Aminocarb Exposure Induces Cytotoxicity and Endoplasmic Reticulum Stress-Mediated Apoptosis in Mouse Sustentacular Sertoli Cells: Implications for Male Infertility and Environmental Health
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Experimental Design
2.3. Evaluation of Cell Proliferation through the SRB Assay
2.4. Evaluation of Mitochondrial Function through the MTT Assay
2.5. Evaluation of Membrane Damages through the Lactate Dehydrogenase (LDH) Assay
2.6. DNA and RNA Extraction
2.7. Polymerase Chain Reaction
2.8. Determination of Mitochondrial DNA Copy Number (mtDNAcn)
2.9. JC-1 Assay for ∆ψm
2.10. Protein Extraction and Quantification
2.11. Western Blotting
2.12. Caspase-3 Activity Assay
2.13. Oxidative Stress Evaluation
2.14. Statistical Analysis
3. Results
3.1. Exposure to Aminocarb Decreases the Proliferation of TM4 Cells
3.2. Exposure to Aminocarb Decreases the Viability of TM4 Cells
3.3. Exposure to Aminocarb Presents a Tendency to Increase Membrane Damages in a Dose-Dependent Manner
3.4. Exposure to Aminocarb Does Not Affect Mitochondrial Biogenesis But Alters Mitochondrial Membrane Potential (∆ψm)
3.5. Exposure to Aminocarb Does Not Induce Alterations in the Protein Levels of Bax and Bcl-2
3.6. Exposure to Aminocarb Does Not Alter the Levels of the Protein Caspase-8, but Decreases the Ratio eIF2α-P/eIF2α
3.7. Exposure to 5 µM of Aminocarb Increases the Levels of the Protein Caspase-3 and Promotes Its Activation
3.8. Exposure to Aminocarb Does Not Induce Oxidative Stress
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zegers-Hochschild, F.; Adamson, G.D.; Dyer, S.; Racowsky, C.; De Mouzon, J.; Sokol, R.; Rienzi, L.; Sunde, A.; Schmidt, L.; Cooke, I.D. The international glossary on infertility and fertility care, 2017. Hum. Reprod. 2017, 32, 1786–1801. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Baskaran, S.; Parekh, N.; Cho, C.-L.; Henkel, R.; Vij, S.; Arafa, M.; Selvam, M.K.P.; Shah, R. Male infertility. Lancet 2021, 397, 319–333. [Google Scholar] [CrossRef] [PubMed]
- Moreira, S.; Pereira, S.C.; Seco-Rovira, V.; Oliveira, P.F.; Alves, M.G.; Pereira, M.d.L. Pesticides and male fertility: A dangerous crosstalk. Metabolites 2021, 11, 799. [Google Scholar] [CrossRef] [PubMed]
- Ham, J.; Lim, W.; Song, G. Pendimethalin induces apoptosis in testicular cells via hampering ER-mitochondrial function and autophagy. Environ. Pollut. 2021, 278, 116835. [Google Scholar] [CrossRef] [PubMed]
- Verderame, M.; Chianese, T.; Rosati, L.; Scudiero, R. Molecular and histological effects of glyphosate on testicular tissue of the lizard Podarcis siculus. Int. J. Mol. Sci. 2022, 23, 4850. [Google Scholar] [CrossRef]
- de Carvalho, R.K.; Rodrigues, T.C.; Júnior, W.D.; Mota, G.M.P.; Andersen, M.L.; e Costa, R.M. Short-and long-term exposure to methamidophos impairs spermatogenesis in mice. Reprod. Biol. 2020, 20, 357–364. [Google Scholar] [CrossRef]
- Rato, L.; Alves, M.G.; Socorro, S.; Duarte, A.I.; Cavaco, J.E.; Oliveira, P.F. Metabolic regulation is important for spermatogenesis. Nat. Rev. Urol. 2012, 9, 330–338. [Google Scholar] [CrossRef]
- Alves, M.G.; Rato, L.; Carvalho, R.A.; Moreira, P.I.; Socorro, S.; Oliveira, P.F. Hormonal control of Sertoli cell metabolism regulates spermatogenesis. Cell. Mol. Life Sci. 2013, 70, 777–793. [Google Scholar] [CrossRef]
