiro Rodrigues, L. The venoarteriolar reflex significantly reduces contralateral perfusion as part of the lower limb circulatory homeostasis in vivo. Front. Physiol. 2018, 9, 1123. [Google Scholar] [CrossRef]
- Shore, A.C.; Price, K.J.; Sandeman, D.D.; Tripp, J.H.; Tooke, J.E. Posturally induced vasoconstriction in diabetes mellitus. Arch. Dis. Child. 1994, 70, 22–26. [Google Scholar] [CrossRef]
- Ferguson, D.W.; Thames, M.D.; Mark, A.L. Effects of propranolol on reflex vascular responses to orthostatic stress in humans. Role of ventricular baroreceptors. Circulation 1983, 67, 802–807. [Google Scholar] [CrossRef] [PubMed]
- Estañol-Vidal, B.; Gutiérrez-Manjarrez, F.; Martínez-Memije, R.; Sentíes-Madrid, H.; Berenguer-Sánchez, M.J.; Magaña-Zamora, L.; Delgado-García, G.; Chiquete-Anaya, E. Las dos caras del reflejo venoarteriolar: Vasoconstricción y vasodilatación cutánea al bajar y subir el brazo. Rev. Neurol. 2016, 62, 403–407. [Google Scholar] [CrossRef]
- Pinto, P.; Rei, F.; Fernandes, M.; Rodrigues, L. Characterization of the peripheral vascular function by a hemodynamical response to a passive postural change in the lower limb. Rev. Lusófona Ciências E Tecnol. Saúde. 2006, 3, 145–153. [Google Scholar]
- Monteiro Rodrigues, L.; Rocha, C.; Andrade, S.; Granja, T.; Gregório, J. The acute adaptation of skin microcirculatory perfusion in vivo does not involve a local response but rather a centrally mediated adaptive reflex. Front. Physiol. 2023, 14, 1177583. [Google Scholar] [CrossRef]
- de Graaff, J.C.; Ubbink, D.T.; Lagarde, S.M.; HM Jacobs, M.J. Postural changes in capillary pressure in the hallux of healthy volunteers. J. Appl. Physiol. 2003, 95, 2223–2228. [Google Scholar] [CrossRef]
- Muntzel, M.S.; Anderson, E.A.; Johnson, A.K.; Mark, A.L. Mechanisms of insulin action on sympathetic nerve activity. Clin. Exp. Hypertens. 1995, 17, 39–50. [Google Scholar] [CrossRef]
- Rajapakse, N.W.; Chong, A.L.; Zhang, W.; Kaye, D.M. Insulin-mediated activation of the L-arginine nitric oxide pathway in man, and its impairment in diabetes. PLoS ONE 2013, 8, e61840. [Google Scholar] [CrossRef]
- Silva, H.; Šorli, J.; Lenasi, H. Oral Glucose Load and Human Cutaneous Microcirculation: An Insight into Flowmotion Assessed by Wavelet Transform. Biology 2021, 10, 953. [Google Scholar] [CrossRef]
- World Medical Association. World Medical Association declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef]
- Allen, J. Photoplethysmography and its application in clinical physiological measurement. Physiol. Meas. 2007, 28, R1. [Google Scholar] [CrossRef]
- Kamshilin, A.A.; Nippolainen, E.; Sidorov, I.S.; Vasilev, P.V.; Erofeev, N.P.; Podolian, N.P.; Romashko, R.V. A new look at the essence of the imaging photoplethysmography. Sci. Rep. 2015, 5, srep10494. [Google Scholar] [CrossRef] [PubMed]
- Volkov, M.V.; Margaryants, N.B.; Potemkin, A.V.; Volynsky, M.A.; Gurov, I.P.; Mamontov, O.V.; Kamshilin, A.A. Video capillaroscopy clarifies mechanism of the photoplethysmographic waveform appearance. Sci. Rep. 2017, 7, 13298. [Google Scholar] [CrossRef] [PubMed]
- Berardesca, E.; Lévêque, J.L.; Masson, P. EEMCO guidance for the measurement of skin microcirculation. Skin. Pharmacol. Appl. Skin. Physiol. 2002, 15, 442–456. [Google Scholar] [CrossRef]
- Davison, J.L.; Short, D.S.; Wilson, T.E. Effect of local heating and vasodilation on the cutaneous venoarteriolar response. Clin. Auton. Res. 2004, 14, 385–390. [Google Scholar] [CrossRef]
- Petkovšek, M.; Nemec, M.; Zajec, P. Algorithm Execution Time and Accuracy of NTC Thermistor-Based Temperature Measurements in Time-Critical Applications. Mathematics 2021, 9, 2266. [Google Scholar] [CrossRef]
- Posada-Quintero, H.F.; Chon, K.H. Innovations in electrodermal activity data collection and signal processing: A systematic review. Sensors 2020, 20, 479. [Google Scholar] [CrossRef]
- Levick, J.R.; Michel, C.C. The effects of position and skin temperature on the capillary pressures in the fingers and toes. J. Physiol. 1978, 274, 97–109. [Google Scholar] [CrossRef]
- Silva, H.; Rocha, C.; Monteiro Rodrigues, L. Combining laser-doppler flowmetry and photoplethysmography to explore in vivo vascular physiology. J. Biomed. Biopharm. Res. 2016, 13, 209–217. [Google Scholar] [CrossRef]
- Yoo, J.; Sun, D.; Parker, R.S.; Urey, M.A.; Romero, S.A.; Lawley, J.S.; Sarma, S.; Vongpatanasin, W.; Crandall, C.G.; Fu, Q. Augmented venoarteriolar response with ageing is associated with morning blood pressure surge. Exp. Physiol. 2018, 103, 1448–1455. [Google Scholar] [CrossRef]
- Gabrielsen, A.; Norsk, P. Effect of spaceflight on the subcutaneous venoarteriolar reflex in the human lower leg. J. Appl. Physiol. 2007, 103, 959–962. [Google Scholar] [CrossRef]
- Parazynski, S.E.; Hargens, A.R.; Tucker, B.; Aratow, M.; Styf, J.; Crenshaw, A. Transcapillary fluid shifts in tissues of the head and neck during and after simulated microgravity. J. Appl. Physiol. 1991, 71, 2469–2475. [Google Scholar] [CrossRef] [PubMed]
- Aratow, M.; Fortney, S.M.; Watenpaugh, D.E.; Crenshaw, A.G.; Hargens, A.R. Transcapillary fluid responses to lower body negative pressure. J. Appl. Physiol. 1993, 74, 2763–2770. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.F. Vascular adaptation to microgravity: What have we learned? J. Appl. Physiol. 2001, 91, 2415–2430. [Google Scholar] [CrossRef]
- Bashkatov, A.N.; Genina, E.A.; Kochubey, V.I.; Tuchin, V.V. Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. J. Phys. D Appl. Phys. 2005, 38, 2543–2555. [Google Scholar] [CrossRef]
- Vissing, S.F.; Secher, N.H.; Victor, R.G. Mechanisms of cutaneous vasoconstriction during upright posture. Acta Physiol. Scand. 1997, 159, 131–138. [Google Scholar] [CrossRef]
- Sviridova, N.; Zhao, T.; Aihara, K.; Nakamura, K.; Nakano, A. Photoplethysmogram at green light: Where does chaos arise from? Chaos Solitons Fractals 2018, 116, 157–165. [Google Scholar] [CrossRef]
- Rodrigues, L.M.; Rocha, C.; Ferreira, H.; Silva, H. Different lasers reveal different skin microcirculatory flowmotion—Data from the wavelet transform analysis of human hindlimb perfusion. Sci. Rep. 2019, 9, 16951. [Google Scholar] [CrossRef]
- Flavahan, N.A. A vascular mechanistic approach to understanding Raynaud phenomenon Key Points. Nat. Rev. Rheumatol. 2014, 11, 146–158. [Google Scholar] [CrossRef]