- Griswold, M.D. The central role of Sertoli cells in spermatogenesis. In Seminars Cell & Developmental Biology; Academic Press: Cambridge, MA, USA, 1998; pp. 411–416. [Google Scholar]
- Wang, H.-X.; Zhang, R.; Li, Z.; Wang, L.-S.; Yu, Y.; Wang, Q.; Ding, Z.; Zhang, J.-P.; Zhang, M.-R.; Xu, L.-C. Cypermethrin induces Sertoli cell apoptosis through mitochondrial pathway associated with calcium. Toxicol. Res. 2021, 10, 742–750. [Google Scholar] [CrossRef]
- Sun, W.; Ni, Z.; Li, R.; Chang, X.; Li, W.; Yang, M.; Zhou, Z. Flurochloridone induces Sertoli cell apoptosis through ROS-dependent mitochondrial pathway. Ecotoxicol. Environ. Saf. 2021, 216, 112183. [Google Scholar] [CrossRef]
- AnvariFar, H.; Amirkolaie, A.K.; Jalali, A.M.; Miandare, H.; Sayed, A.H.; Üçüncü, S.İ.; Ouraji, H.; Ceci, M.; Romano, N. Environmental pollution and toxic substances: Cellular apoptosis as a key parameter in a sensible model like fish. Aquat. Toxicol. 2018, 204, 144–159. [Google Scholar] [CrossRef] [PubMed]
- Kiraz, Y.; Adan, A.; Kartal Yandim, M.; Baran, Y. Major apoptotic mechanisms and genes involved in apoptosis. Tumor Biol. 2016, 37, 8471–8486. [Google Scholar] [CrossRef] [PubMed]
- Shiri, M.; Navaei-Nigjeh, M.; Baeeri, M.; Rahimifard, M.; Mahboudi, H.; Shahverdi, A.R.; Kebriaeezadeh, A.; Abdollahi, M. Blockage of both the extrinsic and intrinsic pathways of diazinon-induced apoptosis in PaTu cells by magnesium oxide and selenium nanoparticles. Int. J. Nanomed. 2016, 11, 6239–6250. [Google Scholar] [CrossRef] [PubMed]
- Sule, R.O.; Condon, L.; Gomes, A.V. A common feature of pesticides: Oxidative stress—The role of oxidative stress in pesticide-induced toxicity. Oxidative Med. Cell. Longev. 2022, 2022, 5563759. [Google Scholar] [CrossRef]
- Gupta, R.C.; Mukherjee, I.R.M.; Doss, R.B.; Malik, J.; Milatovic, D. Chapter 35—Organophosphates and Carbamates. In Reproductive and Developmental Toxicology, 2nd ed.; Gupta, R.C., Ed.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 609–631. [Google Scholar]
- World Health Organization. Taking a Multisectoral One Health Approach: A Tripartite Guide to Addressing Zoonotic Diseases in Countries; Food and Agriculture Organization of the United Nations: Québec City, QC, Canada, 2019. [Google Scholar]
- Richardson, G.; Qadri, S.; Jessiman, B. Acute toxicity, uptake, and clearance of aminocarb by the aquatic isopod, Caecidolea racovitzai racovitzai. Ecotoxicol. Environ. Saf. 1983, 7, 552–557. [Google Scholar] [CrossRef]
- Sundaram, K.; Szeto, S. A study on the lethal toxicity of aminocarb to freshwater crayfish and its in vivo metabolism. J. Environ. Sci. Health Part B 1979, 14, 589–602. [Google Scholar] [CrossRef]
- Zhang, F.; Ni, Z.; Zhao, S.; Wang, Y.; Chang, X.; Zhou, Z. Flurochloridone induced cell apoptosis via ER stress and eIF2α-ATF4/ATF6-CHOP-Bim/Bax signaling pathways in mouse TM4 Sertoli cells. Int. J. Environ. Res. Public Health 2022, 19, 4564. [Google Scholar] [CrossRef]
- Matfier, J.P. Establishment and characterization of two distinct mouse testicular epithelial cell line. Biol. Reprod. 1980, 23, 243–252. [Google Scholar] [CrossRef]
- Ameno, K., II. 7.4 Carbamate pesticides. In Drugs and Poisons in Humans; Springer: Berlin/Heidelberg, Germany, 2005; p. 559. [Google Scholar]
- Dechacin, C.; Weinberger, P.; Czuba, M. The interaction between cells in different phases of the cell cycle and aminocarb. Ecotoxicol. Environ. Saf. 1991, 21, 25–31. [Google Scholar] [CrossRef]
- Martins, A.D.; Oliveira, P.F.; Alves, M.G. Assessment of Sertoli Cell Proliferation by 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-Diphenyltetrazolium Bromide and Sulforhodamine B Assays. Curr. Protoc. Toxicol. 2019, 81, e85. [Google Scholar] [CrossRef]
- Vichai, V.; Kirtikara, K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat. Protoc. 2006, 1, 1112–1116. [Google Scholar] [CrossRef] [PubMed]
- Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 2001, 29, e45. [Google Scholar] [CrossRef] [PubMed]
- Martins, A.D.; Monteiro, M.P.; Silva, B.M.; Barros, A.; Sousa, M.; Carvalho, R.A.; Oliveira, P.F.; Alves, M.G. Metabolic dynamics of human Sertoli cells are differentially modulated by physiological and pharmacological concentrations of GLP-1. Toxicol. Appl. Pharmacol. 2019, 362, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Carrageta, D.F.; Guerra-Carvalho, B.; Sousa, M.; Barros, A.; Oliveira, P.F.; Monteiro, M.P.; Alves, M.G. Mitochondrial activation and reactive oxygen-species overproduction during sperm capacitation are independent of glucose stimuli. Antioxidants 2020, 9, 750. [Google Scholar] [CrossRef]
- Rivero-Gutiérrez, B.; Anzola, A.; Martínez-Augustin, O.; de Medina, F.S. Stain-free detection as loading control alternative to Ponceau and housekeeping protein immunodetection in Western blotting. Anal. Biochem. 2014, 467, 1–3. [Google Scholar] [CrossRef]
- Gilda, J.E.; Gomes, A.V. Stain-Free total protein staining is a superior loading control to β-actin for Western blots. Anal. Biochem. 2013, 440, 186–188. [Google Scholar] [CrossRef]
- Rato, L.; Duarte, A.I.; Tomas, G.D.; Santos, M.S.; Moreira, P.I.; Socorro, S.; Cavaco, J.E.; Alves, M.G.; Oliveira, P.F. Pre-diabetes alters testicular PGC1-α/SIRT3 axis modulating mitochondrial bioenergetics and oxidative stress. Biochim. Biophys. Acta (BBA)-Bioenerg. 2014, 1837, 335–344. [Google Scholar] [CrossRef]
- Vasan, K.; Clutter, M.; Fernandez Dunne, S.; George, M.D.; Luan, C.-H.; Chandel, N.S.; Martínez-Reyes, I. Genes involved in maintaining mitochondrial membrane potential upon electron transport chain disruption. Front. Cell Dev. Biol. 2022, 10, 781558. [Google Scholar] [CrossRef]
- Carpenter, R.; Brady, M.F. BAX Gene; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Simoes, V.; Alves, M.; Martins, A.; Dias, T.; Rato, L.; Socorro, S.; Oliveira, P. Regulation of apoptotic signaling pathways by 5α-dihydrotestosterone and 17β-estradiol in immature rat Sertoli cells. J. Steroid Biochem. Mol. Biol. 2013, 135, 15–23. [Google Scholar] [CrossRef]
- Fukuyama, T.; Tajima, Y.; Ueda, H.; Hayashi, K.; Shutoh, Y.; Harada, T.; Kosaka, T. Apoptosis in immunocytes induced by several types of pesticides. J. Immunotoxicol. 2010, 7, 39–56. [Google Scholar] [CrossRef]
- Donnelly, N.; Gorman, A.M.; Gupta, S.; Samali, A. The eIF2α kinases: Their structures and functions. Cell. Mol. Life Sci. 2013, 70, 3493–3511. [Google Scholar] [CrossRef] [PubMed]