- Henriksen, O.; Skagen, K.; Haxholdt, O.; Dyrberg, V. Contribution of local blood flow regulation mechanisms to the maintenance of arterial pressure in upright position during epidural blockade. Acta Physiol. Scand. 1983, 118, 271–280. [Google Scholar] [CrossRef]
- Henriksen, O. Local sympathetic reflex mechanism in regulation of blood flow in human subcutaneous adipose tissue. Acta Physiol. Scand. Suppl. 1977, 450, 1–48. [Google Scholar]
- Henriksen, O.; Sejrsen, P. Local Reflex in Microcirculation in Human Skeletal Muscle. Acta Physiol. Scand. 1977, 99, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Henriksen, L.; Sejrsen, P. Intrinsic Regulation of Blood Flow in Adipose Tissue. Acta Physiol. Scand. 1976, 98, 227–231. [Google Scholar] [CrossRef] [PubMed]
- Zoltie, N.; Young, C.; Faris, I.; Tan, E. The veno-arteriolar reflex in free skin flaps. Clin. Physiol. 1989, 9, 183–188. [Google Scholar] [CrossRef]
- Cracowski, J.L.; Roustit, M. Human skin microcirculation. Compr. Physiol. 2020, 10, 1105–1154. [Google Scholar]
- Anderson, Z.T.; Dawson, A.D.; Slominski, A.T.; Harris, M.L. Current Insights Into the Role of Neuropeptide Y in Skin Physiology and Pathology. Front. Endocrinol. 2022, 13, 838434. [Google Scholar] [CrossRef]
- Lang, J.A.; Krajek, A.C.; Smaller, K.A. Evidence for a functional vasoconstrictor role for ATP in the human cutaneous microvasculature. Exp. Physiol. 2017, 102, 684–693. [Google Scholar] [CrossRef]
- Skagen, K.; Bonde-Petersen, F. Regulation of subcutaneous blood flow during head-up tilt (45°) in normals. Acta Physiol. Scand. 1982, 114, 31–35. [Google Scholar] [CrossRef]
- Haug, S.J.; Welsh, D.G.; Segal, S.S. Sympathetic nerves inhibit conducted vasodilatation along feed arteries during passive stretch of hamster skeletal muscle. J. Physiol. 2003, 552, 273–282. [Google Scholar] [CrossRef]
- Ogata, C.M.; Navega, M.T.; Abreu, L.C.; Ferreira, C.; A Cardoso, M.; Raimundo, R.D.; Ribeiro, V.L.; E Valenti, V. A single bout of exercise with a flexible pole induces significant cardiac autonomic responses in healthy men. Clinics 2014, 69, 595–600. [Google Scholar] [CrossRef]
- Scotland, R.S.; Chauhan, S.; Davis, C.; De Felipe, C.; Hunt, S.; Kabir, J.; Kotsonis, P.; Oh, U.; Ahluwalia, A. Vanilloid receptor TRPV1, sensory C-fibers, and vascular autoregulation: A novel mechanism involved in myogenic constriction. Circ. Res. 2004, 95, 1027–1034. [Google Scholar] [CrossRef]
- Dayan, L.; Brill, B.; Hochberg, U.; Jacob, G. Is adenosine a modulator of peripheral vasoconstrictor responses? Clin. Auton. Res. 2016, 26, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.M. How do veins talk to arteries? J. Physiol. 2002, 538, 341. [Google Scholar] [CrossRef] [PubMed]
- Edwards, G.; Weston, A.H. Pharmacology of the Potassium Channel Openers. Cardiovasc. Drugs Ther. 1995, 9, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Arnal, J.-F.; Fontaine, C.; Billon-Galés, A.; Favre, J.; Laurell, H.; Lenfant, F.; Gourdy, P. Estrogen receptors and endothelium. Arter. Thromb. Vasc. Biol. 2010, 30, 1506–1512. [Google Scholar] [CrossRef]
- Mayrovitz, H.N.; Brown-Cross, D.; Washington, Z. Skin tissue water and laser Doppler blood flow during a menstrual cycle. Clin. Physiol. Funct. Imaging 2007, 27, 54–59. [Google Scholar] [CrossRef]