- DSouza, U.J.A. Pesticide toxicity and oxidative stress –A Review. Borneo J. Med. Sci. 2017, 11, 3. [Google Scholar] [CrossRef]
- Moreira, S.; Silva, R.; Carrageta, D.F.; Alves, M.G.; Seco-Rovira, V.; Oliveira, P.F.; de Lourdes Pereira, M. Carbamate pesticides: Shedding light on their impact on the male reproductive system. Int. J. Mol. Sci. 2022, 23, 8206. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, P.F.; Alves, M.G. Sertoli Cell Metabolism and Spermatogenesis; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Wang, Q.; Wang, H.-X.; Shen, J.-Y.; Zhang, R.; Hong, J.-W.; Li, Z.; Chen, G.; Li, M.-X.; Ding, Z.; Li, J. The anti-androgenic effects of cypermethrin mediated by non-classical testosterone pathway activation of mitogen-activated protein kinase cascade in mouse Sertoli cells. Ecotoxicol. Environ. Saf. 2019, 177, 58–65. [Google Scholar] [CrossRef]
- Moreira, B.P.; Silva, J.F.; Jarak, I.; de Lourdes Pereira, M.; Oliveira, P.F.; Alves, M.G. Technical-grade chlordane compromises rat Sertoli cells proliferation, viability and metabolic activity. Toxicol. Vitr. 2020, 63, 104673. [Google Scholar] [CrossRef]
- Quan, Y.; Xin, Y.; Tian, G.; Zhou, J.; Liu, X. Mitochondrial ROS-Modulated mtDNA: A potential target for cardiac aging. Oxidative Med. Cell. Longev. 2020, 2020, 9423593. [Google Scholar] [CrossRef]
- Aquilano, K.; Vigilanza, P.; Baldelli, S.; Pagliei, B.; Rotilio, G.; Ciriolo, M.R. Peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α) and sirtuin 1 (SIRT1) reside in mitochondria: Possible direct function in mitochondrial biogenesis. J. Biol. Chem. 2010, 285, 21590–21599. [Google Scholar] [CrossRef]
- Taherzadeh-Fard, E.; Saft, C.; Akkad, D.A.; Wieczorek, S.; Haghikia, A.; Chan, A.; Epplen, J.T.; Arning, L. PGC-1alpha downstream transcription factors NRF-1 and TFAM are genetic modifiers of Huntington disease. Mol. Neurodegener. 2011, 6, 32. [Google Scholar] [CrossRef]
- Sivandzade, F.; Bhalerao, A.; Cucullo, L. Analysis of the mitochondrial membrane potential using the cationic JC-1 dye as a sensitive fluorescent probe. Bio-Protoc. 2019, 9, e3128. [Google Scholar] [CrossRef]
- Gao, C.; Wang, A.-Y. Significance of increased apoptosis and Bax expression in human small intestinal adenocarcinoma. J. Histochem. Cytochem. 2009, 57, 1139–1148. [Google Scholar] [CrossRef]
- Rao, R.V.; Bredesen, D.E. Misfolded proteins, endoplasmic reticulum stress and neurodegeneration. Curr. Opin. Cell Biol. 2004, 16, 653–662. [Google Scholar] [CrossRef] [PubMed]
- Redza-Dutordoir, M.; Averill-Bates, D.A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Et Biophys. Acta—Mol. Cell Res. 2016, 1863, 2977–2992. [Google Scholar] [CrossRef] [PubMed]
- Ponder, K.G.; Boise, L.H. The prodomain of caspase-3 regulates its own removal and caspase activation. Cell Death Discov. 2019, 5, 56. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Wang, L.; Wang, X.; Xie, J.; Yao, T.; Yu, Y.; Wang, Q.; Ding, Z.; Zhang, J.; Zhang, M. Cypermethrin induces apoptosis of Sertoli cells through the endoplasmic reticulum pathway. Toxicol. Ind. Health 2022, 38, 399–407. [Google Scholar] [CrossRef]