- Furlan, J.C.; Fehlings, M.G.; Shannon, P.; Norenberg, M.D.; Krassioukov, A.V. Descending Vasomotor Pathways in Humans: Correlation between Axonal Preservation and Cardiovascular Dysfunction after Spinal Cord Injury. J. Neurotrauma 2003, 20, 1351–1363. [Google Scholar] [CrossRef]
- Partida, E.; Mironets, E.; Hou, S.; Tom, V.J. Cardiovascular dysfunction following spinal cord injury. Neural Regen. Res. 2016, 11, 189–194. [Google Scholar]
- Gniadecka, M.; Bonde-Petersen, F. Impairment of the postural venoarteriolar reflex in aged individuals. Acta Derm.-Venereol. 1994, 74, 194–196. [Google Scholar] [CrossRef]
- Reynès, C.; Perez-Martin, A.; Ennaifer, H.; Silva, H.; Knapp, Y.; Vinet, A. Mechanisms of Venoarteriolar Reflex in Type 2 Diabetes with or without Peripheral Neuropathy. Biology 2021, 10, 333. [Google Scholar] [CrossRef]
- Park, H.S.; Yun, H.M.; Jung, I.M.; Lee, T. Role of laser doppler for the evaluation of pedal microcirculatory function in diabetic neuropathy patients. Microcirculation 2016, 23, 44–52. [Google Scholar] [CrossRef]
- Stoyneva, Z.; Velcheva, I.; Antonova, N.; Titianova, E.; Koleva, I. Venoarteriolar reflex responses in diabetic patients. Clin. Hemorheol. Microcirc. 2017, 65, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Fujii, N.; McGarr, G.W.; Amano, T.; Nishiyasu, T.; Sigal, R.J.; Kenny, G.P. Type 2 diabetes impairs vascular responsiveness to nitric oxide, but not the venoarteriolar reflex or post-occlusive reactive hyperaemia in forearm skin. Exp. Dermatol. 2021, 30, 1807–1813. [Google Scholar] [CrossRef] [PubMed]
- Shami, S.K.; Shields, D.A.; Farrah, J.; Scurr, J.H.; Coleridge Smith, P.D. Peripheral nerve function in chronic venous insufficiency. Eur. J. Vasc. Surg. 1993, 7, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Földi, E.; Földi, M. (Eds.) Lipedema. In Foldi’s Textbook of Lymphology, 2nd ed.; Elsevier: Munich, Germany, 2006; pp. 417–427. [Google Scholar]
- Stoyneva, Z. Laser Doppler-recorded venoarteriolar reflex in Raynaud’s phenomenon. Auton. Neurosci. 2004, 116, 62–68. [Google Scholar] [CrossRef]
- Medow, M.S.; Minson, C.T.; Stewart, J.M. Decreased microvascular nitric oxide–dependent vasodilation in postural tachycardia syndrome. Circulation 2005, 112, 2611–2618. [Google Scholar] [CrossRef]
- Besharat, S.; Grol-Prokopczyk, H.; Gao, S.; Feng, C.; Akwaa, F.; Gewandter, J.S. Peripheral edema: A common and persistent health problem for older Americans. PLoS ONE 2021, 16, e0260742. [Google Scholar] [CrossRef]
- Mortimer, P.S. Cellulitis in chronic oedema. Br. J. Dermatol. 2021, 185, 10–11. [Google Scholar] [CrossRef]
- Gasparis, A.P.; Kim, P.S.; Dean, S.M.; Khilnani, N.M.; Labropoulos, N. Diagnostic approach to lower limb edema. Phlebology 2020, 35, 650–655. [Google Scholar] [CrossRef]
- White, R.E. Estrogen and vascular function. Vasc. Pharmacol. 2002, 38, 73–80. [Google Scholar] [CrossRef]
Total | Females | Males | |
---|---|---|---|
n | 15 | 9 | 6 |
Age (years) | 24.1 ± 5.8 | 23.0 ± 4.5 | 25.8 ± 7.5 |
Height (m) | 1.71 ± 0.1 | 1.67 ± 0.1 | 1.77 ± 0.1 |
Body mass (kg) | 63.8 ± 16.1 | 55.3 ± 8.1 | 73.8 ± 18.0 |
Body mass index (kg·m−2) | 21.4 ± 2.9 | 19.8 ± 1.5 | 23.3 ± 3.2 |