- Gong, Y.; Wu, J.; Huang, Y.; Shen, S.; Han, X. Nonylphenol induces apoptosis in rat testicular Sertoli cells via endoplasmic reticulum stress. Toxicol. Lett. 2009, 186, 84–95. [Google Scholar] [CrossRef]
- Goswami, P.; Gupta, S.; Biswas, J.; Joshi, N.; Swarnkar, S.; Nath, C.; Singh, S. Endoplasmic reticulum stress plays a key role in rotenone-induced apoptotic death of neurons. Mol. Neurobiol. 2016, 53, 285–298. [Google Scholar] [CrossRef]
Gene | Primer Sequence (5′-3′) | AT (°C) | Efficency (%) |
---|---|---|---|
Sirt1 | Sense: ACAGAACGTCACACGCCAG Anti-Sense: ACAATCTGCCACAGCGTCATA | 58 | 80 |
PGC-1α | Sence: TGTGTGTCAGAGTGGATTGGAG Anti-Sence: GCAGGCTCATTGTTGTACTGG | 56 | 82.4 |
NRF1 | Sence: GCTGCAGGTCCTGTGGGAAT Anti-Sence: ACTCAAACACATGAGGCCGT | 64 | 98.7 |
TFAM | Sence: GATGGGTATGGAGAAGGAGGC Anti-Sence: CCCTGAGCCGAATCATCCTTT | 56 | 88.9 |
β2M | Sence: ACGTAACACAGTTCCACCCG Anti-Sence: TCTCGATCCCAGTAGACGGT | 58 | 110 |
ND1 | Sence: GCATCTTATCCACGCTTCCG Anti-Sence: TGGTGGTACTCCCGCTGTAA | 58 | N.A. |
β2Mnc | Sence: GCTCACACTGAATTCACCCC Anti-Sence: CGGCCATACTGGCATGCTTA | 58 | N.A. |
Antibody | Host Specie | Molecular Weight (kDa) | Dilution | Vendor | Catalog |
---|---|---|---|---|---|
Bax | Rabbit | 21 | 1:1000 | Abcam, United Kingdom | ab32503 |
Bax | Rabbit | 20 | 1:1000 | Cell Signaling Technology, MA, USA | 2772S |
Bcl-2 | Rabbit | 26 | 1:1000 | Abcam, United Kingdom | ab196495 |
Cleaved Caspase-3 | Rabbit | 17 | 1:1000 | Sigma-Aldrich, Germany | pc679 |
Caspase-8 | Rabbit | 58 | 1:500 | Abcam, United Kingdom | ab138485 |
eIF2α | Rabbit | 38 | 1:1000 | Cell Signaling, MA, USA | 97225 |
Phospho-eIF2α (Ser51) | Rabbit | 38 | 1:1000 | Cell Signaling, MA, USA | 119A11 |
Rabbit | Goat | - | 1:1000 | Sigma-Aldrich, Germany | A3687 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreira, S.; Martins, A.D.; Alves, M.G.; Pastor, L.M.; Seco-Rovira, V.; Oliveira, P.F.; Pereira, M.d.L. Aminocarb Exposure Induces Cytotoxicity and Endoplasmic Reticulum Stress-Mediated Apoptosis in Mouse Sustentacular Sertoli Cells: Implications for Male Infertility and Environmental Health. Biology 2024, 13, 721. https://doi.org/10.3390/biology13090721
Moreira S, Martins AD, Alves MG, Pastor LM, Seco-Rovira V, Oliveira PF, Pereira MdL. Aminocarb Exposure Induces Cytotoxicity and Endoplasmic Reticulum Stress-Mediated Apoptosis in Mouse Sustentacular Sertoli Cells: Implications for Male Infertility and Environmental Health. Biology. 2024; 13(9):721. https://doi.org/10.3390/biology13090721
Chicago/Turabian StyleMoreira, Sílvia, Ana D. Martins, Marco G. Alves, Luis Miguel Pastor, Vicente Seco-Rovira, Pedro F. Oliveira, and Maria de Lourdes Pereira. 2024. "Aminocarb Exposure Induces Cytotoxicity and Endoplasmic Reticulum Stress-Mediated Apoptosis in Mouse Sustentacular Sertoli Cells: Implications for Male Infertility and Environmental Health" Biology 13, no. 9: 721. https://doi.org/10.3390/biology13090721
APA StyleMoreira, S., Martins, A. D., Alves, M. G., Pastor, L. M., Seco-Rovira, V., Oliveira, P. F., & Pereira, M. d. L. (2024). Aminocarb Exposure Induces Cytotoxicity and Endoplasmic Reticulum Stress-Mediated Apoptosis in Mouse Sustentacular Sertoli Cells: Implications for Male Infertility and Environmental Health. Biology, 13(9), 721. https://doi.org/10.3390/biology13090721