Fasting duration (h) | 2.1 ± 1.2 | 2.2 ± 1.1 | 2.1 ± 1.5 |
Mean menstrual cycle duration (days) | 27 ± 1 | ||
Menstrual cycle day | 10.7 ± 7.8 | ||
Systolic blood pressure (mmHg) | |||
At the heart level | 109.6 ± 10.9 | 111.1 ± 11.4 | 107.4 ± 11.2 |
40 cm below the heart level | 112.7 ± 13.8 | 113.4 ± 10.4 | 111.6 ± 18.9 |
Diastolic blood pressure (mmHg) | |||
At the heart level | 66.8 ± 11.7 | 70.6 ± 10.3 | 61.6 ± 12.6 |
40 cm below the heart level | 70.0 ± 13.2 | 72.9 ± 12.4 | 66.0 ± 14.8 |
Test Hand | Contralateral Hand | p Value (Test vs. Contralateral) | |
---|---|---|---|
Skin blood flow (AU) | |||
Baseline | 547.0 (446.0; 663.7) | 595.0 (433.0; 704.6) | 0.436 |
Dependency | 417.0 (177.7; 741.1) | 570.0 (449.5; 701.8) | 0.006 * |
Recovery | 410.0 (281.4; 684.2) | 560.0 (464.7; 712.9) | 0.012 * |
Δ II-I (%) | −19.6 (−60.3; −1.5) | −6.7 (−18.1; 0.52) | 0.008 * |
Minimum flow | 262.0 (92.9; 325.5) | 356.0 (161.9; 552,5) | 0.424 |
t-min (s) | 15.0 (9.3; 39.8) | 9.0 (7.0; 39.3) | 0.263 |
p value (Dependency vs. Baseline) | 0.003 * | 0.005 * | - |
p value (Recovery vs. Baseline) | 0.027 * | 0.005 * | - |
Skin temperature (°C) | |||
Baseline | 31.4 (29.9; 34.4) | 31.8 (31.5; 34.9) | 0.636 |
Dependency | 31.7 (30.1; 33.9) | 32.0 (31.6; 35.0) | 0.526 |
Recovery | 32.0 (30.3; 33.9) | 32.3 (31.3; 34.7) | 0.626 |
Δ II-I (%) | −1.5 (−8.9; 2.4) | 0.9 (−0.6; 1.5) | 0.423 |
p value (Dependency vs. Baseline) | 0.593 | 0.476 | - |
p value (Recovery vs. Baseline) | 0.221 | 0.322 | - |
Pulse (min−1) | |||
Baseline | 70.0 (61.7; 95,3) | - | |
Dependency | 72.0 (56.6; 90.2) | - | |
Recovery | 70.0 (57.5; 87.7) | - | |
Δ II-I (%) | 0.0 (−1.3; 2.7) | - | |
p value (Dependency vs. Baseline) | 0.019 * | - | |
p value (Recovery vs. Baseline) | 0.301 | - | |
Electrodermal activity (µS) | |||
Baseline | 17.0 (7.2; 29.5) | - | |
Dependency | 15.0 (13.2; 26.5) | - | |
Recovery | 19.2 (12.0; 27.8) | - | |
Δ II-I (%) | −3.4 (−21.2; 72.4) | - | |
max-D | 46.0 (30.3; 66.1) | - | |
tmax-D (s) | 10.0 (5.9; 18.1) | - | |
max-R | 47.0 (28.0; 62.8) | - | |
tmax-R (s) | 13.0 (5.9; 16.5) | - | |
p value (Dependency vs. Baseline) | 0.722 | - | |
p value (Recovery vs. Baseline) | 0.638 | - | |
p value (max-D vs. Baseline) | 0.003 * | - | |
p value (max-R vs. Baseline) | 0.004 * | - | |
p value (max-D vs. max-R) | 0.066 | - | |
p value (tmax-D vs. tmax-R) | 0.341 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, H.; Rezendes, C. Revisiting the Venoarteriolar Reflex–Further Insights from Upper Limb Dependency in Healthy Subjects. Biology 2024, 13, 715. https://doi.org/10.3390/biology13090715
Silva H, Rezendes C. Revisiting the Venoarteriolar Reflex–Further Insights from Upper Limb Dependency in Healthy Subjects. Biology. 2024; 13(9):715. https://doi.org/10.3390/biology13090715
Chicago/Turabian StyleSilva, Henrique, and Carlota Rezendes. 2024. "Revisiting the Venoarteriolar Reflex–Further Insights from Upper Limb Dependency in Healthy Subjects" Biology 13, no. 9: 715. https://doi.org/10.3390/biology13090715
APA StyleSilva, H., & Rezendes, C. (2024). Revisiting the Venoarteriolar Reflex–Further Insights from Upper Limb Dependency in Healthy Subjects. Biology, 13(9), 715. https://doi.org/10.3390/biology13090715